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Chapter 1

Introduction
The difference between advanced calculus and calculus is that all the theorems are proved
completely and the role of plane geometry is minimized. Instead, the notion of complete-
ness is of preeminent importance. Formal manipulations are of no significance at all unless
they aid in showing something significant. Routine skills involving elementary functions
and integration techniques are supposed to be mastered and have no place in advanced cal-
culus which deals with the fundamental issues related to existence and meaning. This is a
subject which places calculus as part of mathematics and involves proofs and definitions,
not algorithms and busy work. Roughly speaking, it is nineteenth century calculus rather
than eighteenth century calculus. This book is not intended to be a first course in Calculus.
It fails to discuss many of the important techniques and applications of calculus in favor of
these more theoretical considerations.

An orderly development of the elementary functions independent of geometry is in-
cluded but I assume the reader is familiar enough with these functions to use them in prob-
lems which illustrate some of the ideas presented. I have placed the construction of the real
numbers at the end to conform with the historical development of analysis. Completeness
of the real line was used as an axiom and all the classical major theorems proved long
before Dedekind and Cantor showed how to construct the real numbers from the rational
numbers. However, this could be presented earlier.

There is also a brief discussion of complex analysis of functions of a complex variable
and a few other somewhat unusual topics like the generalized Riemann integral which ties
in very well with the nineteenth century ideas although it dates from the 1950’s. Probably
the generalized Riemann integral should be included much more than it is in presentations
of Calculus.
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Chapter 2

The Real and Complex Numbers
2.1 Real and Rational Numbers

To begin with, consider the real numbers, denoted by R, as a line extending infinitely far
in both directions. In this book, the notation, ≡ indicates something is being defined. Thus
the integers are defined as

Z≡{·· ·−1,0,1, · · ·} ,

the natural numbers,N≡{1,2, · · ·} and the rational numbers, defined as the numbers which
are the quotient of two integers.

Q≡
{m

n
such that m,n ∈ Z,n ̸= 0

}
are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R
has the following algebra properties, listed here as a collection of assertions called axioms.
These properties will not be proved which is why they are called axioms rather than theo-
rems. In general, axioms are statements which are regarded as true. Often these are things
which are “self evident” either from experience or from some sort of intuition but this does
not have to be the case. We always assume 0 ̸= 1 because if not, you would end up with
x = x1 = x0 = 0 for all x and we are not interested in such a stupid thing.

Axiom 2.1.1 x+ y = y+ x, (commutative law for addition)

Axiom 2.1.2 x+0 = x, (additive identity).

Axiom 2.1.3 For each x ∈ R, there exists −x ∈ R such that x+(−x) = 0, (existence of
additive inverse).

Axiom 2.1.4 (x+ y)+ z = x+(y+ z) ,(associative law for addition).

Axiom 2.1.5 xy = yx,(commutative law for multiplication).

Axiom 2.1.6 (xy)z = x(yz) ,(associative law for multiplication).

Axiom 2.1.7 1x = x,(multiplicative identity).

Axiom 2.1.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 2.1.9 x(y+ z) = xy+ xz.(distributive law).

9



10 CHAPTER 2. THE REAL AND COMPLEX NUMBERS

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division
and subtraction are defined in the usual way by x− y ≡ x+(−y) and x/y ≡ x

(
y−1
)
. It is

assumed that the reader is completely familiar with these axioms in the sense that he or
she can do the usual algebraic manipulations taught in high school and junior high algebra
courses. The axioms listed above are just a careful statement of exactly what is necessary
to make the usual algebraic manipulations valid. A word of advice regarding division
and subtraction is in order here. Whenever you feel a little confused about an algebraic
expression which involves division or subtraction, think of division as multiplication by the
multiplicative inverse as just indicated and think of subtraction as addition of the additive
inverse. Thus, when you see x/y, think x

(
y−1
)

and when you see x− y, think x+(−y) .
In many cases the source of confusion will disappear almost magically. The reason for
this is that subtraction and division do not satisfy the associative law. This means there
is a natural ambiguity in an expression like 6− 3− 4. Do you mean (6−3)− 4 = −1 or
6− (3−4) = 6− (−1) = 7? It makes a difference doesn’t it? However, the so called
binary operations of addition and multiplication are associative and so no such confusion
will occur. It is conventional to simply do the operations in order of appearance reading
from left to right. Thus, if you see 6−3−4, you would normally interpret it as the first of
the above alternatives. This is no problem for English speakers, but what if you grew up
speaking Hebrew or Arabic in which you read from right to left?

In the first part of the following theorem, the claim is made that the additive inverse and
the multiplicative inverse are unique. This means that for a given number, only one number
has the property that it is an additive inverse and that, given a nonzero number, only one
number has the property that it is a multiplicative inverse. The significance of this is that if
you are wondering if a given number is the additive inverse of a given number, all you have
to do is to check and see if it acts like one.

Theorem 2.1.10 The above axioms imply the following.

1. The multiplicative inverse and additive inverses are unique.

2. 0x = 0, −(−x) = x,

3. (−1)(−1) = 1, (−1)x =−x

4. If xy = 0 then either x = 0 or y = 0.

Proof: Suppose then that x is a real number and that x+y = 0 = x+ z. It is necessary to
verify y = z. From the above axioms, there exists an additive inverse, −x for x. Therefore,

−x+0 = (−x)+(x+ y) = (−x)+(x+ z)

and so by the associative law for addition,

((−x)+ x)+ y = ((−x)+ x)+ z

which implies 0+ y = 0+ z. Now by the definition of the additive identity, this implies
y = z. You should prove the multiplicative inverse is unique.

Consider 2. It is desired to verify 0x = 0. From the definition of the additive identity
and the distributive law it follows that

0x = (0+0)x = 0x+0x.



2.1. REAL AND RATIONAL NUMBERS 11

From the existence of the additive inverse and the associative law it follows

0 = (−0x)+0x = (−0x)+(0x+0x)

= ((−0x)+0x)+0x = 0+0x = 0x

To verify the second claim in 2., it suffices to show x acts like the additive inverse of −x
in order to conclude that −(−x) = x. This is because it has just been shown that additive
inverses are unique. By the definition of additive inverse, x+(−x) = 0 and so x =−(−x)
as claimed.

To demonstrate 3., (−1)(1+(−1)) = (−1)0 = 0 and so using the definition of the
multiplicative identity, and the distributive law, (−1)+ (−1)(−1) = 0. It follows from 1.
and 2. that 1 = −(−1) = (−1)(−1) . To verify (−1)x = −x, use 2. and the distributive
law to write

x+(−1)x = x(1+(−1)) = x0 = 0.

Therefore, by the uniqueness of the additive inverse proved in 1., it follows (−1)x =−x as
claimed.

To verify 4., suppose x ̸= 0. Then x−1 exists by the axiom about the existence of multi-
plicative inverses. Therefore, by 2. and the associative law for multiplication,

y =
(
x−1x

)
y = x−1 (xy) = x−10 = 0.

This proves 4. ■
Recall the notion of something raised to an integer power. Thus y2 = y×y and b−3 = 1

b3

etc.
Also, there are a few conventions related to the order in which operations are per-

formed. Exponents are always done before multiplication. Thus xy2 = x
(
y2
)

and is not
equal to (xy)2 . Division or multiplication is always done before addition or subtraction.
Thus x−y(z+w) = x− [y(z+w)] and is not equal to (x− y)(z+w) . Parentheses are done
before anything else. Be very careful of such things since they are a source of mistakes.
When you have doubts, insert parentheses to resolve the ambiguities.

Also recall summation notation.

Definition 2.1.11 Let x1,x2, · · · ,xm be numbers. Then ∑
m
j=1 x j ≡ x1 + x2 + · · ·+

xm. Thus this symbol, ∑
m
j=1 x j means to take the numbers, x1,x2, · · · ,xm and add them all

together. Note the use of the j as a generic variable which takes values from 1 up to m. This
notation will be used whenever there are things which can be added, not just numbers.

As an example of the use of this notation, you should verify the following.

Example 2.1.12 ∑
6
k=1 (2k+1) = 48.

Be sure you understand why ∑
m+1
k=1 xk = ∑

m
k=1 xk + xm+1. As a slight generalization of

this notation, ∑
m
j=k x j ≡ xk+· · ·+xm. It is also possible to change the variable of summation.

∑
m
j=1 x j = x1 + x2 + · · ·+ xm while if r is an integer, the notation requires ∑

m+r
j=1+r x j−r =

x1 + x2 + · · ·+ xm and so ∑
m
j=1 x j = ∑

m+r
j=1+r x j−r.

Summation notation will be used throughout the book whenever it is convenient to do
so.
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2.2 Exercises
1. Consider the expression x+ y(x+ y)− x(y− x)≡ f (x,y) . Find f (−1,2) .

2. Show −(ab) = (−a)b.

3. Show on the number line the effect of multiplying a number by −1.

4. Add the fractions x
x2−1 +

x−1
x+1 .

5. Find a formula for (x+ y)2 ,(x+ y)3 , and (x+ y)4 . Based on what you observe for
these, give a formula for (x+ y)8 .

6. When is it true that (x+ y)n = xn + yn?

7. Find the error in the following argument. Let x= y= 1. Then xy= y2 and so xy−x2 =
y2− x2. Therefore, x(y− x) = (y− x)(y+ x) . Dividing both sides by (y− x) yields
x = x+ y. Now substituting in what these variables equal yields 1 = 1+1.

8. Find the error in the following argument.
√

x2 +1 = x + 1 and so letting x = 2,√
5 = 3. Therefore, 5 = 9.

9. Find the error in the following. Let x = 1 and y= 2. Then 1
3 = 1

x+y =
1
x +

1
y = 1+ 1

2 =
3
2 . Then cross multiplying, yields 2 = 9.

10. Find the error in the following argument. Let x = 3 and y = 1. Then 1 = 3− 2 =
3− (3−1) = x− y(x− y) = (x− y)(x− y) = 22 = 4.

11. Find the error in the following. xy+y
x = y+y = 2y. Now let x = 2 and y = 2 to obtain

3 = 4.

12. Show the rational numbers satisfy the field axioms. You may assume the associative,
commutative, and distributive laws hold for the integers.

13. Show that for n a positive integer, ∑
n
k=0 (a+bk) = ∑

n
k=0 (a+b(n− k)) . Explain why

2
n

∑
k=0

(a+bk) =
n

∑
k=0

2a+bn = (n+1)(2a+bn)

and so ∑
n
k=0 (a+bk) = (n+1) a+(a+bn)

2 .

2.3 Set Notation
A set is just a collection of things called elements. Often these are also referred to as points
in calculus. For example {1,2,3,8} would be a set consisting of the elements 1,2,3, and
8. To indicate that 3 is an element of {1,2,3,8} , it is customary to write 3 ∈ {1,2,3,8} .
9 /∈ {1,2,3,8} means 9 is not an element of {1,2,3,8} . Sometimes a rule specifies a set.
For example you could specify a set as all integers larger than 2. This would be written as
S = {x ∈ Z : x > 2} . This notation says: the set of all integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then
A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8} , in symbols,



2.4. ORDER 13

{1,2,3,8} ⊆ {1,2,3,4,5,8} . The same statement about the two sets may also be written
as {1,2,3,4,5,8} ⊇ {1,2,3,8}.

The union of two sets is the set consisting of everything which is contained in at least
one of the sets, A or B. As an example of the union of two sets, {1,2,3,8}∪{3,4,7,8} =
{1,2,3,4,7,8} because these numbers are those which are in at least one of the two sets.
In general

A∪B≡ {x : x ∈ A or x ∈ B} .
Be sure you understand that something which is in both A and B is in the union. It is not an
exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1,2,3,8}∩{3,4,7,8}= {3,8} because 3 and 8 are those elements the two sets have
in common. In general,

A∩B≡ {x : x ∈ A and x ∈ B} .
When with real numbers, [a,b] denotes the set of real numbers x, such that a ≤ x ≤ b

and [a,b) denotes the set of real numbers such that a ≤ x < b. (a,b) consists of the set
of real numbers, x such that a < x < b and (a,b] indicates the set of numbers, x such that
a < x≤ b. [a,∞) means the set of all numbers, x such that x≥ a and (−∞,a] means the set
of all real numbers which are less than or equal to a. These sorts of sets of real numbers
are called intervals. The two points, a and b are called endpoints of the interval. Other
intervals such as (−∞,b) are defined by analogy to what was just explained. In general, the
curved parenthesis indicates the end point it sits next to is not included while the square
parenthesis indicates this end point is included. The reason that there will always be a
curved parenthesis next to ∞ or −∞ is that these are not real numbers. Therefore, they
cannot be included in any set of real numbers. It is assumed that the reader is already
familiar with order which is discussed in the next section more carefully. The emphasis
here is on the geometric significance of these intervals. That is [a,b) consists of all points
of the number line which are to the right of a possibly equaling a and to the left of b. In the
above description, I have used the usual description of this set in terms of order.

A special set which needs to be given a name is the empty set also called the null set,
denoted by /0. Thus /0 is defined as the set which has no elements in it. Mathematicians
like to say the empty set is a subset of every set. The reason they say this is that if it were
not so, there would have to exist a set A, such that /0 has something in it which is not in A.
However, /0 has nothing in it and so the least intellectual discomfort is achieved by saying
/0⊆ A.

If A and B are two sets, A\B denotes the set of things which are in A but not in B. Thus

A\B≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.

2.4 Order
The real numbers also have an order defined on them. This order may be defined by ref-
erence to the positive real numbers, those to the right of 0 on the number line, denoted by
R+ which is assumed to satisfy the following axioms.

Axiom 2.4.1 The sum of two positive real numbers is positive.

Axiom 2.4.2 The product of two positive real numbers is positive.
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Axiom 2.4.3 For a given real number x one and only one of the following alternatives
holds. Either x is positive, x = 0, or −x is positive.

Definition 2.4.4 x < y exactly when y+(−x)≡ y−x ∈R+. In the usual way, x < y
is the same as y > x and x ≤ y means either x < y or x = y. The symbol ≥ is defined
similarly.

Theorem 2.4.5 The following hold for the order defined as above.

1. If x < y and y < z then x < z (Transitive law).

2. If x < y then x+ z < y+ z (addition to an inequality).

3. If x≤ 0 and y≤ 0, then xy≥ 0.

4. If x > 0 then x−1 > 0.

5. If x < 0 then x−1 < 0.

6. If x < y then xz < yz if z > 0, (multiplication of an inequality).

7. If x < y and z < 0, then xz > zy (multiplication of an inequality).

8. Each of the above holds with > and < replaced by ≥ and ≤ respectively except for
4 and 5 in which we must also stipulate that x ̸= 0.

9. For any x and y, exactly one of the following must hold. Either x = y, x < y, or x > y
(trichotomy).

10. xy > 0 if and only if both x,y are positive or both −x,−y are positive. Thus xy = 0
means x,y have the same sign.

Proof: First consider 1, the transitive law. Suppose x < y and y < z. Why is x < z? In
other words, why is z−x∈R+? It is because z−x = (z− y)+(y− x) and both z−y,y−x∈
R+. Thus by 2.4.1 above, z− x ∈ R+ and so z > x.

Next consider 2, addition to an inequality. If x < y why is x+ z < y+ z? it is because

(y+ z)+−(x+ z) = (y+ z)+(−1)(x+ z)

= y+(−1)x+ z+(−1)z

= y− x ∈ R+.

Next consider 3. If x≤ 0 and y≤ 0, why is xy≥ 0? First note there is nothing to show if
either x or y equal 0 so assume this is not the case. By 2.4.3−x > 0 and−y > 0. Therefore,
by 2.4.2 and what was proved about −x = (−1)x,

(−x)(−y) = (−1)2 xy ∈ R+.

Is (−1)2 = 1? If so the claim is proved. But −(−1) = (−1)2 and −(−1) = 1 because
−1+1 = 0.

Next consider 4. If x > 0 why is x−1 > 0? By 2.4.3 either x−1 = 0 or −x−1 ∈ R+. It
can’t happen that x−1 = 0 because then you would have to have 1 = 0x and as was shown
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earlier, 0x = 0. Therefore, consider the possibility that −x−1 ∈ R+. This can’t work either
because then you would have

(−1)x−1x = (−1)(1) =−1

and it would follow from 2.4.2 that −1 ∈ R+. But this is impossible because if x ∈ R+,
then if −1 ∈ R, (−1)x =−x ∈ R+ and contradicts 2.4.3 which states that either −x or x is
in R+ but not both.

Next consider 5. If x < 0, why is x−1 < 0? As before, x−1 ̸= 0. If x−1 > 0, then as
before,

−x
(
x−1)=−1 ∈ R+

which was just shown not to occur.
Next consider 6. If x < y why is xz < yz if z > 0? This follows because

yz− xz = z(y− x) ∈ R+

since both z and y− x ∈ R+.
Next consider 7. If x < y and z < 0, why is xz > zy? This follows because

zx− zy = z(x− y) ∈ R+

by what was proved in 3.
The next two claims are obvious and left for you.
Now suppose xy > 0. If−x > 0 and y > 0, then−xy > 0 contrary to xy > 0. It is similar

if x > 0. Thus if xy > 0 either both x,y are positive or both −x,−y are positive. In the
second case, we say both x,y are negative. If both x,y are positive, then xy > 0 by the order
axioms. If −x,−y both positive, then xy = (−1)2 xy = (−x)(−y)> 0. ■

Note that trichotomy could be stated by saying x≤ y or y≤ x.

Definition 2.4.6 |x| ≡
{

x if x≥ 0,
−x if x < 0.

Note that |x| can be thought of as the distance between x and 0.

Theorem 2.4.7 |xy|= |x| |y| .

Proof: You can verify this by checking all available cases. Do so. ■

Theorem 2.4.8 The following inequalities hold.

|x+ y| ≤ |x|+ |y| , ||x|− |y|| ≤ |x− y| .

Either of these inequalities may be called the triangle inequality.

Proof: First note that if a,b ∈ R+ ∪ {0} then a ≤ b if and only if a2 ≤ b2. Here is
why. Suppose a≤ b. Then by the properties of order proved above, a2 ≤ ab≤ b2 because
b2−ab = b(b−a) ∈ R+∪{0} . Next suppose a2 ≤ b2. If both a,b = 0 there is nothing to
show. Assume then they are not both 0. Then

b2−a2 = (b+a)(b−a) ∈ R+.
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By the above theorem on order, (a+b)−1 ∈ R+ and so using the associative law,

(a+b)−1 ((b+a)(b−a)) = (b−a) ∈ R+

Now

|x+ y|2 = (x+ y)2 = x2 +2xy+ y2

≤ |x|2 + |y|2 +2 |x| |y|= (|x|+ |y|)2

and so the first of the inequalities follows. Note I used xy ≤ |xy| = |x| |y| which follows
from the definition.

To verify the other form of the triangle inequality, x = x−y+y so |x| ≤ |x− y|+ |y| and
so |x| − |y| ≤ |x− y| = |y− x| . Now repeat the argument replacing the roles of x and y to
conclude |y|− |x| ≤ |y− x| .Therefore, ||y|− |x|| ≤ |y− x| . ■

Example 2.4.9 Solve the inequality 2x+4≤ x−8

Subtract 2x from both sides to yield 4≤−x−8. Next add 8 to both sides to get 12≤−x.
Then multiply both sides by (−1) to obtain x ≤ −12. Alternatively, subtract x from both
sides to get x+4≤−8. Then subtract 4 from both sides to obtain x≤−12.

Example 2.4.10 Solve the inequality (x+1)(2x−3)≥ 0.

If this is to hold, either both of the factors, x+ 1 and 2x− 3 are nonnegative or they
are both non-positive. The first case yields x+1 ≥ 0 and 2x−3 ≥ 0 so x ≥−1 and x ≥ 3

2
yielding x≥ 3

2 . The second case yields x+1≤ 0 and 2x−3≤ 0 which implies x≤−1 and
x≤ 3

2 . Therefore, the solution to this inequality is x≤−1 or x≥ 3
2 .

Example 2.4.11 Solve the inequality (x)(x+2)≥−4

Here the problem is to find x such that x2 + 2x + 4 ≥ 0. However, x2 + 2x + 4 =
(x+1)2 +3≥ 0 for all x. Therefore, the solution to this problem is all x ∈ R.

Example 2.4.12 Solve the inequality 2x+4≤ x−8

This is written as (−∞,−12].

Example 2.4.13 Solve the inequality (x+1)(2x−3)≥ 0.

This was worked earlier and x ≤ −1 or x ≥ 3
2 was the answer. In terms of set notation

this is denoted by (−∞,−1]∪ [ 3
2 ,∞).

Example 2.4.14 Solve the equation |x−1|= 2

This will be true when x−1 = 2 or when x−1 =−2. Therefore, there are two solutions
to this problem, x = 3 or x =−1.

Example 2.4.15 Solve the inequality |2x−1|< 2

From the number line, it is necessary to have 2x− 1 between −2 and 2 because the
inequality says that the distance from 2x−1 to 0 is less than 2. Therefore, −2 < 2x−1 < 2
and so −1/2 < x < 3/2. In other words, −1/2 < x and x < 3/2.
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Example 2.4.16 Solve the inequality |2x−1|> 2.

This happens if 2x−1 > 2 or if 2x−1 <−2. Thus the solution is x > 3/2 or x <−1/2.
Written in terms of intervals this is

( 3
2 ,∞

)
∪
(
−∞,− 1

2

)
.

Example 2.4.17 Solve |x+1|= |2x−2|

There are two ways this can happen. It could be the case that x+1 = 2x−2 in which
case x = 3 or alternatively, x+1 = 2−2x in which case x = 1/3.

Example 2.4.18 Solve |x+1| ≤ |2x−2|

In order to keep track of what is happening, it is a very good idea to graph the two
relations, y = |x+1| and y = |2x−2| on the same set of coordinate axes. This is not a hard
job. |x+1| = x+ 1 when x > −1 and |x+1| = −1− x when x ≤ −1. Therefore, it is not
hard to draw its graph. Similar considerations apply to the other relation. Functions and
their graphs are discussed formally later but I assume the reader has seen these things. The
result is

1/3 3

y = |x+1|

Equality holds exactly when x = 3 or x = 1
3 as in the preceding example. Consider x

between 1
3 and 3. You can see these values of x do not solve the inequality. For example

x = 1 does not work. Therefore,
( 1

3 ,3
)

must be excluded. The values of x larger than 3
do not produce equality so either |x+1|< |2x−2| for these points or |2x−2|< |x+1| for
these points. Checking examples, you see the first of the two cases is the one which holds.
Therefore, [3,∞) is included. Similar reasoning obtains (−∞, 1

3 ]. It follows the solution set
to this inequality is (−∞, 1

3 ]∪ [3,∞).

Example 2.4.19 Suppose ε > 0 is a given positive number. Obtain a number, δ > 0, such
that if |x−1|< δ , then

∣∣x2−1
∣∣< ε .

First of all, note
∣∣x2−1

∣∣ = |x−1| |x+1| ≤ (|x|+1) |x−1| . Now if |x−1| < 1, it fol-
lows |x|< 2 and so for |x−1|< 1,

∣∣x2−1
∣∣< 3 |x−1| .Now let δ = min

(
1, ε

3

)
. This nota-

tion means to take the minimum of the two numbers, 1 and ε

3 . Then if |x−1|< δ ,
∣∣x2−1

∣∣<
3 |x−1|< 3 ε

3 = ε.

2.5 Exercises
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1. Solve (3x+2)(x−3)≤ 0.

2. Solve (3x+2)(x−3)> 0.

3. Solve x+2
3x−2 < 0.

4. Solve x+1
x+3 < 1.

5. Solve (x−1)(2x+1)≤ 2.

6. Solve (x−1)(2x+1)> 2.

7. Solve x2−2x≤ 0.

8. Solve (x+2)(x−2)2 ≤ 0.

9. Solve 3x−4
x2+2x+2 ≥ 0.

10. Solve 3x+9
x2+2x+1 ≥ 1.

11. Solve x2+2x+1
3x+7 < 1.

12. Solve |x+1|= |2x−3| .

13. Solve |3x+1| < 8. Give your answer
in terms of intervals on the real line.

14. Sketch on the number line the solu-
tion to the inequality |x−3|> 2.

15. Sketch on the number line the solu-
tion to the inequality |x−3|< 2.

16. Show |x|=
√

x2.

17. Solve |x+2|< |3x−3| .

18. Tell when equality holds in the trian-
gle inequality.

19. Solve |x+2| ≤ 8+ |2x−4| .

20. Solve (x+1)(2x−2)x≥ 0.

21. Solve x+3
2x+1 > 1.

22. Solve x+2
3x+1 > 2.

23. Describe the set of numbers, a such
that there is no solution to |x+1| =
4−|x+a| .

24. Suppose 0 < a < b. Show a−1 > b−1.

25. Show that if |x−6|< 1, then |x|< 7.

26. Suppose |x−8| < 2. How large can
|x−5| be?

27. Obtain a number, δ > 0, such that if
|x−1|< δ , then

∣∣x2−1
∣∣< 1/10.

28. Obtain a number, δ > 0, such that if
|x−4|< δ , then |

√
x−2|< 1/10.

29. Suppose ε > 0 is a given positive
number. Obtain a number, δ >
0, such that if |x−1| < δ , then
|
√

x−1| < ε . Hint: This δ will de-
pend in some way on ε. You need to
tell how.

2.6 The Binomial Theorem
Consider the following problem: You have the integers Sn = {1,2, · · · ,n} and k is an integer
no larger than n. How many ways are there to fill k slots with these integers starting from
left to right if whenever an integer from Sn has been used, it cannot be re used in any
succeeding slot?

k of these slots︷ ︸︸ ︷
, , , , · · · ,

This number is known as permutations of n things taken k at a time and is denoted by
P(n,k). It is easy to figure it out. There are n choices for the first slot. For each choice
for the fist slot, there remain n− 1 choices for the second slot. Thus there are n(n−1)
ways to fill the first two slots. Now there remain n−2 ways to fill the third. Thus there are
n(n−1)(n−2) ways to fill the first three slots. Continuing this way, you see there are

P(n,k) = n(n−1)(n−2) · · ·(n− k+1)

ways to do this.
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Now define for k a positive integer, k! ≡ k (k−1)(k−2) · · ·1, 0! ≡ 1. This is called
k factorial. Thus P(k,k) = k! and you should verify that P(n,k) = n!

(n−k)! . Now consider
the number of ways of selecting a set of k different numbers from Sn. For each set of k
numbers there are P(k,k) = k! ways of listing these numbers in order. Therefore, denoting

by
(

n
k

)
the number of ways of selecting a set of k numbers from Sn, it must be the case

that (
n
k

)
k! = P(n,k) =

n!
(n− k)!

Therefore,
(

n
k

)
= n!

k!(n−k)! . How many ways are there to select no numbers from Sn?

Obviously one way. Note the above formula gives the right answer in this case as well as
in all other cases due to the definition which says 0! = 1.

Now consider the problem of writing a formula for (x+ y)n where n is a positive integer.
Imagine writing it like this:

n times︷ ︸︸ ︷
(x+ y)(x+ y) · · ·(x+ y)

Then you know the result will be sums of terms of the form akxkyn−k. What is ak? In other
words, how many ways can you pick x from k of the factors above and y from the other

n− k. There are n factors so the number of ways to do it is
(

n
k

)
. Therefore, ak is the

above formula and so this proves the following important theorem known as the binomial
theorem.

Theorem 2.6.1 The following formula holds for any n a positive integer.

(x+ y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

2.7 Well Ordering and Archimedean Property
Definition 2.7.1 A set is well ordered if every nonempty subset S, contains a small-
est element z having the property that z≤ x for all x ∈ S.

Axiom 2.7.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as N≡{1,2, · · ·} is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 2.7.3 (Mathematical induction) A set S⊆ Z, having the property that a ∈
S and n+1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x≥ a.

Proof: Let T ≡ ([a,∞)∩Z) \ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = /0. If T ̸= /0 then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It must
be the case that b > a since by definition, a /∈ T. Then the integer, b−1 ≥ a and b−1 /∈ S
because if b− 1 ∈ S, then b− 1+ 1 = b ∈ S by the assumed property of S. Therefore,
b−1 ∈ ([a,∞)∩Z)\S = T which contradicts the choice of b as the smallest element of T.
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(b−1 is smaller.) Since a contradiction is obtained by assuming T ̸= /0, it must be the case
that T = /0 and this says that everything in [a,∞)∩Z is also in S. ■

Mathematical induction is a very useful device for proving theorems about the integers.

Example 2.7.4 Prove by induction that ∑
n
k=1 k2 = n(n+1)(2n+1)

6 .

By inspection, if n = 1 then the formula is true. The sum yields 1 and so does the
formula on the right. Suppose this formula is valid for some n ≥ 1 where n is an integer.
Then

n+1

∑
k=1

k2 =
n

∑
k=1

k2 +(n+1)2 =
n(n+1)(2n+1)

6
+(n+1)2 .

The step going from the first to the second equality is based on the assumption that the
formula is true for n. This is called the induction hypothesis. Now simplify the expression
in the second line,

n(n+1)(2n+1)
6

+(n+1)2 .

This equals (n+1)
(

n(2n+1)
6 +(n+1)

)
and

n(2n+1)
6

+(n+1) =
6(n+1)+2n2 +n

6
=

(n+2)(2n+3)
6

Therefore,
n+1

∑
k=1

k2 =
(n+1)(n+2)(2n+3)

6
=

(n+1)((n+1)+1)(2(n+1)+1)
6

,

showing the formula holds for n+ 1 whenever it holds for n. This proves the formula by
mathematical induction.

Example 2.7.5 Show that for all n ∈ N, 1
2 ·

3
4 · · ·

2n−1
2n < 1√

2n+1
.

If n = 1 this reduces to the statement that 1
2 < 1√

3
which is obviously true. Suppose

then that the inequality holds for n. Then

1
2
· 3

4
· · · 2n−1

2n
· 2n+1

2n+2
<

1√
2n+1

2n+1
2n+2

=

√
2n+1

2n+2
.

The theorem will be proved if this last expression is less than 1√
2n+3

. This happens if and
only if (

1√
2n+3

)2

=
1

2n+3
>

2n+1

(2n+2)2

which occurs if and only if (2n+2)2 > (2n+3)(2n+1) and this is clearly true which may
be seen from expanding both sides. This proves the inequality.

Lets review the process just used. If S is the set of integers at least as large as 1 for which
the formula holds, the first step was to show 1 ∈ S and then that whenever n ∈ S, it follows
n+ 1 ∈ S. Therefore, by the principle of mathematical induction, S contains [1,∞)∩Z,
all positive integers. In doing an inductive proof of this sort, the set, S is normally not
mentioned. One just verifies the steps above. First show the thing is true for some a ∈ Z
and then verify that whenever it is true for m it follows it is also true for m+1. When this
has been done, the theorem has been proved for all m≥ a.



2.7. WELL ORDERING AND ARCHIMEDEAN PROPERTY 21

Definition 2.7.6 The Archimedean property states that whenever x ∈ R, and a > 0,
there exists n ∈ N such that na > x.

This is not hard to believe. Just look at the number line. Imagine the intervals

[0,a), [a,2a), [2a,3a), · · · .

If x < 0, you could consider a and it would be larger than x. If x≥ 0, surely, it is reasonable
to suppose that x would be on one of these intervals, say [pa,(p+1)a). This Archimedean
property is quite important because it shows every fixed real number is smaller than some
integer. It also can be used to verify a very important property of the rational numbers.

Axiom 2.7.7 R has the Archimedean property.

Theorem 2.7.8 Suppose x < y and y− x > 1. Then there exists an integer, l ∈ Z,
such that x < l < y. If x is an integer, there is no integer y satisfying x < y < x+1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this can be
proved. If x< 1 then x2 < x contradicting the assertion that x is the smallest natural number.
Therefore, 1 is the smallest natural number. This shows there is no integer y, satisfying
x < y < x+ 1 since otherwise, you could subtract x and conclude 0 < y− x < 1 for some
integer y− x.

Now suppose y− x > 1 and let S ≡ {w ∈ N : w≥ y} . The set S is nonempty by the
Archimedean property. Let k be the smallest element of S. Therefore, k− 1 < y. Either
k−1≤ x or k−1 > x. If k−1≤ x, then

y− x≤ y− (k−1) =

≤0︷︸︸︷
y− k+1≤ 1

contrary to the assumption that y− x > 1. Therefore, x < k− 1 < y and this proves the
theorem with l = k−1. ■

It is the next theorem which gives the density of the rational numbers. This means that
for any real number, there exists a rational number arbitrarily close to it.

Theorem 2.7.9 If x < y then there exists a rational number r such that x < r < y.

Proof: Let n∈N be large enough that n(y− x)> 1. Thus (y− x) added to itself n times
is larger than 1. Therefore,

n(y− x) = ny+n(−x) = ny−nx > 1.

It follows from Theorem 2.7.8 there exists m∈Z such that nx<m< ny and so take r =m/n.
■

Definition 2.7.10 A set S⊆ R is dense in R if whenever a < b, S∩ (a,b) ̸= /0.

Thus the above theorem says Q is “dense” in R.
You probably saw the process of division in elementary school. Even though you saw it

at a young age it is very profound and quite difficult to understand. Suppose you want to do
the following problem 79

22 . What did you do? You likely did a process of long division which
gave the following result. 79

22 = 3 with remainder 13. This meant 79= 3(22)+13.You were
given two numbers, 79 and 22 and you wrote the first as some multiple of the second added
to a third number which was smaller than the second number. Can this always be done?
The answer is in the next theorem and depends here on the Archimedean property of the
real numbers.
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Theorem 2.7.11 Suppose 0 < a and let b≥ 0. Then there exists a unique integer p
and real number r such that 0≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p+ 1 be the smallest element of S. Then pa ≤ b because p+ 1 is the smallest in S.
Therefore, r ≡ b− pa ≥ 0. If r ≥ a then b− pa ≥ a and so b ≥ (p+1)a contradicting
p+1 ∈ S. Therefore, r < a as desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1,2, both work and r2 > r1.
Then a little algebra shows p1− p2 =

r2−r1
a ∈ (0,1) . Thus p1− p2 is an integer between 0

and 1, contradicting Theorem 2.7.8. The case that r1 > r2 cannot occur either by similar
reasoning. Thus r1 = r2 and it follows that p1 = p2. ■

This theorem is called the Euclidean algorithm when a and b are integers. In this case,
you would have r is an integer because it equals an integer.

2.8 Arithmetic of Integers
Here we consider some very important algebraic notions including the Euclidean algorithm
just mentioned and issues related to whether two numbers are relatively prime, prime num-
bers and so forth. The following definition describes what is meant by a prime number and
also what is meant by the word “divides”.

Definition 2.8.1 The number a divides the number b if, in Theorem 2.7.11, r = 0.
That is, there is zero remainder. The notation for this is a|b, read a divides b and a is called
a factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and 1 and it is at least 2. The greatest common divisor of two positive
integers m,n is that number p which has the property that p divides both m and n and also
if q divides both m and n, then q divides p. Two integers are relatively prime if their greatest
common divisor is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x,y
are integers, so is xm+ yn. Consider all integers which are of this form. Some are positive
such as 1m+ 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.

Theorem 2.8.2 Let m,n be two positive integers and define

S≡ {xm+ yn ∈ N : x,y ∈ Z } .

Then the smallest number in S is the greatest common divisor, denoted by (m,n) .

Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 2.7.11, m = pq+r where 0 < r < p.
Thus m = (x0m+ y0n)q+ r and so, solving for r,

r = m(1− x0)+(−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Simi-
larly p|n.
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Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 +ny0 = x0qx+ y0qy = q(x0x+ y0y)

showing q|p. Therefore, p = (m,n). ■
This amazing theorem will now be used to prove a fundamental property of prime

numbers which leads to the fundamental theorem of arithmetic, the major theorem which
says every integer can be factored as a product of primes.

Theorem 2.8.3 If p is a prime and p|ab then either p|a or p|b.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p,a)= 1 and therefore, there exists integers, x and y such that 1= ax+yp.
Multiplying this equation by b yields b = abx+ ybp. Since p|ab, ab = pz for some integer
z. Therefore, b = abx+ ybp = pzx+ ybp = p(xz+ yb) and this shows p divides b. ■

Theorem 2.8.4 (Fundamental theorem of arithmetic) Let a ∈ N\{1}. Then a =

∏
n
i=1 pi where pi are all prime numbers. Furthermore, this prime factorization is unique

except for the order of the factors.

Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a ≤ n− 1. If n is a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers k and m such that n = km where each of k and m are
less than n. Therefore, each of these is no larger than n− 1 and consequently, each has a
prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose ∏
n
i=1 pi = ∏

m
j=1 q j where the pi and q j are all prime, there is no way to reorder

the qk such that m = n and pi = qi for all i, and n+m is the smallest positive integer such
that this happens. Then by Theorem 2.8.3, p1|q j for some j. Since these are prime numbers
this requires p1 = q j. Reordering if necessary it can be assumed that q j = q1. Then dividing
both sides by p1 = q1,∏

n−1
i=1 pi+1 = ∏

m−1
j=1 q j+1. Since n+m was as small as possible for

the theorem to fail, it follows that n−1 = m−1 and the prime numbers, q2, · · · ,qm can be
reordered in such a way that pk = qk for all k = 2, · · · ,n. Hence pi = qi for all i because it
was already argued that p1 = q1, and this results in a contradiction. ■

2.9 Exercises
1. By Theorem 2.7.9 it follows that for a < b, there exists a rational number between a

and b. Show there exists an integer k such that a < k
2m < b for some k,m integers.

2. Show there is no smallest number in (0,1) . Recall (0,1) means the real numbers
which are strictly larger than 0 and smaller than 1.

3. Show there is no smallest number in Q∩ (0,1) .

4. Show that if S ⊆ R and S is well ordered with respect to the usual order on R then S
cannot be dense in R.

5. Prove by induction that ∑
n
k=1 k3 = 1

4 n4 + 1
2 n3 + 1

4 n2.
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6. It is a fine thing to be able to prove a theorem by induction but it is even better to
be able to come up with a theorem to prove in the first place. Derive a formula for
∑

n
k=1 k4 in the following way. Look for a formula in the form An5 +Bn4 +Cn3 +

Dn2 +En+F. Then try to find the constants A,B,C,D,E, and F such that things
work out right. In doing this, show

(n+1)4 =(
A(n+1)5 +B(n+1)4 +C (n+1)3 +D(n+1)2 +E (n+1)+F

)
−An5 +Bn4 +Cn3 +Dn2 +En+F

and so some progress can be made by matching the coefficients. When you get your
answer, prove it is valid by induction.

7. Prove by induction that whenever n≥ 2,∑n
k=1

1√
k
>
√

n.

8. If r ̸= 0, show by induction that ∑
n
k=1 ark = a rn+1

r−1 −a r
r−1 .

9. Prove by induction that ∑
n
k=1 k = n(n+1)

2 .

10. Let a and d be real numbers. Find a formula for ∑
n
k=1 (a+ kd) and then prove your

result by induction.

11. Consider the geometric series, ∑
n
k=1 ark−1. Prove by induction that if r ̸= 1, then

∑
n
k=1 ark−1 = a−arn

1−r .

12. This problem is a continuation of Problem 11. You put money in the bank and
it accrues interest at the rate of r per payment period. These terms need a little
explanation. If the payment period is one month, and you started with $100 then
the amount at the end of one month would equal 100(1+ r) = 100+ 100r. In this
the second term is the interest and the first is called the principal. Now you have
100(1+ r) in the bank. How much will you have at the end of the second month?
By analogy to what was just done it would equal

100(1+ r)+100(1+ r)r = 100(1+ r)2 .

The amount you would have at the end of n months would be 100(1+ r)n. (When
a bank says they offer 6% compounded monthly, this means r, the rate per payment
period equals .06/12.) In general, suppose you start with P and it sits in the bank
for n payment periods. Then at the end of the nth payment period, you would have
P(1+ r)n in the bank. In an ordinary annuity, you make payments, P at the end of
each payment period, the first payment at the end of the first payment period. Thus
there are n payments in all. Each accrue interest at the rate of r per payment period.
Using Problem 11, find a formula for the amount you will have in the bank at the end
of n payment periods? This is called the future value of an ordinary annuity. Hint:
The first payment sits in the bank for n− 1 payment periods and so this payment
becomes P(1+ r)n−1 . The second sits in the bank for n− 2 payment periods so it
grows to P(1+ r)n−2 , etc.
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13. Now suppose you want to buy a house by making n equal monthly payments. Typi-
cally, n is pretty large, 360 for a thirty year loan. Clearly a payment made 10 years
from now can’t be considered as valuable to the bank as one made today. This is be-
cause the one made today could be invested by the bank and having accrued interest
for 10 years would be far larger. So what is a payment made at the end of k payment
periods worth today assuming money is worth r per payment period? Shouldn’t it
be the amount, Q which when invested at a rate of r per payment period would yield
P at the end of k payment periods? Thus from Problem 12 Q(1+ r)k = P and so
Q = P(1+ r)−k . Thus this payment of P at the end of n payment periods, is worth
P(1+ r)−k to the bank right now. It follows the amount of the loan should equal
the sum of these “discounted payments”. That is, letting A be the amount of the
loan, A = ∑

n
k=1 P(1+ r)−k . Using Problem 11, find a formula for the right side of

the above formula. This is called the present value of an ordinary annuity.

14. Suppose the available interest rate is 7% per year and you want to take a loan for
$100,000 with the first monthly payment at the end of the first month. If you want to
pay off the loan in 20 years, what should the monthly payments be? Hint: The rate
per payment period is .07/12. See the formula you got in Problem 13 and solve for
P.

15. Consider the first five rows of Pascal’s1 triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

What is the sixth row? Now consider that (x+ y)1 = 1x+1y , (x+ y)2 = x2 +2xy+
y2, and (x+ y)3 = x3 +3x2y+3xy2 + y3. Give a conjecture about that (x+ y)5.

16. Based on Problem 15 conjecture a formula for (x+ y)n and prove your conjecture by
induction. Hint: Letting the numbers of the nth row of Pascal’s triangle be denoted by(n

0

)
,
(n

1

)
, · · · ,

(n
n

)
in reading from left to right, there is a relation between the numbers

on the (n+1)st row and those on the nth row, the relation being
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
.

This is used in the inductive step.

17. Let
(n

k

)
≡ n!

(n−k)!k! where 0! ≡ 1 and (n+1)! ≡ (n+1)n! for all n ≥ 0. Prove that

whenever k ≥ 1 and k ≤ n, then
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
. Are these numbers,

(n
k

)
the

same as those obtained in Pascal’s triangle? Prove your assertion.

18. The binomial theorem states (a+b)n = ∑
n
k=0
(n

k

)
an−kbk. Prove the binomial theorem

by induction. Hint: You might try using the preceding problem.

19. Show that for p ∈ (0,1) ,∑n
k=0
(n

k

)
kpk (1− p)n−k = np.

1Blaise Pascal lived in the 1600’s and is responsible for the beginnings of the study of probability.
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20. Show that for all n ∈ N,
(
1+ 1

n

)n ≤
(
1+ 1

n+1

)n+1
. Hint: Show first that

(n
k

)
=

n·(n−1)···(n−k+1)
k! . By the binomial theorem,

(
1+

1
n

)n

=
n

∑
k=0

(
n
k

)(
1
n

)k

=
n

∑
k=0

k factors︷ ︸︸ ︷
n · (n−1) · · ·(n− k+1)

k!nk .

Now consider the term n·(n−1)···(n−k+1)
k!nk and note that a similar term occurs in the

binomial expansion for
(
1+ 1

n+1

)n+1
except that n is replaced with n+ 1 wherever

this occurs. Argue the term got bigger and then note that in the binomial expansion
for
(
1+ 1

n+1

)n+1
, there are more terms.

21. Prove by induction that for all k ≥ 4, 2k ≤ k!

22. Use the Problems 21 and 20 to verify for all n ∈ N,
(
1+ 1

n

)n ≤ 3.

23. Prove by induction that 1+∑
n
i=1 i(i!) = (n+1)!.

24. I can jump off the top of the Empire State Building without suffering any ill effects.
Here is the proof by induction. If I jump from a height of one inch, I am unharmed.
Furthermore, if I am unharmed from jumping from a height of n inches, then jumping
from a height of n+1 inches will also not harm me. This is self evident and provides
the induction step. Therefore, I can jump from a height of n inches for any n. What
is the matter with this reasoning?

25. All horses are the same color. Here is the proof by induction. A single horse is the
same color as himself. Now suppose the theorem that all horses are the same color
is true for n horses and consider n+1 horses. Remove one of the horses and use the
induction hypothesis to conclude the remaining n horses are all the same color. Put
the horse which was removed back in and take out another horse. The remaining n
horses are the same color by the induction hypothesis. Therefore, all n+1 horses are
the same color as the n−1 horses which didn’t get moved. This proves the theorem.
Is there something wrong with this argument?

26. Let
(

n
k1,k2,k3

)
denote the number of ways of selecting a set of k1 things, a set of

k2 things, and a set of k3 things from a set of n things such that ∑
3
i=1 ki = n. Find a

formula for
(

n
k1,k2,k3

)
. Now give a formula for a trinomial theorem, one which

expands (x+ y+ z)n . Could you continue this way and get a multinomial formula?

2.10 Completeness of R
By Theorem 2.7.9, between any two real numbers, points on the number line, there exists
a rational number. This suggests there are a lot of rational numbers, but it is not clear from
this Theorem whether the entire real line consists of only rational numbers. Some people
might wish this were the case because then each real number could be described, not just as
a point on a line but also algebraically, as the quotient of integers. Before 500 B.C., a group
of mathematicians, led by Pythagoras believed in this, but they discovered their beliefs were
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false. It happened roughly like this. They knew they could construct the square root of two
as the diagonal of a right triangle in which the two sides have unit length; thus they could
regard

√
2 as a number. Unfortunately, they were also able to show

√
2 could not be written

as the quotient of two integers. This discovery that the rational numbers could not even
account for the results of geometric constructions was very upsetting to the Pythagoreans,
especially when it became clear there were an endless supply of such “irrational” numbers.

This shows that if it is desired to consider all points on the number line, it is necessary
to abandon the attempt to describe arbitrary real numbers in a purely algebraic manner
using only the integers. Some might desire to throw out all the irrational numbers, and
considering only the rational numbers, confine their attention to algebra, but this is not
the approach to be followed here because it will effectively eliminate every major theorem
of calculus and analysis. In this book real numbers will continue to be the points on the
number line, a line which has no holes. This lack of holes is more precisely described in
the following way.

Definition 2.10.1 A non empty set, S ⊆ R is bounded above (below) if there exists
x ∈R such that x≥ (≤)s for all s ∈ S. If S is a nonempty set in R which is bounded above,
then a number, l which has the property that l is an upper bound and that every other upper
bound is no smaller than l is called a least upper bound, l.u.b.(S) or often sup(S) . If S is a
nonempty set bounded below, define the greatest lower bound, g.l.b.(S) or inf(S) similarly.
Thus g is the g.l.b.(S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup(S) = +∞ and if S is not bounded below, inf(S) =−∞.

In an appendix, there is a proof that the real numbers can be obtained as equivalence
classes of Cauchy sequences of rational numbers but in this book, we follow the historical
development of the subject and accept it as an axiom. In other words, we will believe in
the real numbers and this axiom.

The completeness axiom was identified by Bolzano as the reason for the truth of the in-
termediate value theorem for continuous functions around 1818. However, every existence
theorem in calculus depends on some form of the completeness axiom.

Axiom 2.10.2 (completeness) Every nonempty set of real numbers bounded above has a
least upper bound and every nonempty set of real numbers which is bounded below has a
greatest lower bound.

It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.

Proposition 2.10.3 Let S be a nonempty set and suppose sup(S) exists. Then for every
δ > 0,

S∩ (sup(S)−δ ,sup(S)] ̸= /0.

If inf(S) exists, then for every δ > 0,

S∩ [inf(S) , inf(S)+δ ) ̸= /0.

Proof: Consider the first claim. If the indicated set equals /0, then sup(S)− δ is an
upper bound for S which is smaller than sup(S) , contrary to the definition of sup(S) as the
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least upper bound. In the second claim, if the indicated set equals /0, then inf(S)+δ would
be a lower bound which is larger than inf(S) contrary to the definition of inf(S) .■

The wonderful thing about sup is that you can switch the order in which they occur.
The same thing holds for inf . It is also convenient to generalize the notion of sup and inf
so that we don’t have to worry about whether it is a real number.

Definition 2.10.4 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are non-
empty sets which means that f (a,b) is either a number, ∞, or −∞. The symbol, +∞ is
interpreted as a point out at the end of the number line which is larger than every real
number. Of course there is no such number. That is why it is called ∞. The symbol, −∞ is
interpreted similarly. Then supa∈A f (a,b) means sup(Sb) where Sb ≡ { f (a,b) : a ∈ A} . A
similar convention holds for inf .

Unlike limits, you can take the sup in different orders, same for inf .

Lemma 2.10.5 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .

Also, you can replace sup with inf .

Proof: Note that for all a,b, f (a,b) ≤ supb∈B supa∈A f (a,b) and therefore, for all a,
supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore, it follows from the definition of sup that
supa∈A supb∈B f (a,b)≤ supb∈B supa∈A f (a,b) . Repeat the same argument interchanging a
and b, to get the conclusion of the lemma. The case of inf is similar. ■

2.11 Existence of Roots
What is 5

√
7 and does it even exist? You can ask for it on your calculator and the calculator

will give you a number which multiplied by itself 5 times will yield a number which is close
to 7 but it isn’t exactly right. Why should there exist a number which works exactly? Every
one you find, appears to be some sort of approximation at best. If you can’t produce one,
why should you believe it is even there? The following is an argument that roots exist. You
fill in the details of the argument. Basically, roots exist in analysis because of completeness
of the real line. Here is a lemma.

Lemma 2.11.1 Suppose n ∈ N and a > 0. Then if xn− a ̸= 0, there exists δ > 0 such
that whenever y ∈ (x−δ ,x+δ ) , it follows yn−a ̸= 0 and has the same sign as xn−a.

Proof: Let y− x = ε . Then we need to show that if |ε| is small enough,

(xn−a)((x+ ε)n−a)> 0.

From the binomial theorem

(xn−a)((x+ ε)n−a) = (xn−a)

(
n

∑
k=0

(
n
k

)
ε

n−kxk−a

)

= (xn−a)

(
(xn−a)+

n−1

∑
k=0

(
n
k

)
ε

n−kxk

)

≥ (xn−a)2−|xn−a| |ε|
n−1

∑
k=0

(
n
k

)
|ε|n−(k+1) |x|k
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So let |ε|< min
(

1,
(
|xn−a|

2 ∑
n−1
k=0

(n
k

)
|x|k
)−1

)
. Then for |ε| this small,

(xn−a)((x+ ε)n−a) = (xn−a)(yn−a)>
(xn−a)2

2
> 0 ■

Theorem 2.11.2 Let a > 0 and let n > 1. Then there exists a unique x > 0 such that
xn = a.

Proof: Let S denote those numbers y ≥ 0 such that tn− a < 0 for all t ∈ [0,y]. Now
note that from the binomial theorem,

(1+a)n−a =
n

∑
k=0

(
n
k

)
ak1n−k−a≥ 1+a−a = 1 > 0

Thus S is bounded above and 0 ∈ S. Let x ≡ sup(S). Then by definition of sup, for every
δ > 0, there exists t ∈ S with |x− t|< δ .

If xn−a > 0, then by the above lemma, for t ∈ S sufficiently close to x,

(tn−a)(xn−a)> 0

which is a contradiction because the first factor is negative and the second is positive.
Hence xn−a ≤ 0. If xn−a < 0, then from the above lemma, there is a δ > 0 such that if
t ∈ (x−δ ,x+δ ) ,xn−a and tn−a have the same sign. This is also a contradiction because
then x ̸= sup(S). It follows xn = a. ■

From now on, we will use this fact that nth roots exist whenever it is convenient to do
so.

2.12 Exercises
1. Let S = [2,5] . Find supS. Now let S = [2,5). Find supS. Is supS always a number

in S? Give conditions under which supS ∈ S and then give conditions under which
infS ∈ S.

2. Show that if S ̸= /0 and is bounded above (below) then supS (infS) is unique. That is,
there is only one least upper bound and only one greatest lower bound. If S = /0 can
you conclude that 7 is an upper bound? Can you conclude 7 is a lower bound? What
about 13.5? What about any other number?

3. Let S be a set which is bounded above and let −S denote the set {−x : x ∈ S} . How
are inf(−S) and sup(S) related? Hint: Draw some pictures on a number line. What
about sup(−S) and infS where S is a set which is bounded below?

4. Which of the field axioms is being abused in the following argument that 0 = 2? Let
x = y = 1. Then

0 = x2− y2 = (x− y)(x+ y)

and so 0 = (x− y)(x+ y) . Now divide both sides by x− y to obtain 0 = x+ y =
1+1 = 2.

5. Give conditions under which equality holds in the triangle inequality.
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6. Let k≤ n where k and n are natural numbers. P(n,k) , permutations of n things taken
k at a time, is defined to be the number of different ways to form an ordered list of k
of the numbers, {1,2, · · · ,n} . Show

P(n,k) = n · (n−1) · · ·(n− k+1) =
n!

(n− k)!
.

7. Using the preceding problem, show the number of ways of selecting a set of k things
from a set of n things is

(n
k

)
.

8. Prove the binomial theorem from Problem 7. Hint: When you take (x+ y)n , note that
the result will be a sum of terms of the form, akxn−kyk and you need to determine
what ak should be. Imagine writing (x+ y)n = (x+ y)(x+ y) · · ·(x+ y) where there
are n factors in the product. Now consider what happens when you multiply. Each
factor contributes either an x or a y to a typical term.

9. Prove by induction that n < 2n for all natural numbers, n≥ 1.

10. Prove by the binomial theorem and Problem 7 that the number of subsets of a given
finite set containing n elements is 2n.

11. Let n be a natural number and let k1 + k2 + · · ·kr = n where ki is a non negative
integer. The symbol (

n
k1k2 · · ·kr

)
denotes the number of ways of selecting r subsets of {1, · · · ,n}, which subsets con-
tain k1,k2 · · ·kr elements in them. Find a formula for this number.

12. Is it ever the case that (a+b)n = an +bn for a and b positive real numbers?

13. Is it ever the case that
√

a2 +b2 = a+b for a and b positive real numbers?

14. Is it ever the case that 1
x+y =

1
x +

1
y for x and y positive real numbers?

15. Derive a formula for the multinomial expansion,
(
∑

p
k=1 ak

)n which is analogous to
the binomial expansion. Hint: See Problem 8.

16. Suppose a > 0 and that x is a real number which satisfies the quadratic equation,

ax2 +bx+ c = 0.

Find a formula for x in terms of a and b and square roots of expressions involving
these numbers. Hint: First divide by a to get x2 + b

a x+ c
a = 0. Then add and subtract

the quantity b2/4a2. Verify that

x2 +
b
a

x+
b2

4a2 =

(
x+

b
2a

)2

.

Now solve the result for x. The process by which this was accomplished in adding
in the term b2/4a2 is referred to as completing the square. You should obtain the
quadratic formula,

x =
−b±

√
b2−4ac

2a
.
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The expression b2−4ac is called the discriminant. When it is positive there are two
different real roots. When it is zero, there is exactly one real root and when it equals
a negative number there are no real roots.

17. Find u such that− b
2 +u and− b

2−u are roots of x2+bx+c = 0. Obtain the quadratic
formula from this. 2

18. Suppose f (x) = 3x2 + 7x− 17. Find the value of x at which f (x) is smallest by
completing the square. Also determine f (R) and sketch the graph of f . Hint:

f (x) = 3
(

x2 +
7
3

x− 17
3

)
= 3

(
x2 +

7
3

x+
49
36
− 49

36
− 17

3

)
= 3

((
x+

7
6

)2

− 49
36
− 17

3

)
.

19. Suppose f (x) = −5x2 + 8x− 7. Find f (R) . In particular, find the largest value of
f (x) and the value of x at which it occurs. Can you conjecture and prove a result
about y = ax2 +bx+ c in terms of the sign of a based on these last two problems?

20. Show that if it is assumed R is complete, then the Archimedean property can be
proved. Hint: Suppose completeness and let a > 0. If there exists x ∈ R such that
na≤ x for all n ∈N, then x/a is an upper bound for N. Let l be the least upper bound
and argue there exists n ∈ N∩ [l−1/4, l] . Now what about n+1?

21. Suppose you numbers ak for each k a positive integer and that a1 ≤ a2 ≤ ·· · . Let A
be the set of these numbers just described. Also suppose there exists an upper bound
L such that each ak ≤ L. Then there exists N such that if n ≥ N, then (supA− ε <
an ≤ supA].

22. If A⊆ B for A ̸= /0 and A,B are sets of real numbers, show that inf(A)≥ inf(B) and
sup(A)≤ sup(B).

2.13 The Complex Numbers
Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a,b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a+ ib. For
example, in the following picture, I have graphed the point 3+ 2i. You see it corresponds
to the point in the plane whose coordinates are (3,2) .

3+2i

2The ancient Babylonians knew how to solve these quadratic equations sometime before 1700 B.C.
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Multiplication and addition are defined in the most obvious way subject to the conven-
tion that i2 =−1. Thus,

(a+ ib)+(c+ id) = (a+ c)+ i(b+d)

and
(a+ ib)(c+ id) = ac+ iad + ibc+ i2bd = (ac−bd)+ i(bc+ad) .

Every non zero complex number, a+ ib, with a2 + b2 ̸= 0, has a unique multiplicative
inverse.

1
a+ ib

=
a− ib

a2 +b2 =
a

a2 +b2 − i
b

a2 +b2 .

You should prove the following theorem.

Theorem 2.13.1 The complex numbers with multiplication and addition defined as
above form a field satisfying all the field axioms listed on Page 9.

The field of complex numbers is denoted as C. An important construction regarding
complex numbers is the complex conjugate denoted by a horizontal line above the number.
It is defined as follows.

a+ ib≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the follow-
ing formula is easy to obtain. (

a+ ib
)
(a+ ib) = a2 +b2.

Definition 2.13.2 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√

a2 +b2.

Thus, denoting by z the complex number z = a+ ib,

|z|= (zz)1/2 .

Be sure to verify the last claim in this definition. With this definition, it is important to
note the following. Be sure to verify this. It is not too hard but you need to do it.

Remark 2.13.3 : Let z = a+ ib and w = c+ id. Then

|z−w|=
√
(a− c)2 +(b−d)2.

Thus the distance between the point in the plane determined by the ordered pair, (a,b) and
the ordered pair (c,d) equals |z−w| where z and w are as just described.

For example, consider the distance between (2,5) and (1,8) . From the distance formula
which you should have seen in either algebra or calculus, this distance is defined as√

(2−1)2 +(5−8)2 =
√

10.

On the other hand, letting z = 2+ i5 and w = 1+ i8, z−w = 1− i3 and so

(z−w)(z−w) = (1− i3)(1+ i3) = 10

so |z−w|=
√

10, the same thing obtained with the distance formula.
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Notation 2.13.4 From now on I will sometimes use the symbol F to denote either C or R,
rather than fussing over which one is meant because it often does not make any difference.

The triangle inequality holds for the complex numbers just like it does for the real
numbers.

Theorem 2.13.5 Let z,w ∈ C. Then

|w+ z| ≤ |w|+ |z| , ||z|− |w|| ≤ |z−w| .

Proof: First note |zw|= |z| |w| . Here is why: If z = x+ iy and w = u+ iv, then

|zw|2 = |(x+ iy)(u+ iv)|2 = |xu− yv+ i(xv+ yu)|2

= (xu− yv)2 +(xv+ yu)2 = x2u2 + y2v2 + x2v2 + y2u2

Now look at the right side.

|z|2 |w|2 = (x+ iy)(x− iy)(u+ iv)(u− iv) = x2u2 + y2v2 + x2v2 + y2u2,

the same thing. Thus the rest of the proof goes just as before with real numbers. Using the
results of Problem 6 on Page 38, the following holds.

|z+w|2 = (z+w)(z+w) = zz+ zw+wz+ww

= |z|2 + |w|2 + zw+wz

= |z|2 + |w|2 +2Rezw

≤ |z|2 + |w|2 +2 |zw|= |z|2 + |w|2 +2 |z| |w|
= (|z|+ |w|)2

and so |z+w| ≤ |z|+ |w| as claimed. The other inequality follows as before.

|z| ≤ |z−w|+ |w|

and so |z|−|w| ≤ |z−w|= |w− z| . Now do the same argument switching the roles of z and
w to conclude

|z|− |w| ≤ |z−w| , |w|− |z| ≤ |z−w|

which implies the desired inequality. ■
Since R⊆C and the absolute value is consistently defined, the inequality holds also on

R.

2.14 Dividing Polynomials
It will be very important to be able to work with polynomials, especially in subjects like
linear algebra and with the technique of partial fractions. It is surprising how useful this
junior high material will be. In this section, a polynomial is an expression. Later, the
expression will be used to define a function. These two ways of looking at a polynomial
are very different.
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Definition 2.14.1 A polynomial is an expression of the form p(λ ) =

anλ
n +an−1λ

n−1 + · · ·+a1λ +a0,

an ̸= 0 where the ai are (real or complex) numbers, more generally elements of a field of
scalars. Two polynomials are equal means that the coefficients match for each power of
λ . The degree of a polynomial is the largest power of λ . Thus the degree of the above
polynomial is n. Addition of polynomials is defined in the usual way as is multiplication of
two polynomials. The leading term in the above polynomial is anλ

n. The coefficient of the
leading term is called the leading coefficient. It is called a monic polynomial if an = 1. A
root of a polynomial p(λ ) is µ such that p(µ) = 0. This is also called a zero.

Note that the degree of the zero polynomial is not defined in the above. The following
is called the division algorithm. First is an important property of multiplication.

Lemma 2.14.2 If f (λ )g(λ ) = 0, then either f (λ ) = 0 or g(λ ) = 0. That is, there are
no nonzero divisors of 0.

Proof: Let f (λ ) have degree n and g(λ ) degree m. If m+n= 0, it is easy to see that the
conclusion holds because both polynomials are constants. Suppose the conclusion holds
for m+n≤M and suppose m+n = M+1. Then f (λ )g(λ ) =(

a0 +a1λ + · · ·+an−1λ
n−1 +anλ

n
)(

b0 +b1λ + · · ·+bm−1λ
m−1 +bmλ

m
)

= (a(λ )+anλ
n)(b(λ )+bmλ

m)

= a(λ )b(λ )+bmλ
ma(λ )+anλ

nb(λ )+anbmλ
n+m

Either an = 0 or bm = 0. Suppose bm = 0. Then it must be the case that you have

(a(λ )+anλ
n)b(λ ) = 0.

By induction, one of these polynomials in the product is 0. If b(λ ) ̸= 0, then this shows
an = 0 and a(λ ) = 0 so f (λ ) = 0. If b(λ ) = 0, then g(λ ) = 0. The argument is the same
if an = 0. ■

Say the degree of r (λ ) is m≥ n where the degree of g(λ ) is n. Say r (λ ) = aλ
m+ l (λ )

with the degree of l (λ ) < m and g(λ ) = bλ
n + n(λ ) where the degree of n(λ ) is less

than n. Then r (λ )− a
b λ

m−ng(λ ) has degree smaller than m. This is used in the following
fundamental lemma.

Lemma 2.14.3 Let f (λ ) and g(λ ) ̸= 0 be polynomials. Then there exist polynomials,
q(λ ) and r (λ ) such that

f (λ ) = q(λ )g(λ )+ r (λ )

where the degree of r (λ ) is less than the degree of g(λ ) or r (λ ) = 0. These polynomials
q(λ ) and r (λ ) are unique.

Proof: Suppose that f (λ )− q(λ )g(λ ) is never equal to 0 for any q(λ ). If it is, then
the conclusion follows. Now suppose

r (λ ) = f (λ )−q(λ )g(λ ) (∗)
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where the degree of r (λ ) is as small as possible. Let it be m. Suppose m≥ n where n is the
degree of g(λ ). Say r (λ ) = bλ

m +a(λ ) where a(λ ) is 0 or has degree less than m while
g(λ ) = b̂λ

n + â(λ ) where â(λ ) is 0 or has degree less than n. Then

r (λ )− b
b̂

λ
m−ng(λ ) =

r(λ )
bλ

m +a(λ )−
(

bλ
m +

b
b̂

λ
m−nâ(λ )

)
= a(λ )− ã(λ ) ,

a polynomial having degree less than m. Therefore, from the above,

a(λ )− ã(λ ) =

=r(λ )︷ ︸︸ ︷
( f (λ )−q(λ )g(λ ))− b

b̂
λ

m−ng(λ ) = f (λ )− q̂(λ )g(λ )

which is of the same form as ∗ having smaller degree. However, m was as small as possible.
Hence m < n after all.

As to uniqueness, if you have r (λ ) , r̂ (λ ) ,q(λ ) , q̂(λ ) which work, then you would
have

(q̂(λ )−q(λ ))g(λ ) = r (λ )− r̂ (λ )

Now if the polynomial on the right is not zero, then neither is the one on the left. Hence
this would involve two polynomials which are equal although their degrees are different.
This is impossible. Hence r (λ ) = r̂ (λ ) and so, the above lemma shows q̂(λ ) = q(λ ). ■

Definition 2.14.4 Let all coefficients of all polynomials come from a given field F.
For us, F will be the real numbers R. Let p(λ ) = anλ

n + · · ·+a1λ +a0 be a polynomial.
Recall it is called monic if an = 1. If you have polynomials

{p1 (λ ) , · · · , pm (λ )} ,

the greatest common divisor q(λ ) is the monic polynomial which divides each, pk (λ ) =
q(λ ) lk (λ ) for some lk (λ ) , written as q(λ )/pk (λ ) and if q̂(λ ) is any polynomial which
divides each pk (λ ) , then q̂(λ )/q(λ ) . A set of polynomials

{p1 (λ ) , · · · , pm (λ )}

is relatively prime if the greatest common divisor is 1.

Lemma 2.14.5 There is at most one greatest common divisor.

Proof: If you had two, q̂(λ ) and q(λ ) , then q̂(λ )/q(λ ) and q(λ )/q̂(λ ) so q(λ ) =
q̂(λ ) l̂ (λ ) = q(λ ) l (λ ) l̂ (λ ) and now it follows, since both q̂(λ ) and q(λ ) are monic that
l̂ (λ ) and l (λ ) are both equal to 1. ■

The next proposition is remarkable. It describes the greatest common divisor in a very
useful way.

Proposition 2.14.6 The greatest common divisor of {p1 (λ ) , · · · , pm (λ )} exists and is
characterized as the monic polynomial of smallest degree equal to an expression of the
form

m

∑
k=1

ak (λ ) pk (λ ) , the ak (λ ) being polynomials. (2.1)
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Proof: First I need show that if q(λ ) is monic of the above form with smallest de-
gree, then it is the greatest common divisor. If q(λ ) fails to divide pk (λ ) , then pk (λ ) =
q(λ ) l (λ )+ r (λ ) where the degree of r (λ ) is smaller than the degree of q(λ ). Thus,

r (λ ) = pk (λ )− l (λ )
m

∑
k=1

ak (λ ) pk (λ )

which violates the condition that q(λ ) has smallest degree. Thus q(λ )/pk (λ ) for each k.
If q̂(λ ) divides each pk (λ ) then it must divide q(λ ) because q(λ ) is given by 2.1. Hence
q(λ ) is the greatest common divisor.

Next, why does such greatest common divisor exist? Simply pick the monic polynomial
which has smallest degree which is of the form ∑

m
k=1 ak (λ ) pk (λ ) . Then from what was

just shown, it is the greatest common divisor. ■

Proposition 2.14.7 Let p(λ ) be a polynomial. Then there are polynomials pi (λ ) such
that

p(λ ) = a
m

∏
i=1

pi (λ )
mi (2.2)

where mi ∈ N and {p1 (λ ) , · · · , pm (λ )} are monic and relatively prime. Every subset of
{p1 (λ ) , · · · , pm (λ )} having at least 2 elements is also relatively prime.

Proof: If there is no polynomial of degree larger than 0 dividing p(λ ) , then we are
done. Simply pick a such that p(λ ) is monic. Otherwise p(λ ) = ap1 (λ ) p2 (λ ) where
pi (λ ) is monic and each has degree at least 1. These could be the same polynomial. If
some nonconstant polynomial divides each pi (λ ) , factor further. Continue doing this.
Eventually the process must end with a factorization as described in 2.2 because the degrees
of the factors are decreasing. The claim about the subsets is clear because each polynomial
is irreducible so the only monic polynomial dividing any of them is itself and 1. ■

2.15 The Cauchy Schwarz Inequality
This fundamental inequality takes several forms. I will present the version first given by
Cauchy although I am not sure if the proof is the same.

Proposition 2.15.1 Let z j,w j be complex numbers. Then∣∣∣∣∣ p

∑
j=1

z jw j

∣∣∣∣∣≤
(

p

∑
j=1

∣∣z j
∣∣2)1/2( p

∑
j=1

∣∣w j
∣∣2)1/2

Proof: First note that ∑
p
j=1 z jz j = ∑

p
j=1

∣∣z j
∣∣2 ≥ 0. Next, if a+ ib is a complex number,

consider θ = 1 if both a,b are zero and θ = a−ib√
a2+b2

if the complex number is not zero.

Thus, in either case, there exists a complex number θ such that |θ | = 1 and θ (a+ ib) =
|a+ ib| ≡

√
a2 +b2. Now let |θ |= 1 and

θ

p

∑
j=1

z jw j =

∣∣∣∣∣ p

∑
j=1

z jw j

∣∣∣∣∣
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Then for t a real number,

0 ≤ p(t)≡
p

∑
j=1

(z j + tθw j)
(
z j + tθw j

)

=

a2︷ ︸︸ ︷
p

∑
j=1

z jz j +
p

∑
j=1

z jtθw j +
p

∑
j=1

tθw jz j + t2

b2︷ ︸︸ ︷
p

∑
j=1

w jw j

≡ a2 +2t Reθ

p

∑
j=1

w jz j + t2b2 = a2 +2t

∣∣∣∣∣ p

∑
j=1

w jz j

∣∣∣∣∣+ t2b2

Since this is always nonnegative for all real t, it follows from the quadratic formula that

4

∣∣∣∣∣ p

∑
j=1

w jz j

∣∣∣∣∣
2

−4a2b2 = 4

∣∣∣∣∣ p

∑
j=1

w jz j

∣∣∣∣∣
2

−4

(
p

∑
j=1

z jz j

)(
p

∑
j=1

w jw j

)
≤ 0

Indeed, p(t)= 0 either has exactly one real root or no real roots. Thus the desired inequality
follows. ■

2.16 Integer Multiples of Irrational Numbers
This section will give a proof of a remarkable result. I think its proof, based on the pigeon
hole principle, is even more interesting than the result obtained. Dirichlet proved it in
the 1830’s. Jacobi used similar ideas around the same time in studying elliptic functions.
The theorem involves the sum of integer multiples of numbers whose ratio is irrational.
If a/b is irrational, then it is not possible that ma+ nb = 0,m,m ∈ Z because if this were
so, you would have −m

n = b
a and so the ratio of a,b is rational after all. Even though you

cannot get 0 (which you can get if the ratio of a and b is rational) you can get such an
integer combination arbitrarily small. Dirichlet did this in the 1830’s long before Dedekind
constructed the real numbers in 1858, published in 1872.

Theorem 2.16.1 If a,b are real numbers and a/b is not rational, then for every
ε > 0 there exist integers m,n such that |ma+nb|< ε .

Proof: Let PN ,N ≥ 1 denote all combinations of the form ma + nb where m,n are
integers and |m| , |n| ≤ N. Thus there are (2N +1)2 of these integer combinations and all
of them are contained in the interval I ≡ [−N (|a|+ |b|) ,N (|a|+ |b|)] . Now pick an integer
M such that

(2N)2 < M < (2N +1)2

I know such an integer exists because (2N +1)2− (2N)2 = 4N +1 > 2. Now partition the
interval I into M equal intervals. If l is the length of one of these intervals, then

lM = 2N (|a|+ |b|) , so (2N)2 l < 2N (|a|+ |b|) and l <
(|a|+ |b|)

2N
≡ C

N

Now as mentioned, all of the points of PN are contained in I and there are more of these
points, (2N +1)2 than there are intervals, M. Therefore, some interval contains two points
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of PN .3 But each interval has length no more than C/N and so there exist k, k̂, l, l̂ integers
such that ∣∣ka+ lb−

(
k̂a+ l̂b

)∣∣≡ |ma+nb|< C
N

Now let ε > 0 be given. Choose N large enough that C/N < ε . Then the above inequality
holds for some integers m,n. ■

2.17 Exercises
1. Let z = 5+ i9. Find z−1.

2. Let z = 2+ i7 and let w = 3− i8. Find zw,z+w,z2, and w/z.

3. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

4. For those who know about the trigonometric functions 4, De Moivre’s theorem says
[r (cos t + isin t)]n = rn (cosnt + isinnt) for n a positive integer. Prove this formula
by induction. Does this formula continue to hold for all integers n, even negative
integers? Explain.

5. Using De Moivre’s theorem from Problem 4, derive a formula for sin(5x) and one for
cos(5x). Hint: Use Problem 18 on Page 25 and if you like, you might use Pascal’s
triangle to construct the binomial coefficients.

6. If z,w are complex numbers prove zw = z w. Show that z1 · · ·zm = z1 · · ·zm. Also
verify that ∑

m
k=1 zk = ∑

m
k=1 zk. In words this says the conjugate of a product equals

the product of the conjugates and the conjugate of a sum equals the sum of the con-
jugates.

7. Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 where all the ak are real numbers.
Suppose also that p(z) = 0 for some z ∈ C. Show it follows that p(z) = 0 also.

8. I claim that 1 = −1. Here is why.−1 = i2 =
√
−1
√
−1 =

√
(−1)2 =

√
1 = 1. This

is clearly a remarkable result but is there something wrong with it? If so, what is
wrong? Hint: When we push symbols without consideration of their meaning, we
can accomplish many strange and wonderful but false things.

9. De Moivre’s theorem of Problem 4 is really a grand thing. I plan to use it now for ra-
tional exponents, not just integers. 1 = 1(1/4) = (cos2π + isin2π)1/4 = cos(π/2)+
isin(π/2) = i. Therefore, squaring both sides it follows 1 = −1 as in the previous
problem. What does this tell you about De Moivre’s theorem? Is there a profound
difference between raising numbers to integer powers and raising numbers to non
integer powers?

3This is called the pigeon hole principle. It was used by Jacobi and Dirichlet. Later, Besicovitch used it in
his amazing covering theorem. In terms of pigeons, it says that if you have more pigeons than holes and they
each need to go in a hole, then some hole must have more than one pigeon. In contrast to Dirichlet, Jacobi and
others, (those who had common sense) this simple observation seems to have not been understood by people
like Brigham Young the Utah Mormon leader who made polygyny (multiple wives for a single man) a religious
expectation in the 1850’s. In Utah there were more males than females.

4I will present a treatment of the trig functions which is independent of plane geometry a little later.
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10. Review Problem 4 at this point. Now here is another question: If n is an integer, is it
always true that (cosθ − isinθ)n = cos(nθ)− isin(nθ)? Explain.

11. Suppose you have any polynomial in cosθ and sinθ . By this I mean an expression
of the form ∑

m
α=0 ∑

n
β=0 aαβ cosα θ sinβ

θ where aαβ ∈C. Can this always be written
in the form ∑

m+n
γ=−(n+m)

bγ cosγθ +∑
n+m
τ=−(n+m)

cτ sinτθ? Explain.

12. Does there exist a subset of C, C+ which satisfies 2.4.1 - 2.4.3? Hint: You might
review the theorem about order. Show−1 cannot be inC+. Now ask questions about
−i and i. In mathematics, you can sometimes show certain things do not exist. It is
very seldom you can do this outside of mathematics. For example, does the Loch
Ness monster exist? Can you prove it does not?

13. Show that if a/b is irrational, then {ma+nb}m,n∈Z is dense in R, each an irra-
tional number. If a/b is rational, show that {ma+nb}m,n∈Z is not dense. Hint:
From Theorem 2.16.1 there exist integers, ml ,nl such that |mla+nlb| < 2−l . Let
Pl ≡ ∪k∈Z {k (mla+nlb)} . Thus this is a collection of numbers which has succes-
sive numbers 2−l apart. Then consider ∪l∈NPl . In case the ratio is rational and
{ma+nb}m,n∈Z is dense, explain why there are relatively prime integers p,q such
that p/q = a/b is rational and {mp+nq}m,n∈Z would be dense. Isn’t this last a
collection of integers?

14. This problem will show, as a special case, that the rational numbers are dense in R.
Referring to the proof of Theorem 2.16.1.

(a) Suppose α ∈ (0,1) and is irrational. Show that if N is a positive integer, then
there are integers m,n such that 0 < n ≤ N and |nα−m| < 1

N
1
2 (1+α) < 1

N .

Thus
∣∣α− m

n

∣∣< 1
nN ≤

1
n2 .

(b) Show that if β is any nonzero irrational number, and N is a positive integer,
there exists 0 < n ≤ N and an integer m such that

∣∣β − m
n

∣∣ < 1
nN ≤

1
n2 . Hint:

You might consider β − [β ]≡ α where [β ] is the integer no larger than β which
is as large as possible.

(c) Next notice that from the proof, the same will hold for any β a positive number.
Hint: In the proof, if there is a repeat in the list of numbers, then you would
have an exact approximation. Otherwise, the pigeon hole principle applies as
before. Now explain why nothing changes if you only assume β is a nonzero
real number.

15. This problem outlines another way to see that rational numbers are dense in R. Pick
x ∈ R. Explain why there exists ml , the smallest integer such that 2−lml ≥ x so
x ∈ (2−l (ml−1) ,2−lml ]. Now note that 2−lml is rational and closer to x than 2−l .

16. You have a rectangle R having length 4 and height 3. There are six points in R. One
is at the center. Show that two of them are as close as

√
5. You might use pigeon

hole principle.

17. Do the same problem without assuming one point is at the center. Hint: Consider
the pictures. If not, then by pigeon hole principle, there is exactly one point in each
of the six rectangles in first two pictures.
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18. Suppose r (λ ) = a(λ )
p(λ )m where a(λ ) is a polynomial and p(λ ) is an irreducible poly-

nomial meaning that the only polynomials dividing p(λ ) are numbers and scalar
multiples of p(λ ). That is, you can’t factor it any further. Show that r (λ ) is of the
form

r (λ ) = q(λ )+
m

∑
k=1

bk (λ )

p(λ )k , where degree of bk (λ )< degree of p(λ )

19. ↑Suppose you have a rational function a(λ )
b(λ ) .

(a) Show it is of the form p(λ )+ n(λ )
∏

m
i=1 pi(λ )

mi where {p1 (λ ) , · · · , pm (λ )} are rela-

tively prime and the degree of n(λ ) is less than the degree of ∏
m
i=1 pi (λ )

mi .

(b) Using Proposition 2.14.6 and the division algorithm for polynomials, show that
the original rational function is of the form

p̂(λ )+
m

∑
i=1

mi

∑
k=1

nki (λ )

pi (λ )
k

where the degree of nki (λ ) is less than the degree of pi (λ ) and p̂(λ ) is some
polynomial.

This is the partial fractions expansion of the rational function. Actually carrying out
this computation may be impossible, but this shows the existence of such a partial
fractions expansion. Hint: You might induct on the sum of the mi and use Proposition
2.14.6.

20. One can give a fairly simple algorithm to find the g.c.d., greatest common divisor
of two polynomials. The coefficients are in some field. For us, this will be either
the real, rational, or complex numbers. However, in general, the algorithm for long
division would be carried out in whatever field includes the coefficients. Explain the
following steps. Let r0 (λ ) ,r1 (λ ) be polynomials with the degree of r0 (λ ) at least
as large as the degree of r1 (λ ). Then do division.

r0 (λ ) = r1 (λ ) f1 (λ )+ r2 (λ )

where r2 (λ ) has smaller degree than r1 (λ ) or else is 0. If r2 (λ ) is 0, then the g.c.d.
of r1 (λ ) ,r0 (λ ) is r1 (λ ). Otherwise, l (λ )/r0 (λ ) ,r1 (λ ) if and only if

l (λ )/r1 (λ ) ,r2 (λ ) .

Do division again
r1 (λ ) = r2 (λ ) f2 (λ )+ r3 (λ )
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where deg(r3 (λ ))< deg(r2 (λ )) or r3 (λ ) is 0. Then l (λ )/r2 (λ ) ,r3 (λ ) if and only
if l (λ ) divides both r1 (λ ) and r2 (λ ) if and only if l (λ )/r0 (λ ) ,r1 (λ ) . If r3 (λ ) = 0,
then r2 (λ )/r2 (λ ) ,r1 (λ ) so also r2 (λ )/r0 (λ ) ,r1 (λ ) and also, if

l (λ )/r0 (λ ) ,r1 (λ ) ,

then l (λ )/r1 (λ ) ,r2 (λ ) and in particular, l (λ )/r1 (λ ) so if this happens, then r2 (λ )
is the g.c.d. of r0 (λ ) and r1 (λ ) . Continue doing this. Eventually either rm+1 (λ ) = 0
or has degree 0. If rm+1 (λ ) = 0, then rm (λ ) multiplied by a suitable scalar to make
the result a monic polynomial is the g.c.d. of r0 (λ ) and r1 (λ ). If the degree is 0,
then the two polynomials r0 (λ ) ,r1 (λ ) must be relatively prime. It is really signif-
icant that this can be done because fundamental theorems in linear algebra depend
on whether two polynomials are relatively prime having g.c.d. equal to 1. In this
application, it is typically a question about a polynomial and its derivative.

21. Find the g.c.d. for
(
x4 +3x2 +2

)
,
(
x2 +3

)
.

22. Find g.c.d. of
(
x5 +3x3 + x2 +3

)
,
(
x2 +3

)
.

23. Find the g.c.d. of
(
x6 +2x5 + x4 +3x3 +2x2 + x+2

)
,
(
x4 +2x3 + x+2

)
.

24. Find the g.c.d. of
(
x4 +3x3 +2x+1

)
,
(
4x3 +9x2 +2

)
. If you do this one by hand, it

might be made easier to note that the question of interest is resolved if you multiply
everything with a nonzero scalar before you do long division.

25. Prove the pigeon hole principle by induction.
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Chapter 3

Set Theory
3.1 Basic Definitions

This chapter has more on set theory. Recall a set is a collection of things called elements
of the set. For example, the set of integers, the collection of signed whole numbers such
as 1,2,−4, etc. This set whose existence will be assumed is denoted by Z. Other sets
could be the set of people in a family or the set of donuts in a display case at the store.
Sometimes parentheses, { } specify a set by listing the things which are in the set between
the parentheses. For example the set of integers between−1 and 2, including these numbers
could be denoted as {−1,0,1,2}. The notation signifying x is an element of a set S, is
written as x ∈ S. Thus, 1 ∈ {−1,0,1,2,3}. Here are some axioms about sets.

Axiom 3.1.1 Two sets are equal if and only if they have the same elements.

Axiom 3.1.2 To every set A, and to every condition S (x) there corresponds a set B, whose
elements are exactly those elements x of A for which S (x) holds.

Axiom 3.1.3 For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection.

Axiom 3.1.4 The Cartesian product of a nonempty family of nonempty sets is nonempty.

Axiom 3.1.5 If A is a set there exists a set P (A) , such that P (A) is the set of all subsets
of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is merely
saying, for example, that {1,2,3} = {2,3,1} since these two sets have the same elements
in them. Similarly, it would seem you should be able to specify a new set from a given set
using some “condition” which can be used as a test to determine whether the element in
question is in the set. For example, the set of all integers which are multiples of 2. This set
could be specified as follows.

{x ∈ Z : x = 2y for some y ∈ Z} .

In this notation, the colon is read as “such that” and in this case the condition is being a
multiple of 2.

Another example of political interest, could be the set of all judges who are not judicial
activists. I think you can see this last is not a very precise condition since there is no way
to determine to everyone’s satisfaction whether a given judge is an activist. Also, just
because something is grammatically correct does not mean it makes any sense. For
example consider the following nonsense.

S = {x ∈ set of dogs : it is colder in the mountains than in the winter} .

So what is a condition?
We will leave these sorts of considerations and assume our conditions “make sense”.

The axiom of unions states that for any collection of sets, there is a set consisting of all

43
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the elements in each of the sets in the collection. Of course this is also open to further
consideration. What is a collection? Maybe it would be better to say “set of sets” or, given
a set whose elements are sets there exists a set whose elements consist of exactly those
things which are elements of at least one of these sets. If S is such a set whose elements
are sets,

∪{A : A ∈S } or ∪S

signifies this union.
Something is in the Cartesian product of a set or “family” of sets if it consists of a single

thing taken from each set in the family. Thus (1,2,3) ∈ {1,4, .2}×{1,2,7}×{4,3,7,9}
because it consists of exactly one element from each of the sets which are separated by ×.
Also, this is the notation for the Cartesian product of finitely many sets. If S is a set whose
elements are sets, ∏A∈S A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of S . Functions will be described precisely
soon. The idea is that there is something, which will produce a set consisting of exactly one
element of each set of S . You may think the axiom of choice, stating that the Cartesian
product of a nonempty family of nonempty sets is nonempty, is innocuous but there was a
time when many mathematicians were ready to throw it out because it implies things which
are very hard to believe, things which never happen without the axiom of choice.

A is a subset of B, written A⊆ B, if every element of A is also an element of B. This can
also be written as B⊇ A. A is a proper subset of B, written A⊂ B or B⊃ A if A is a subset
of B but A is not equal to B,A ̸= B. However, this is not entirely consistent. Sometimes
people write A⊂ B when they mean A⊆ B. A∩B denotes the intersection of the two sets,
A and B and it means the set of elements of A which are also elements of B. The axiom
of specification shows this is a set. The empty set is the set which has no elements in it,
denoted as /0. A∪B denotes the union of the two sets, A and B and it means the set of all
elements which are in either of the sets. It is a set because of the axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set, a set which contains the one
whose complement is being taken. Thus, the complement of A, denoted as AC ( or more
precisely as X \A) is a set obtained from using the axiom of specification to write

AC ≡ {x ∈ X : x /∈ A}

The symbol /∈ means: “is not an element of”. Note the axiom of specification takes place
relative to a given set. Without this universal set, it makes no sense to use the axiom of
specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be understood
relative to some given set. For example, the set of all integers larger than 3. Or there
exists an integer larger than 7. Such statements have to do with a given set, in this case the
integers. Failure to have a reference set when quantifiers are used turns out to be illogical
even though such usage may be grammatically correct. Quantifiers are used often enough
that there are symbols for them. The symbol ∀ is read as “for all” or “for every” and the
symbol ∃ is read as “there exists”. Thus ∀∀∃∃ could mean for every upside down A there
exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of which
is contained in some universal set, U . Then

∪
{

AC : A ∈S
}
= (∩{A : A ∈S })C
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and
∩
{

AC : A ∈S
}
= (∪{A : A ∈S })C .

These laws follow directly from the definitions. Also following directly from the definitions
are:

Let S be a set of sets then

B∪∪{A : A ∈S }= ∪{B∪A : A ∈S } .

and: Let S be a set of sets show

B∩∪{A : A ∈S }= ∪{B∩A : A ∈S } .

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements of
S which are not elements of themselves, this from the axiom of specification. If A is an
element of itself, then it fails to qualify for inclusion in A. Therefore, it must not be an
element of itself. However, if A is not an element of itself, it qualifies for inclusion in A so
it is an element of itself and so this can’t be true either. Thus the most basic of conditions
you could imagine, that of being an element of, is meaningless and so allowing such a
set causes the whole theory to be meaningless. The solution is to not allow a universal
set. As mentioned by Halmos in Naive set theory, “Nothing contains everything”. Always
beware of statements involving quantifiers wherever they occur, even this one. This little
observation described above is due to Bertrand Russell and is called Russell’s paradox.

Example 3.1.6 Various religions, including my own, use the word “omnipotent” as an
attribute of god. It “means” god can do all things. Isn’t there a universal quantifier with
no universal set specified? Incidentally, when speaking to religious people, it is often best
not to call attention to this fact so they won’t think you are an atheist like Russell. Many
of the same people who believe in an “omnipotent” god are concerned with the problem of
evil (theodicy). Why does god allow evil, suffering, and sorrow? This leads to: Why does
an omnipotent god allow these things? Is god even “good”? I have heard much agonizing
over the latter question in my life, but never any consideration whether it makes sense.

Theodicy has concerned intelligent people since the time of Jeremiah. See Chapter 12
of Jeremiah for example, and the profound discussion in the book of Job. However, linking
theodicy to illogical words only makes it even more difficult and challenges the existence of
God for those who don’t realize that the omni words don’t make good sense. It only takes
one of these to make their god’s existence meaningless, but religious people usually insist
on saddling god with several of them. If they knew about Russell’s paradox it would help.

3.2 The Schroder Bernstein Theorem
It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the abstract notion of a function.

Definition 3.2.1 Let X, Y be sets. X ×Y ≡ {(x,y) : x ∈ X and y ∈ Y} . A relation is
defined to be a subset of X×Y . A function f , also called a mapping, is a relation which has
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the property that if (x,y) and (x,y1) are both elements of the f , then y = y1. The domain of
f is defined as

D( f )≡ {x : (x,y) ∈ f} ,

written as f : D( f )→ Y and we write y = f (x). Another notation which is used is the
following

f−1 (y)≡ {x ∈ D( f ) : f (x) = y}

This is called the inverse image.

It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y, denoted as f (x) while the
name of the function is f . “mapping” is often a noun meaning function. However, it also
is a verb as in “ f is mapping A to B ”. That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y . However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem, proved by Dedekind in 1887. The shortest proof I have seen
is in Hewitt and Stromberg [17] and this is the version given here. There is another version
in Halmos [15].

Theorem 3.2.2 Let f : X →Y and g : Y → X be two functions. Then there exist sets
A,B,C,D, such that

A∪B = X , C∪D = Y, A∩B = /0, C∩D = /0,

f (A) =C, g(D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A

D

C = f (A)

YX

f

g

Proof: Consider the empty set, /0 ⊆ X . If y ∈ Y \ f ( /0), then g(y) /∈ /0 because /0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A0 ⊆ X
satisfies P if whenever y ∈ Y \ f (A0) , g(y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.
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Let A = ∪A . If y ∈Y \ f (A), then for each A0 ∈A , y ∈Y \ f (A0) and so g(y) /∈ A0. Since
g(y) /∈ A0 for all A0 ∈A , it follows g(y) /∈ A. Hence A satisfies P and is the largest subset
of X which does so. Now define

C ≡ f (A) , D≡ Y \C, B≡ X \A.

It only remains to verify that g(D) = B. It was just shown that g(D)⊆ B.
Suppose x ∈ B = X \A. Then A∪{x} does not satisfy P because it is too large, and so

there exists y ∈ Y \ f (A∪{x})⊆ D such that g(y) ∈ A∪{x} . But y /∈ f (A) and so since A
satisfies P , it follows g(y) /∈ A. Hence g(y) = x and so x ∈ g(D). Hence g(D) = B. ■

Theorem 3.2.3 (Schroder Bernstein) If f : X → Y and g : Y → X are one to one,
then there exists h : X → Y which is one to one and onto.

Proof: Let A,B,C,D be the sets of Theorem 3.2.2 and define

h(x)≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping. ■
Recall that the Cartesian product may be considered as the collection of choice func-

tions.

Definition 3.2.4 Let I be a set and let Xi be a nonempty set for each i ∈ I. f is a
choice function written as

f ∈∏
i∈I

Xi

if f (i) ∈ Xi for each i ∈ I. The axiom of choice says that if Xi ̸= /0 for each i ∈ I, for I a set,
then

∏
i∈I

Xi ̸= /0.

Sometimes the two functions, f and g are onto but not one to one. It turns out that with
the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 3.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists h : X → Y
which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ̸= /0. Therefore, by the axiom of
choice, there exists f−1

0 ∈ ∏y∈Y f−1 (y) which is the same as saying that for each y ∈ Y ,
f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X . Then f−1
0 is one to

one because if f−1
0 (y1) = f−1

0 (y2), then

y1 = f
(

f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2.

Similarly g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists

h : X → Y which is one to one and onto. ■
We have already made reference to finite sets in the pigeon hole principle. The follow-

ing is just a more formal definition of what is meant by a finite set and this is generalized
to what is meant by a countable set.



48 CHAPTER 3. SET THEORY

Definition 3.2.6 A set S, is finite if there exists a natural number n and a map θ

which maps {1, · · · ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map θ mapping N one to one and onto S.(When θ maps a set A
to a set B, is written as θ : A→ B in the future.) Here N≡ {1,2, · · ·}, the natural numbers.
S is at most countable if there exists a map θ : N→ S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 3.2.7 If X and Y are both at most countable, then X ×Y is also at most
countable. If either X or Y is countable, then X×Y is also countable.

Proof: It is given that there exists a mapping η :N→ X which is onto. Define η (i)≡ xi
and consider X as the set {x1,x2,x3, · · ·}. Similarly, consider Y as the set {y1,y2,y3, · · ·}. It
follows the elements of X×Y are included in the following rectangular array.

(x1,y1) (x1,y2) (x1,y3) · · · ← Those which have x1 in first slot.
(x2,y1) (x2,y2) (x2,y3) · · · ← Those which have x2 in first slot.
(x3,y1) (x3,y2) (x3,y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.

Follow a path through this array as follows.

(x1,y1) → (x1,y2) (x1,y3) →
↙ ↗

(x2,y1) (x2,y2)
↓ ↗

(x3,y1)

Thus the first element of X×Y is (x1,y1), the second element of X×Y is (x1,y2), the third
element of X ×Y is (x2,y1) etc. This assigns a number from N to each element of X ×Y.
Thus X×Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists α : N→ X which is one to one and onto. Let β : X ×Y → N be defined
by β ((x,y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a function from
N onto X ×Y . Therefore, by Corollary 3.2.5, there exists a one to one and onto mapping
from X×Y to N. ■

Theorem 3.2.8 If X and Y are at most countable, then X ∪Y is at most countable.
If either X or Y is infinite, then X ∪Y is countable.

Proof: As in the preceding theorem,

X = {x1,x2,x3, · · ·}

and
Y = {y1,y2,y3, · · ·} .
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Consider the following array consisting of X ∪Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪Y is x1, the second is x2 the third is y1 the fourth is y2 etc.
Consider the second claim. By the first part, there is a map fromN onto X×Y . Suppose

without loss of generality that X is countable and α : N→ X is one to one and onto. Then
define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X ×Y onto N and this
shows there exist two onto maps, one mapping X ∪Y onto N and the other mapping N onto
X ∪Y . Then Corollary 3.2.5 yields the conclusion. ■

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable. In fact, you can say that a countable
union of countable sets is countable.

Theorem 3.2.9 Let Ai be a countable set. Thus Ai =
{

ri
j

}∞

j=1
. Then ∪∞

i=1Ai is also

at most a countable set. If it is an infinite set, then it is countable.

Proof: This is proved like Theorem 3.2.7 arrange ∪∞
i=1Ai as follows.

r1
1 r1

2 r1
3 · · ·

r2
1 r2

2 r2
3 · · ·

r3
1 r3

2 r3
3 · · ·

...
...

...

Now take a route through this rectangular array as in Theorem 3.2.7, identifying an enumer-
ation in the order in which the displayed elements are encountered as done in that theorem.
Thus there is an onto mapping from N to ∪∞

i=1Ai and so ∪∞
i=1Ai is at most countable, mean-

ing its elements can be enumerated. However, if any of the Ai is infinite or if the union is,
then there is an onto map from ∪∞

i=1Ai onto N and so from Corollary 3.2.5, there would be
a one to one and onto map between N and ∪∞

i=1Ai. ■
As mentioned, in virtually all applications to analysis, the topic of main interest is “at

most countable” meaning that the elements of a set S can be listed with subscripts from
N to obtain them all. More precisely, there is a map from N onto the set S. Often people
simply refer to such a set as countable.

3.3 Equivalence Relations
There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 3.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies the
following axioms.

1. x∼ x for all x ∈ S. (Reflexive)
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2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 3.3.2 [x] denotes the set of all elements of S which are equivalent to x
and [x] is called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.

Theorem 3.3.3 Let ∼ be an equivalence relation defined on a set, S and let H
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x∼ y and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

3.4 Hausdorff Maximal Theorem∗

The Hausdorff maximal theorem is equivalent to the axiom of choice. Hausdorff proved
it in 1914. The useful direction is what I will prove below. It will not be used much in
the rest of the book which is mostly nineteenth century material. I am including it because
it or something like it is either absolutely essential, as in the Hahn Banach theorem, or
extremely useful to have.

Definition 3.4.1 For any set S,P (S) denotes the set of all subsets of S. It is some-
times called the power set of S and is also sometimes denoted as 2S. A nonempty set F is
called a partially ordered set if it has a partial order denoted by ≺. This means it satisfies
the following. If x≺ y and y≺ z, then x≺ z. Also x≺ x. It is like ⊆ on the set of all subsets
of a given set. It is not the case that given two elements of F that they are related. In other
words, you cannot conclude that either x≺ y or y≺ x. A chain, denoted by C ⊆F has the
property that it is totally ordered meaning that if x,y ∈ C , either x≺ y or y≺ x. A maximal
chain is a chain C which has the property that there is no strictly larger chain. In other
words, if x ∈F\∪C , then C∪{x} is no longer a chain.

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show that this cannot happen. The axiom of
choice is used in choosing the xC right at the beginning of the argument. See Hewitt and
Stromberg [17] for more of this kind of thing.

Theorem 3.4.2 Let F be a nonempty partially ordered set with order≺. Then there
exists a maximal chain.

Proof: Suppose not. Then for C a chain, let θC denote C ∪{xC } . Thus for C a chain,
θC is a larger chain which has exactly one more element of F . Since F ̸= /0, pick x0 ∈
F . Note that {x0} is a chain. Let X be the set of all chains C such that x0 ∈ ∪C . Thus
X contains {x0}. Call two chains comparable if one is a subset of the other. Also, if S
is a nonempty subset of F in which all chains are comparable, then ∪S is also a chain.
From now on S will always refer to a nonempty set of chains in which any pair are
comparable. Then summarizing,

1. x0 ∈ ∪C for all C ∈X .

2. {x0} ∈X
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3. If C ∈X then θC ∈X .

4. If S ⊆X then ∪S ∈X .

A subset Y of X will be called a “tower” if Y satisfies 1.) - 4.). Let Y0 be the
intersection of all towers. Then Y0 is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Y0 would not be the smallest tower.

Claim 1: If C0 ∈ Y0 is comparable to every chain C ∈ Y0, then if C0 ⊊ C , it must be
the case that θC0 ⊆ C . In other words, xC0 ∈ ∪C . The symbol ⊊ indicates proper subset.

This is done by considering a set B ⊆ Y0 consisting of D which acts like C in the
above and showing that it actually equals Y0 because it is a tower.

Proof of Claim 1: Consider B ≡
{
D ∈ Y0 : D ⊆ C0 or xC0 ∈ ∪D

}
. Let Y1 ≡Y0∩B.

I want to argue that Y1 is a tower. By definition all chains of Y1 contain x0 in their unions.
If D ∈ Y1, is θD ∈ Y1? If S ⊆ Y , is ∪S ∈ Y1? Is {x0} ∈B?
{x0} cannot properly contain C0 since x0 ∈ ∪C0. Therefore, C0 ⊇ {x0} so {x0} ∈B.
If S ⊆ Y1, and D ≡ ∪S , is D ∈ Y1? Since Y0 is a tower, D is comparable to C0.

If D ⊆ C0, then D is in B. Otherwise D ⊋ C0 and in this case, why is D in B? Why is
xC0 ∈ ∪D? The chains of S are in B so one of them, called C̃ must properly contain C0

and so xC0 ∈ ∪C̃ ⊆ ∪D . Therefore, D ∈B∩Y0 = Y1. 4.) holds. Two cases remain, to
show that Y1 satisfies 3.).

case 1: D ⊋ C0. Then by definition of B, xC0 ∈ ∪D and so xC0 ∈ ∪θD so θD ∈ Y1.
case 2: D ⊆ C0. θD ∈ Y0 so θD is comparable to C0. First suppose θD ⊋ C0. Thus

D ⊆ C0 ⊊ D ∪{xD} . If x ∈ C0 and x is not in D then D ∪{x} ⊆ C0 ⊊ D ∪{xD}. This
is impossible. Consider x. Thus in this case that θD ⊋ C0, D = C0. It follows that
xD = xC0 ∈ ∪θC0 = ∪θD and so θD ∈ Y1. The other case is that θD ⊆ C0 so θD ∈B
by definition. This shows 3.) so Y1 is a tower and must equal Y0.

Claim 2: Any two chains in Y0 are comparable.
Proof of Claim 2: Let Y1 consist of all chains of Y0 which are comparable to every

chain of Y0. {x0} is in Y1 by definition. All chains of Y0 have x0 in their union. If
S ⊆Y1, is ∪S ∈Y1? Given D ∈Y0 either every chain of S is contained in D or at least
one contains D . Either way D is comparable to ∪S so ∪S ∈ Y1. It remains to show 3.).
Let C ∈ Y1 and D ∈ Y0. Since C is comparable to all chains in Y0, it follows from Claim
1 either C ⊊ D when xC ∈ ∪D and θC ⊆ D or C ⊇ D when θC ⊇ D . Hence Y1 = Y0
because Y0 is as small as possible.

Since every pair of chains in Y0 are comparable and Y0 is a tower, it follows that
∪Y0 ∈ Y0 so ∪Y0 is a chain. However, θ ∪Y0 is a chain which properly contains ∪Y0
and since Y0 is a tower, θ ∪Y0 ∈ Y0. Thus ∪(θ ∪Y0) ⊋ ∪(∪Y0) ⊇ ∪(θ ∪Y0) which is
a contradiction. Therefore, for some chain C it is impossible to obtain the xC described
above and so, this C is a maximal chain. ■

3.5 Exercises
1. The Barber of Seville is a man and he shaves exactly those men who do not shave

themselves. Who shaves the Barber?

2. Do you believe each person who has ever lived on this earth has the right to do
whatever he or she wants? (Note the use of the universal quantifier with no set in
sight.) If you believe this, do you really believe what you say you believe? What of
those people who want to deprive others their right to do what they want? (This is
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not hypothetical. Tyrants usually seek to deprive others of their agency to do what
they want. Do they have a right to do this if they want to?)

3. Only the good die young. It says so in a song. Which is the correct diagram to
correspond to this statement? Sometimes such pictures are helpful.

die young
the good

the good
die young

4. DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of
which is contained in some universal set, U . Show

∪
{

AC : A ∈S
}
= (∩{A : A ∈S })C

and
∩
{

AC : A ∈S
}
= (∪{A : A ∈S })C .

5. Let S be a set of sets show B∪∪{A : A ∈S }= ∪{B∪A : A ∈S } .

6. Let S be a set of sets show B∩∪{A : A ∈S }= ∪{B∩A : A ∈S } .

7. Show the rational numbers are countable, this is in spite of the fact that between any
two integers there are infinitely many rational numbers. What does this show about
the usefulness of common sense and instinct in mathematics?

8. From Problem 7 the rational numbers can be listed as {ri}∞

i=1 . Let j ∈ N. Show that

Q= ∪∞
i=1∩∞

j=1

(
ri−

1
j
,ri +

1
j

)
, R= ∩∞

j=1∪∞
i=1

(
ri−

1
j
,ri +

1
j

)
Thus you can’t switch intersections and unions in general.

9. Show the set of all subsets of N, the natural numbers, which have 3 elements, is
countable. Is the set of all subsets ofNwhich have finitely many elements countable?
How about the set of all subsets of N?

10. We say a number is an algebraic number if it is the solution of an equation of the
form anxn + · · ·+ a1x+ a0 = 0 where all the a j are integers and all exponents are
also integers. Thus

√
2 is an algebraic number because it is a solution of the equation

x2− 2 = 0. Using the observation that any such equation has at most n solutions,
show the set of all algebraic numbers is countable.

11. Let A be a nonempty set and let P (A) be its power set, the set of all subsets of A.
Show there does not exist any function f , which maps A onto P (A). Thus the power
set is always strictly larger than the set from which it came. Hint: Suppose f is onto.
Consider S ≡ {x ∈ A : x /∈ f (x)}. If f is onto, then f (y) = S for some y ∈ A. Is
y ∈ f (y)? Note this argument holds for sets of any size.

12. The empty set is said to be a subset of every set. Why? Consider the statement: If
pigs had wings, then they could fly. Is this statement true or false?
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13. If S = {1, · · · ,n}, show P (S) has exactly 2n elements in it. Hint: You might try a
few cases first.

14. Let S denote the set of all sequences which have either 0 or 1 in every entry. You
have seen sequences in calculus. They will be discussed more formally later. Show
that the set of all such sequences cannot be countable. Hint: Such a sequence can be
thought of as an ordered list a1a2a3 · · · where each ai is either 0 or 1. Suppose you
could list them all as follows.

a1 = a11a12a13 · · ·
a2 = a21a22a23 · · ·
a3 = a31a32a33 · · ·

...

Then consider the sequence a11a22a33 · · · . Obtain a sequence which can’t be in the
list by considering the sequence b1b2b3 · · · where bk is obtained by changing akk.
Explain why this sequence can’t be any of the ones which are listed.

15. Show that the collection of sequences a1a2 · · ·an such that each ak is either 0 or 1
such that ak = 0 for all k larger than n is countable. Now show that the collection of
sequences consisting of either 0 or 1 such that ak is 0 for all k larger than some n is
also countable. However, the set of all sequences of 0 and 1 is not countable.

16. Let S be the set of sequences of 0 or 1. Show there exists a mapping θ : [0,1]→S
which is onto. Explain why this requires [0,1] to be uncountable.

17. Prove Theorem 3.3.3, the theorem about partitioning using an equivalence relation
into equivalence classes.

18. Let S be a set and consider a function f which maps P (S) to P (S) which satisfies
the following. If A⊆ B, then f (A)⊆ f (B). Then there exists A such that f (A) = A.
Hint: You might consider the following subset of P (S) .

C ≡ {B ∈P (S) : B⊆ f (B)}

Then consider A ≡ ∪C . Argue A is the “largest” set in C which implies A cannot
be a proper subset of f (A). This is a case of the Tarski fixed point theorem. If X is
a subset of P (S) such that if F ⊆ X , then ∪F ∈ X and if f is increasing as above
and f (x) ∈ X for all x ∈ X , then the same result follows.

19. Another formulation of the Hausdorff maximal theorem is Zorn’s lemma. This says
that if you have a nonempty partially ordered set and every chain has an upper bound,
then there exists a maximal element, one which has no element of the partial order
which is larger. Show these two formulations are equivalent and each is equivalent
to the axiom of choice.

20. A nonempty set X is well ordered if there exists an order ≤ which is a total order of
the elements of X and in addition has the property that every nonempty subset of X
has a smallest element. Zermelo showed that for every nonempty set X , there exists
≤ which makes X a well ordered set. To prove Zermelo’s theorem, let F = {S⊆ X :
there exists a well order for S}. Let S1 ≺ S2 if S1 ⊆ S2 and there exists a well order
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for S2, ≤2which agrees with ≤1 on S1. Now use the Hausdorff maximal theorem.
You need to show its union is all of X . If X =R this well order has NOTHING to do
with the usual order on R. Explain why.



Chapter 4

Functions and Sequences
4.1 General Considerations

As discussed earlier, the concept of a function is that of something which gives a unique
output for a given input.

Definition 4.1.1 Consider two sets, D and R along with a rule which assigns a
unique element of R to every element of D. This rule is called a function and it is denoted
by a letter such as f . The symbol, D( f ) = D is called the domain of f . The set R, also
written R( f ) , is called the range of f . The set of all elements of R which are of the form
f (x) for some x ∈ D is often denoted by f (D) . When R = f (D), the function f is said to
be onto. It is common notation to write f : D( f )→ R to denote the situation just described
in this definition where f is a function defined on D having values in R.

Example 4.1.2 Consider the list of numbers, {1,2,3,4,5,6,7} ≡ D. Define a function
which assigns an element of D to R≡ {2,3,4,5,6,7,8} by f (x)≡ x+1 for each x ∈ D.

In this example there was a clearly defined procedure which determined the function.
However, sometimes there is no discernible procedure which yields a particular function.

Example 4.1.3 Consider the ordered pairs, (1,2) ,(2,−2) ,(8,3) ,(7,6) and let the domain
be D≡{1,2,8,7} , the set of first entries in the given set of ordered pairs, R≡{2,−2,3,6} ,
the set of second entries, and let f (1) = 2, f (2) =−2, f (8) = 3, and f (7) = 6.

Sometimes functions are not given in terms of a formula. For example, consider the
following function defined on the positive real numbers having the following definition.

Example 4.1.4 For x ∈ R define

f (x) =
{ 1

n if x = m
n in lowest terms for m,n ∈ Z

0 if x is not rational
(4.1)

This is a very interesting function called the Dirichlet function. Note that it is not
defined in a simple way from a formula.

Example 4.1.5 Let D consist of the set of people who have lived on the earth except for
Adam and for d ∈ D, let f (d)≡ the biological father of d. Then f is a function.

This function is not the sort of thing studied in calculus but it is a function just the
same. When D( f ) is not specified and f is given by a formula, it is understood to consist
of everything for which f makes sense. The following definition gives several ways to
make new functions from old ones.

Definition 4.1.6 Let f ,g be functions with values in F. Let a,b be points of F.
Then a f + bg is the name of a function whose domain is D( f )∩D(g) which is defined
as (a f +bg)(x) = a f (x)+ bg(x) . The function f g is the name of a function which is de-
fined on D( f )∩D(g) given by ( f g)(x) = f (x)g(x) . Similarly for k an integer, f k is the
name of a function defined as f k (x) = ( f (x))k . The function f/g is the name of a func-
tion whose domain is D( f )∩{x ∈ D(g) : g(x) ̸= 0} defined as ( f/g)(x) = f (x)/g(x) . If
f : D( f )→ X and g : D(g)→ Y, then g ◦ f is the name of a function whose domain is
{x ∈ D( f ) : f (x) ∈ D(g)} which is defined as g◦ f (x)≡ g( f (x)) . This is called the com-
position of the two functions.

55
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You should note that f (x) is not a function. It is the value of the function at the point x.
The name of the function is f . Nevertheless, people often write f (x) to denote a function
and it doesn’t cause too many problems in beginning courses. When this is done, the
variable x should be considered as a generic variable free to be anything in D( f ) .

Sometimes people get hung up on formulas and think that the only functions of impor-
tance are those which are given by some simple formula. It is a mistake to think this way.
Functions involve a domain and a range and a function is determined by what it does. This
is an old idea. See Luke 6:44 where Jesus says that you know a tree by its fruit. See also
Matt. 7 about how to recognize false prophets. You look at what it does to determine what
it is. As it is with false prophets and trees, so it is with functions. 1 Although the idea is
very old, its application to mathematics started with Dirichlet2 in the early 1800’s because
he was concerned with piecewise continuous functions which would be given by different
descriptions on different intervals. Before his time, they did tend to think of functions in
terms of formulas.

Example 4.1.7 Let f (t) = t and g(t) = 1 + t. Then f g : R→ R is given by f g(t) =
t (1+ t) = t + t2.

Example 4.1.8 Let f (t) = 2t +1 and g(t) =
√

1+ t. Then

g◦ f (t) =
√

1+(2t +1) =
√

2t +2

for t ≥ −1. If t < −1 the inside of the square root sign is negative so makes no sense.
Therefore, g◦ f : {t ∈ R : t ≥−1}→ R.

Note that in this last example, it was necessary to fuss about the domain of g◦ f because
g is only defined for certain values of t.

The concept of a one to one function is very important. This is discussed in the follow-
ing definition.

Definition 4.1.9 For any function f : D( f )⊆X→Y, define the following set known
as the inverse image of y.

f−1 (y)≡ {x ∈ D( f ) : f (x) = y} .

There may be many elements in this set, but when there is always only one element in this
set for all y∈ f (D( f )) , the function f is one to one sometimes written, 1−1. Thus f is one
to one, 1−1, if whenever f (x) = f (x1) , then x = x1. If f is one to one, the inverse function
f−1 is defined on f (D( f )) and f−1 (y) = x where f (x) = y. Thus from the definition,
f−1 ( f (x)) = x for all x ∈ D( f ) and f

(
f−1 (y)

)
= y for all y ∈ f (D( f )) . Defining id by

id(z)≡ z this says f ◦ f−1 = id and f−1 ◦ f = id . Note that this is sloppy notation because
the two id are totally different functions.

1In many religions, including mine, epistemology based on knowledge of good and evil along with known
facts, as urged by Jesus, is disparaged and replaced with other criteria like feelings, proof texts of scripture,
traditions, sacrifice of believers, allegations of miracles, emotions, claimed authority, and social pressure.

2Peter Gustav Lejeune Dirichlet, 1805-1859 was a German mathematician who did fundamental work in
analytic number theory. He also gave the first proof that Fourier series tend to converge to the mid-point of the
jump of the function. He is a very important figure in the development of analysis in the nineteenth century. An
interesting personal fact is that the great composer Felix Mendelsson was his brother in law.
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Polynomials and rational functions are particularly easy functions to understand be-
cause they do come from a simple formula.

Definition 4.1.10 A function f given by f (x) = anxn + an−1xn−1 + · · ·+ a1x+ a0
is called a polynomial. Here the ai are real or complex numbers and n is a nonnegative
integer. In this case the degree of the polynomial f (x) is n. Thus the degree of a polynomial
is the largest exponent appearing on the variable.

f is a rational function if f (x) = h(x)
g(x) where h and g are polynomials.

For example, f (x) = 3x5 +9x2 +7x+5 is a polynomial of degree 5 and 3x5+9x2+7x+5
x4+3x+x+1

is a rational function.
Note that in the case of a rational function, the domain of the function might not be all

of F. For example, if f (x) = x2+8
x+1 , the domain of f would be all complex numbers not

equal to −1.
Closely related to the definition of a function is the concept of the graph of a function.

Definition 4.1.11 Given two sets, X and Y, the Cartesian product of the two sets,
written as X×Y, is assumed to be a set described as follows.

X×Y = {(x,y) : x ∈ X and y ∈ Y} .

F2 denotes the Cartesian product of F with F. Recall F could be either R or C.

The notion of Cartesian product is just an abstraction of the concept of identifying a
point in the plane with an ordered pair of numbers.

Definition 4.1.12 Let f : D( f )→ R( f ) be a function. The graph of f consists of
the set,

{(x,y) : y = f (x) for x ∈ D( f )} .

Note that knowledge of the graph of a function is equivalent to knowledge of the func-
tion. To find f (x) , simply observe the ordered pair which has x as its first element and the
value of y equals f (x) .

4.2 Sequences
Functions defined on the set of integers larger than a given integer are called sequences.

Definition 4.2.1 A function whose domain is defined as a set of the form

{k,k+1,k+2, · · ·}

for k an integer is known as a sequence. Thus you can consider

f (k) , f (k+1) , f (k+2) ,

etc. Usually the domain of the sequence is either N, the natural numbers consisting of
{1,2,3, · · ·} or the nonnegative integers, {0,1,2,3, · · ·} . Also, it is traditional to write
f1, f2, etc. instead of f (1) , f (2) , f (3) etc. when referring to sequences. In the above
context, fk is called the first term, fk+1 the second and so forth. It is also common to write
the sequence, not as f but as { fi}∞

i=k or just { fi} for short.
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Example 4.2.2 Let {ak}∞

k=1 be defined by ak ≡ k2 +1.

This gives a sequence. In fact, a7 = a(7) = 72 +1 = 50 just from using the formula for
the kth term of the sequence.

It is nice when sequences come in this way from a formula for the kth term. However,
this is often not the case. Sometimes sequences are defined recursively. This happens, when
the first several terms of the sequence are given and then a rule is specified which deter-
mines an+1 from knowledge of a1, · · · ,an. This rule which specifies an+1 from knowledge
of ak for k ≤ n is known as a recurrence relation.

Example 4.2.3 Let a1 = 1, a2 = 1. Assuming a1, · · · ,an+1 are known, an+2 ≡ an +an+1.

Thus the first several terms of this sequence, listed in order, are 1, 1, 2, 3, 5, 8,· · · . This
particular sequence is called the Fibonacci sequence and is important in the study of repro-
ducing rabbits. Note this defines a function without giving a formula for it. Such sequences
occur naturally in the solution of differential equations using power series methods and in
many other situations of great importance.

For sequences, it is very important to consider something called a subsequence.

Definition 4.2.4 Let {an} be a sequence and let n1 < n2 < n3, · · · be any strictly
increasing list of integers such that n1 is at least as large as the first number in the domain
of the function. Then if bk ≡ ank , {bk} is called a subsequence of {an} . Here an is in some
given set.

For example, suppose an =
(
n2 +1

)
. Thus a1 = 2, a3 = 10, etc. If n1 = 1,n2 = 3,n3 =

5, · · · ,nk = 2k−1, then letting bk = ank , it follows

bk =
(
(2k−1)2 +1

)
= 4k2−4k+2.

However, you might not be able to describe a subsequence by a formula as I just did.

4.3 Exercises
1. Let g(t)≡

√
2− t and let f (t) = 1

t . Find g◦ f . Include the domain of g◦ f .

2. Give the domains of the following functions.

(a) f (x) = x+3
3x−2

(b) f (x) =
√

x2−4

(c) f (x) =
√

4− x2

(d) f (x) =
√

x 4
3x+5

(e) f (x) =
√

x2−4
x+1

3. Let f : R→ R be defined by f (t)≡ t3 +1. Is f one to one? Can you find a formula
for f−1?

4. Suppose a1 = 1,a2 = 3, and a3 = −1. Suppose also that for n ≥ 4 it is known that
an = an−1+2an−2+3an−3. Find a7. Are you able to guess a formula for the kth term
of this sequence?

5. Let f : {t ∈ R : t ̸=−1}→ R be defined by f (t)≡ t
t+1 . Find f−1 if possible.
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6. A function f : R→ R is a strictly increasing function if whenever x < y, it follows
that f (x) < f (y) . If f is a strictly increasing function, does f−1 always exist? Ex-
plain your answer.

7. Let f (t) be defined by f (t) =
{

2t +1 if t ≤ 1
t if t > 1 . Find f−1 if possible.

8. Suppose f : D( f )→ R( f ) is one to one, R( f )⊆ D(g) , and g : D(g)→ R(g) is one
to one. Does it follow that g◦ f is one to one?

9. If f :R→ R and g :R→ R are two one to one functions, which of the following are
necessarily one to one on their domains? Explain why or why not by giving a proof
or an example.

(a) f +g

(b) f g

(c) f 3

(d) f/g

10. Draw the graph of the function f (x) = x3 +1.

11. Draw the graph of the function f (x) = x2 +2x+2.

12. Draw the graph of the function f (x) = x
1+x .

13. Suppose an =
1
n and let nk = 2k. Find bk where bk = ank .

14. If Xi are sets and for some j, X j = /0, the empty set. Verify carefully that ∏
n
i=1 Xi = /0.

15. Suppose f (x)+ f
( 1

x

)
= 7x and f is a function defined on R\{0} , the nonzero real

numbers. Find all values of x where f (x) = 1 if there are any. Does there exist any
such function?

16. Does there exist a function f , satisfying f (x)− f
( 1

x

)
= 3x which has both x and 1

x
in the domain of f ?

17. In the situation of the Fibonacci sequence show that the formula for the nth term
can be found and is given by an =

√
5

5

(
1+
√

5
2

)n
−
√

5
5

(
1−
√

5
2

)n
. Hint: You might

be able to do this by induction but a better way would be to look for a solution to
the recurrence relation, an+2 ≡ an + an+1 of the form rn. You will be able to show
that there are two values of r which work, one of which is r = 1+

√
5

2 . Next you can
observe that if rn

1 and rn
2 both satisfy the recurrence relation then so does crn

1 + drn
2

for any choice of constants c,d. Then you try to pick c and d such that the conditions,
a1 = 1 and a2 = 1 both hold.

18. In an ordinary annuity, you make constant payments, P at the beginning of each
payment period. These accrue interest at the rate of r per payment period. This
means at the start of the first payment period, there is the payment P≡ A1. Then this
produces an amount rP in interest so at the beginning of the second payment period,
you would have rP+P+P ≡ A2. Thus A2 = A1 (1+ r)+P. Then at the beginning
of the third payment period you would have A2 (1+ r)+P ≡ A3. Continuing in this
way, you see that the amount in at the beginning of the nth payment period would
be An given by An = An−1 (1+ r)+P and A1 = P. Thus A is a function defined on
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the positive integers given recursively as just described and An is the amount at the
beginning of the nth payment period. Now if you wanted to find out An for large n,
how would you do it? One way would be to use the recurrance relation n times. A
better way would be to find a formula for An. Look for one in the form An =Czn + s
where C,z and s are to be determined. Show that C = P

r ,z = (1+ r) , and s =−P
r .

19. A well known puzzle consists of three pegs and several disks each of a different
diameter, each having a hole in the center which allows it to be slid down each of
the pegs. These disks are piled one on top of the other on one of the pegs, in order
of decreasing diameter, the larger disks always being below the smaller disks. The
problem is to move the whole pile of disks to another peg such that you never place
a disk on a smaller disk. If you have n disks, how many moves will it take? Of
course this depends on n. If n = 1, you can do it in one move. If n = 2, you would
need 3. Let An be the number required for n disks. Then in solving the puzzle,
you must first obtain the top n− 1 disks arranged in order on another peg before
you can move the bottom disk of the original pile. This takes An−1 moves. Explain
why An = 2An−1 + 1,A1 = 1 and give a formula for An. Look for one in the form
An = Crn + s. This puzzle is called the Tower of Hanoi. When you have found a
formula for An, explain why it is not possible to do this puzzle if n is very large.

4.4 The Limit of a Sequence
The concept of the limit of a sequence was defined precisely by Bolzano.3 The following
is the precise definition of what is meant by the limit of a sequence. Our sequences will
have values in Fp ≡

{
(x = (x1, · · · ,xp)) : xi ∈ F

}
.

Definition 4.4.1 A sequence {an}∞

n=1 converges to a, written as

lim
n→∞

an = a or an→ a

if and only if for every ε > 0 there exists nε such that whenever n≥ nε , ∥an−a∥< ε . Here
a and an are assumed to be in Fp for some integer p≥ 1. Thus an is in the Cartesian product

3Bernhard Bolzano lived from 1781 to 1848. He had an Italian father but was born in Bohemia, and he wrote
in German. He was a Catholic priest and held a position in philosophy at the University of Prague. It appears
that Bolzano believed in the words of Jesus and did not hesitate to enthusiastically promote them. This got him in
trouble with the political establishment of Austria who forced him out of the university and did not allow him to
publish. He also displeased the Catholic hierarchy for being too rational.

Bolzano believed in absolute rigor in mathematics. He also was interested in physics, theology, and especially
philosophy. His contributions in philosophy are very influential. He originated anti-psychologism also called
logical objectivism which holds that logical truth exists independent of our opinions about it, contrary to the
notion that truth can in any way depend on our feelings. This is the right way to regard truth in mathematics.

The intermediate value theorem from calculus is due to him. These days, this theorem is considered obvious
and is not discussed well in calculus texts, but Bolzano knew better and gave a proof which identified exactly
what was needed instead of relying on vague intuition.

Like many of the other mathematicians, he was concerned with the notion of infinitesimals which had been
popularized by Leibniz. Some tried to strengthen this idea and others sought to get rid of it. They realized
that something needed to be done about this fuzzy idea. Bolzano was one who contributed to removing it from
calculus. He also proved the extreme value theorem in 1830’s and gave the first formal εδ description of continuity
and limits.

This notion of infinitesimals did not completely vanish. These days, it is called non standard analysis. It can be
made mathematically respectable but not in this book.
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F× ·· ·×F where F consists of real or complex numbers and, although other definitions
are used,

∥a∥ ≡max{|ai| : i≤ p}
for a = (a1, · · · ,ap) ∈ Fp. In this book, it is usually the case that p = 1, but there is no
difficulty in considering a more general case.

Proposition 4.4.2 The usual properties of absolute value hold for ∥·∥ with addition of
the vectors, and multiplication by a scalar α, as presented in elementary calculus

a+b≡ (a1 +b1, · · · ,ap +bp) , αa≡ (αa1, · · · ,αap)

Proof: From the triangle inequality for complex numbers,

∥a+b∥ ≡max{|ai +bi| , i≤ p} ≤max{|ai| , i≤ p}+max{|bi| , i≤ p}= ∥a∥+∥b∥ .
(4.2)

Also, for α ∈ F, ∥αa∥ ≡ max{|αai| : i≤ p} = |α|max{|ai| : i≤ p} = |α|∥a∥. By defi-
nition, ∥a∥ ≥ 0 and is 0 if and only if ai = 0 for each i if and only if a = 0 ≡ (0, · · · ,0) .
Also ∥a∥ = ∥a−b+b∥ ≤ ∥a−b∥+ ∥b∥ so ∥a∥−∥b∥ ≤ ∥a−b∥ . Similarly ∥b∥−∥a∥ ≤
∥b−a∥= ∥a−b∥ and so |∥a∥−∥b∥| ≤ ∥a−b∥. ■

In words the definition says that given any measure of closeness ε, the terms of the
sequence are eventually this close to a. Here, the word “eventually” refers to n being suffi-
ciently large. The above definition is always the definition of what is meant by the limit of
a sequence.

Proposition 4.4.3 Let an =
(
an

1, · · · ,an
p
)
. Then an → a if and only if for each i ≤ p,

an
i → ai.

Proof:⇒ is obvious because |an
i −ai| ≤ ∥an−a∥.

⇐ There exists ni such that
∣∣ak

i −ai
∣∣< ε whenever k > ni. Let

N ≥max{ni : i≤ p}

Then for n≥ N,∥an−a∥ ≡max{|an
i −ai| , i≤ p}< ε . ■

Theorem 4.4.4 If limn→∞ an = a and limn→∞ an = â then â = a.

Proof: Suppose â ̸= a. Then let 0 < ε < ∥â−a∥/2 in the definition of the limit. It
follows there exists nε such that if n≥ nε , then ∥an−a∥< ε and ∥an− â∥< ε. Therefore,
for such n, ∥â−a∥ ≤ ∥â−an∥+∥an−a∥< ε + ε < ∥â−a∥/2+∥â−a∥/2 = ∥â−a∥, a
contradiction. ■

Example 4.4.5 Let an =
(

1
n2+1 ,

i
n

)
∈ F2.

Then it seems clear that limn→∞ an = (0,0) . In fact, this is true from the definition.
Let ε > 0 be given. Let nε ≥ max

(√
ε−1, 1

ε

)
. Then if n > nε ≥

√
ε−1, it follows that

n2 +1 > ε−1 and so 0 < 1
n2+1 = an < ε and also n≥ 1/ε so 1/n < ε . Thus ∥an− (0,0)∥ ≡

max
(∣∣∣ 1

n2+1 −0
∣∣∣ , ∣∣ i

n −0
∣∣)< ε whenever n is this large.

Note the definition was of no use in finding a candidate for the limit. This had to be
produced based on other considerations. The definition is for verifying beyond any doubt
that something is the limit. It is also what must be referred to in establishing theorems
which are good for finding limits.
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Example 4.4.6 Let an = n2.

Then in this case limn→∞ an does not exist. This is so because an cannot be eventually
close to anything.

Example 4.4.7 Let an = (−1)n .

In this case, limn→∞ (−1)n does not exist. This follows from the definition. Let ε = 1/2.
If there exists a limit, l, then eventually, for all n large enough, |an− l| < 1/2. However,
|an−an+1|= 2 and so, 2= |an−an+1| ≤ |an− l|+ |l−an+1|< 1/2+1/2= 1 which cannot
hold. Therefore, there can be no limit for this sequence.

Theorem 4.4.8 Suppose {an} and {bn} are sequences, an ∈ Fp,bn ∈ Fp and that

lim
n→∞

an = a and lim
n→∞

bn = b.

Also suppose x and y are in F. Then

lim
n→∞

xan + ybn = xa+ yb (4.3)

If an ∈ F,bn ∈ Fp,
lim
n→∞

anbn = ab (4.4)

lim
n→∞

aq
n = aq (4.5)

If b ̸= 0 and b ∈ F and an ∈ Fp,

lim
n→∞

an

bn
=

a
b
. (4.6)

Proof: The first of these claims is left for you to do. To do the second, let ε > 0 be
given and choose n1 such that if n ≥ n1 then |an−a| < 1. Then for such n, the triangle
inequality implies

∥anbn−ab∥ ≤ ∥anbn−anb∥+∥anb−ab∥ ≤ |an|∥bn−b∥+∥b∥|an−a|
≤ (|a|+1)∥bn−b∥+∥b∥|an−a| .

Now let n2 be large enough that for n≥ n2,

∥bn−b∥< ε

2(|a|+1)
, and |an−a|< ε

2(∥b∥+1)
.

Such a number n2 exists because of the definition of limit. Therefore, let nε > max(n1,n2) .
For n≥ nε ,

∥anbn−ab∥ ≤ (|a|+1)∥bn−b∥+∥b∥|an−a|

< (|a|+1)
ε

2(|a|+1)
+∥b∥ ε

2(|b|+1)
≤ ε.

This proves 4.4. Then 4.5 follows from this by induction in the above case where bn ∈ F.
Next consider 4.6. Let ε > 0 be given and let n1 be so large that if n≥ n1, |bn−b|< |b|

2 .
Thus for such n,∥∥∥∥an

bn
− a

b

∥∥∥∥= ∥∥∥∥anb−abn

bbn

∥∥∥∥≤ 2

|b|2
[∥anb−ab∥+∥ab−abn∥]
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≤ 2
|b|
∥an−a∥+ 2∥a∥

|b|2
|∥bn−b∥| .

Now choose n2 so large that if n≥ n2, then

∥an−a∥< ε |b|
4

, and |bn−b|< ε |b|2

4(∥a∥+1)
.

Letting nε > max(n1,n2) , it follows that for n≥ nε ,∥∥∥∥an

bn
− a

b

∥∥∥∥≤ 2
|b|
∥an−a∥+ 2∥a∥

|b|2
|bn−b|< 2

|b|
ε |b|

4
+

2∥a∥
|b|2

ε |b|2

4(∥a∥+1)
< ε. ■

Another very useful theorem for finding limits is the squeezing theorem.

Theorem 4.4.9 In case an,bn ∈ R, suppose limn→∞ an = a = limn→∞ bn and an ≤
cn ≤ bn for all n large enough. Then limn→∞ cn = a.

Proof: Let ε > 0 be given and let n1 be large enough that if n≥ n1, |an−a|< ε/2 and
|bn−a|< ε/2. Then for such n,|cn−a| ≤ |an−a|+ |bn−a|< ε. The reason for this is that
if cn ≥ a, then |cn−a|= cn−a≤ bn−a≤ |an−a|+ |bn−a| because bn ≥ cn. On the other
hand, if cn ≤ a, then

|cn−a|= a− cn ≤ a−an ≤ |a−an|+ |b−bn| . ■

As an example, consider the following.

Example 4.4.10 Let cn ≡ (−1)n 1
n and let bn =

1
n , and an =− 1

n . Then you may easily show
that limn→∞ an = limn→∞ bn = 0. Since an ≤ cn ≤ bn, it follows limn→∞ cn = 0 also.

Theorem 4.4.11 limn→∞ rn = 0. Whenever |r|< 1. Here r ∈ F.

Proof: If 0 < r < 1 if follows r−1 > 1. Why? Letting α = 1
r − 1, it follows r = 1

1+α
.

Therefore, by the binomial theorem, 0 < rn = 1
(1+α)n ≤ 1

1+αn . Therefore, limn→∞ rn = 0 if
0 < r < 1. In general, if |r|< 1, |rn|= |r|n→ 0 by the first part. ■

An important theorem is the one which states that if a sequence converges, so does
every subsequence. You should review Definition 4.2.4 on Page 58 at this point.

Theorem 4.4.12 Let {xn} be a sequence with limn→∞ xn = x and let
{

xnk

}
be a

subsequence. Then limk→∞ xnk = x.

Proof: Let ε > 0 be given. Then there exists nε such that if n > nε , then ∥xn− x∥< ε.
Suppose k > nε . Then nk ≥ k > nε and so

∥∥xnk − x
∥∥< ε showing limk→∞ xnk = x as claimed.

■

Theorem 4.4.13 Let {xn} be a sequence of real numbers and suppose each xn ≤ l
(≥ l) for all n large enough, and limn→∞ xn = x. Then x≤ l (≥ l) . More generally, suppose
{xn} and {yn} are two sequences of real numbers such that limn→∞ xn = x and limn→∞ yn =
y. Then if xn ≤ yn for all n sufficiently large, then x≤ y.
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Proof: I will show the second claim because it includes the first as a special case.
Letting ε > 0 be given, for all n large enough, |y− yn| < ε so y ≥ yn− ε. Similarly, for n
large enough, x≤ xn + ε . Therefore,

y− x≥ yn− ε− (xn + ε)≥ (yn− xn)−2ε ≥−2ε

Since ε is arbitrary, it follows that y− x≥ 0. ■
Another important observation is that if a sequence converges, then it must be bounded.

Proposition 4.4.14 Suppose xn→ x. Then ∥xn∥ is bounded by some M < ∞.

Proof: There exists N such that if n≥N, then ∥x− xn∥< 1. It follows from the triangle
inequality, see Proposition 4.4.2, that for n ≥ N,∥xn∥ ≤ 1+ ∥x∥. There are only finitely
many xk for k < N and so for all k,

∥xk∥ ≤max{1+∥x∥ ,∥xk∥ : k ≤ N} ≡M < ∞. ■

4.5 Cauchy Sequences
A Cauchy sequence is one which “bunches up”. This concept was developed by Bolzano
and Cauchy. It is a fundamental idea in analysis.

Definition 4.5.1 {an} is a Cauchy sequence if for all ε > 0, there exists nε such that
whenever n,m≥ nε , |an−am|< ε.

A sequence is Cauchy means the terms are “bunching up to each other” as m,n get
large.

Theorem 4.5.2 The set of terms (values) of a Cauchy sequence in Fp is bounded.

Proof: Let ε = 1 in the definition of a Cauchy sequence and let n > n1. Then from the
definition, ∥an−an1∥< 1. It follows from the triangle inequality that for all n > n1,∥an∥<
1+∥an1∥ .Therefore, for all n,∥an∥ ≤ 1+∥an1∥+∑

n1
k=1 ∥ak∥ . ■

Theorem 4.5.3 If a sequence {an} in Fp converges, then the sequence is a Cauchy
sequence.

Proof: Let ε > 0 be given and suppose an → a. Then from the definition of con-
vergence, there exists nε such that if n > nε , it follows that ∥an−a∥ < ε

2 . Therefore, if
m,n≥ nε +1, it follows that ∥an−am∥ ≤ ∥an−a∥+∥a−am∥< ε

2 +
ε

2 = ε showing that,
since ε > 0 is arbitrary, {an} is a Cauchy sequence. ■

The following theorem is very useful and is likely the most important property of
Cauchy sequences. You know that if a sequence converges, then every subsequence con-
verges to the same thing. However, you can have a sequence which does not converge,
an = (−1)n for example which has a convergent subsequence, nk = 2k in this example.
This won’t happen with a Cauchy sequence.

Theorem 4.5.4 Suppose {an} is a Cauchy sequence in Fp and there exists a subse-
quence,

{
ank

}
which converges to a. Then {an} also converges to a.

Proof: Let ε > 0 be given. There exists N such that if m,n > N, then ∥am−an∥< ε/2.
Also there exists K such that if k > K, then

∥∥a−ank

∥∥ < ε/2. Then let k > max(K,N) .
Then for such k,∥ak−a∥ ≤

∥∥ak−ank

∥∥+∥∥ank −a
∥∥< ε/2+ ε/2 = ε. ■

This theorem holds in all instances where it makes sense to speak of Cauchy sequences.
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4.6 The Nested Interval Lemma
In Russia there is a kind of doll called a matrushka doll. You pick it up and notice it comes
apart in the center. Separating the two halves you find an identical doll inside. Then you
notice this inside doll also comes apart in the center. Separating the two halves, you find
yet another identical doll inside. This goes on quite a while until the final doll is in one
piece. The nested interval lemma is like a matrushka doll except the process never stops.
It involves a sequence of intervals, the first containing the second, the second containing
the third, the third containing the fourth and so on. The fundamental question is whether
there exists a point in all the intervals. Sometimes there is such a point and this comes from
completeness.

Lemma 4.6.1 Let Ik =
[
ak,bk

]
and suppose that for all k = 1,2, · · · , Ik ⊇ Ik+1. Then

there exists a point, c ∈ R which is an element of every Ik. If the diameters (length) of
these intervals, denoted as diam(Ik) converges to 0, then there is a unique point in the
intersection of all these intervals.

Proof: Since Ik ⊇ Ik+1, this implies

ak ≤ ak+1, bk ≥ bk+1. (4.7)

Consequently, if k ≤ l,
al ≤ al ≤ bl ≤ bk. (4.8)

Now define c≡ sup
{

al : l = 1,2, · · ·
}

. By the first inequality in 4.7, and 4.8

ak ≤ c = sup
{

al : l = k,k+1, · · ·
}
≤ bk (4.9)

for each k = 1,2 · · · . Thus c ∈ Ik for every k and this proves the lemma. The reason for
the last inequality in 4.9 is that from 4.8, bk is an upper bound to

{
al : l = k,k+1, · · ·

}
.

Therefore, it is at least as large as the least upper bound.
For the last claim, suppose there are two points x,y in the intersection. Then |x− y| =

r > 0 but eventually the diameter of Ik is less than r. Thus it cannot contain both x and y. ■
This is really quite a remarkable result and may not seem so obvious. Consider the

intervals Ik ≡ (0,1/k) . Then there is no point which lies in all these intervals because no
negative number can be in all the intervals and 1/k is smaller than a given positive number
whenever k is large enough. Thus the only candidate for being in all the intervals is 0 and
0 has been left out of them all. The problem here is that the endpoints of the intervals
were not included, contrary to the hypotheses of the above lemma in which all the intervals
included the endpoints.

Corollary 4.6.2 Let Rn ≡ ∏
p
k=1

[
an

k ,b
n
k

]
where Rn+1 ⊆ Rn. Then ∩∞

n=1Rn ̸= /0. If the
diameter of Rn defined as max

{
bn

k−an
k : k ≤ p

}
converges to 0, then there is exactly one

point in this intersection.

Proof: Since these rectangles Rk are nested,
[
an

k ,b
n
k

]
⊇
[
an+1

k ,bn+1
k

]
and so there exists

xk ∈ ∩n
[
an

k ,b
n
k

]
. Then x ≡ (x1, · · · ,xp) ∈ ∩nRn. In case the diameter of Rn converges to 0,

if x,y ∈ ∩Rn, then ∥x− y∥ ≤max
{

bn
k−an

k ,k ≤ p
}

and this converges to 0 as n→ ∞. Thus
x = y. ■
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4.7 Exercises
1. Find limn→∞

n
3n+4 .

2. Find limn→∞
3n4+7n+1000

n4+1 .

3. Find limn→∞
2n+7(5n)
4n+2(5n) .

4. Find limn→∞

√
(n2 +6n)−n. Hint: Multiply and divide by

√
(n2 +6n)+n.

5. Find limn→∞ ∑
n
k=1

1
10k .

6. Suppose {xn + iyn} is a sequence of complex numbers which converges to the com-
plex number x+ iy. Show this happens if and only if xn→ x and yn→ y.

7. For |r|< 1, find limn→∞ ∑
n
k=0 rk. Hint: First show ∑

n
k=0 rk = rn+1

r−1 −
1

r−1 . Then recall
Theorem 4.4.11.

8. Using the binomial theorem prove that for all n ∈ N,(
1+

1
n

)n

≤
(

1+
1

n+1

)n+1

.

Hint: Show first that
(n

k

)
= n·(n−1)···(n−k+1)

k! . By the binomial theorem,

(
1+

1
n

)n

=
n

∑
k=0

(
n
k

)(
1
n

)k

=
n

∑
k=0

k factors︷ ︸︸ ︷
n · (n−1) · · ·(n− k+1)

k!nk .

Now consider the term n·(n−1)···(n−k+1)
k!nk and note that a similar term occurs in the

binomial expansion for
(
1+ 1

n+1

)n+1
except you replace n with n+1 whereever this

occurs. Argue the term got bigger and then note that in the binomial expansion for(
1+ 1

n+1

)n+1
, there are more terms.

9. Prove by induction that for all k ≥ 4, 2k ≤ k!

10. Use the Problems 21 and 8 to verify for all n ∈ N,
(
1+ 1

n

)n ≤ 3.

11. Prove limn→∞

(
1+ 1

n

)n
exists and equals a number less than 3.

12. Using Problem 10, prove nn+1 ≥ (n+1)n for all integers, n≥ 3.

13. Find limn→∞ nsinn if it exists. If it does not exist, explain why it does not.

14. Recall the axiom of completeness states that a set which is bounded above has a least
upper bound and a set which is bounded below has a greatest lower bound. Show that
a monotone decreasing sequence which is bounded below converges to its greatest
lower bound. Hint: Let a denote the greatest lower bound and recall that because of
this, it follows that for all ε > 0 there exist points of {an} in [a,a+ ε] .
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15. Let An = ∑
n
k=2

1
k(k−1) for n ≥ 2. Show limn→∞ An exists and find the limit. Hint:

Show there exists an upper bound to the An as follows.

n

∑
k=2

1
k (k−1)

=
n

∑
k=2

(
1

k−1
− 1

k

)
= 1− 1

n
≤ 1.

16. Let Hn = ∑
n
k=1

1
k2 for n ≥ 2. Show limn→∞ Hn exists. Hint: Use the above problem

to obtain the existence of an upper bound.

17. Let In = (−1/n,1/n) and let Jn = (0,2/n) . The intervals, In and Jn are open in-
tervals of length 2/n. Find ∩∞

n=1In and ∩∞
n=1Jn. Repeat the same problem for In =

(−1/n,1/n] and Jn = [0,2/n).

18. Show the set of real numbers [0,1] is not countable. That is, show that there can be
no mapping fromN onto [0,1]. Hint: Show that every sequence, the terms consisting
only of 0 or 1 determines a unique point of [0,1] . Call this map γ. Show it is onto.
Also show that there is a map from [0,1] onto S , the set of sequences of zeros and
ones. This will involve the nested interval lemma. Thus there is a one to one and
onto map α from S to [0,1] by Corollary 3.2.5. Next show that there is a one to
one and onto map from this set of sequences and P (N). Consider θ ({an}∞

n=1) =
{n : an = 1} . Now suppose that f : N→ [0,1] is onto. Then θ ◦α−1 ◦ f is onto
P (N). Recall that there is no map from a set to its power set. Review why this is.

19. Show that if I and J are any two closed intervals, then there is a one to one and onto
map from I to J. Thus from the above problem, no closed interval, however short
can be countable.

4.8 Compactness
4.8.1 Sequential Compactness
First I will discuss the very important concept of sequential compactness. This is a property
that some sets have. A set of numbers is sequentially compact if every sequence contained
in the set has a subsequence which converges to a point in the set. It is unbelievably useful
whenever you try to understand existence theorems.

Definition 4.8.1 A set, K ⊆ Fp is sequentially compact if whenever {an} ⊆ K is
a sequence, there exists a subsequence,

{
ank

}
such that this subsequence converges to a

point of K.

The following theorem is part of the Heine Borel theorem.

Theorem 4.8.2 Every closed interval [a,b] is sequentially compact.

Proof: Let {xn} ⊆ [a,b] ≡ I0. Consider the two intervals
[
a, a+b

2

]
and

[ a+b
2 ,b

]
each

of which has length (b−a)/2. At least one of these intervals contains xn for infinitely
many values of n. Call this interval I1. Now do for I1 what was done for I0. Split it in half
and let I2 be the interval which contains xn for infinitely many values of n. Continue this
way obtaining a sequence of nested intervals I0 ⊇ I1 ⊇ I2 ⊇ I3 · · · where the length of In is
(b−a)/2n. Now pick n1 such that xn1 ∈ I1, n2 such that n2 > n1 and xn2 ∈ I2,n3 such that
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n3 > n2 and xn3 ∈ I3, etc. (This can be done because in each case the intervals contained
xn for infinitely many values of n.) By the nested interval lemma there exists a point c
contained in all these intervals. Furthermore,

∣∣xnk − c
∣∣ < (b−a)2−k and so limk→∞ xnk =

c ∈ [a,b] . ■

Corollary 4.8.3 R≡∏
p
k=1 [ak,bk] is sequentially compact in Rp.

Proof: Let {xn}∞

n=1 ⊆ R, xn =
(
xn

1, · · · ,xn
p
)
. Then there is a subsequence, still denoted

with n such that {xn
1} converges to a point x1 ∈ [a1,b1]. Now there exists a further sub-

sequence, still denoted with n such that xn
2 converges to x2 ∈ [a2,b2] . Continuing to take

subsequence, there is a subsequence, still denoted with n such that xn
k → xk ∈ [ak,bk] for

each k. By Proposition 4.4.3, this shows that this subsequence converges to x=(x1, · · · ,xp).
■

4.8.2 Closed and Open Sets
I have been using the terminology [a,b] is a closed interval to mean it is an interval which
contains the two endpoints. However, there is a more general notion of what it means to be
closed. Similarly there is a general notion of what it means to be open.

Definition 4.8.4 Let U be a set of points in Fp. A point p ∈ U is said to be an
interior point if whenever ∥x− p∥ is sufficiently small, it follows x ∈ U also. The set of
points, x which are closer to p than δ is denoted by

B(p,δ )≡ {x ∈ F : ∥x− p∥< δ} .

This symbol, B(p,δ ) is called an open ball of radius δ . Thus a point p is an interior point
of U if there exists δ > 0 such that p ∈ B(p,δ ) ⊆U. An open set is one for which every
point of the set is an interior point. Closed sets are those which are complements of open
sets. Thus H is closed means HC is open.

Note the following:

Proposition 4.8.5 If U = HC where H is closed, then U is open. Also /0 and Fp are
both open and closed.

Proof: Note that Fp is open obviously. Also /0 is obviously open because every point
of /0 is an interior point. Indeed, it has none so they all must be interior points. Therefore,
Fp is also closed because it is the complement of an open set. Now H =UC and so, given
that H is closed, then by definition, it must be the complement of an open set, but it is
the complement of U and so U must be open. It follows that /0 is open because it is the
complement of a closed set Fp. ■

Thus open sets are complements of closed sets and closed sets are complements of open
sets. I will use this fact without comment whenever convenient.

What is an example of an open set? The simplest example is an open ball.

Proposition 4.8.6 B(p,δ ) is an open set and D(p,r) ≡ {x : ∥x− p∥ ≤ r} is a closed
set.
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Proof: It is necessary to show every point of B(p,δ ) is an interior point. Let x ∈
B(p,δ ) . Then let r = δ −∥x− p∥. It follows r > 0 because it is given that ∥x− p∥ < δ .
Now consider z ∈ B(x,r) . From Proposition 4.4.2, the triangle inequality,

∥z− p∥ ≤ ∥z− x∥+∥x− p∥< r+∥x− p∥= δ −∥x− p∥+∥x− p∥= δ

and so z ∈ B(p,δ ) . That is B(x,r)⊆ B(p,δ ) . Since x was arbitrary, this has shown every
point of the ball is an interior point. Thus the ball is an open set.

Consider the last assertion. If y /∈ D(p,r) , then ∥y− p∥ > r and you could consider
B(y,∥y− p∥− r) . If z ∈ B(y,∥y− p∥− r) , then

∥z− p∥ = ∥z− y+ y− p∥ ≥ ∥y− p∥−∥z− y∥
> ∥y− p∥− (∥y− p∥− r) = r

and so z /∈D(p,r) which shows that the complement of D(p,r) is open so this set is closed.
■

Definition 4.8.7 Let A be any nonempty set and let x be a point. Then x is said to
be a limit point of A if for every r > 0,B(x,r) contains a point of A which is not equal to x.

The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 4.8.8 A point x is a limit point of the nonempty set A ⊆ Fp if and only if
every B(x,r) contains infinitely many points of A, none of which are equal to x. In other
words, there exists a sequence of distinct points of A none equal to x which converges to x.

Proof: ⇐ is obvious. Consider ⇒ . Let x be a limit point. Let r1 = 1. Then B(x,r1)
contains a1 ̸= x. If {a1, · · · ,an} have been chosen none equal to x and with no repeats in
the list, let 0 < rn < min

( 1
n ,min{∥ai− x∥ , i = 1,2, · · ·n}

)
. Then let an+1 ∈ B(x,rn)\{x} .

Thus an+1 is not equal to any of the earlier ak and every B(x,r) contains B(x,rn) for all n
large enough and hence it contains ak for k ≥ n where the ak are distinct, none equal to x.
■

Example 4.8.9 Consider A = N, the positive integers. Then none of the points of A is a
limit point of A because if n ∈ A,B(n,1/10) contains no points of N which are not equal to
n.

Example 4.8.10 Consider A = (a,b) , an open interval in R. If x ∈ (a,b) , let

r = min(|x−a| , |x−b|) .

Then B(x,r)⊆ A because if |y− x|< r, then

y−a = y− x+ x−a≥ x−a−|y− x|
= |x−a|− |y− x|> |x−a|− r ≥ 0

showing y > a. A similar argument which you should provide shows y < b. Thus y ∈ (a,b)
and x is an interior point. Since x was arbitrary, this shows every point of (a,b) is an
interior point and so (a,b) is open.
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Theorem 4.8.11 The following are equivalent.

1. A is closed

2. If {an}∞

n=1 is a sequence of points of A and limn→∞ an = a, then a ∈ A.

3. A contains all of its limit points.

If a is a limit point, then there is a sequence of distinct points of A none of which equal
a which converges to a.

Proof: 1.⇐⇒2. Say A is closed and an → a where each an ∈ A. If a /∈ A, then there
exists ε > 0 such that B(a,ε)∩A = /0. But then an fails to converge to a so a ∈ A after all.
Conversely, if 2. holds and x /∈ A, B

(
x, 1

n

)
must fail to contain any points of A for some

n ∈ N because if not, you could pick an ∈ B
(
x, 1

n

)
∩A and obtain limn→∞ an = x which

would give x ∈ A by 2. Thus AC is open and A is closed.
2.⇒ 3. Say a is a limit point of A. Then by Proposition 4.8.8 there is a sequence of

distinct points of A {an} with an→ a. By 2., a ∈ A.
3.⇒ 1. Given 3., why is AC open? Let x ∈ AC. By 3. x cannot be a limit point. Hence

there exists B(x,r) which contains at most finitely many points of A. Since x ∈ AC, none
of these are equal to x. Hence, making r still smaller, one can avoid all of these points.
Thus the modified r has the property that B(x,r) contains no points of A and so A is closed
because its complement is open. The last claim is from Proposition 4.8.8. ■

Note that part of this theorem says that a set A having all its limit points is the same as
saying that whenever a sequence of points of A converges to a point a, then it follows a∈ A.
In other words, closed is the same as being closed with respect to containing all limits of
sequences of points of A.

Corollary 4.8.12 Let A be a nonempty set and denote by A′ the set of limit points of A.
Then A∪A′ is a closed set and it is the smallest closed set containing A. In fact, A∪A′ =
∩{C : C is closed and C ⊇ A} . This set A∪A′ is denoted as A.

Proof: Is it the case that (A∪A′)C is open? This is what needs to be shown if the given
set is closed. Let p /∈ A∪A′. Then since p is neither in A nor a limit point of A, there
exists B(p,r) such that B(p,r)∩A = /0. Therefore, B(p,r)∩A′ = /0 also. This is because
if z ∈ B(p,r)∩A′, then

B(z,r−∥p− z∥)⊆ B(p,r)

and this smaller ball contains points of A since z is a limit point. This contradiction shows
that B(p,r)∩A′ = /0 as claimed. Hence (A∪A′)C is open because p was an arbitrary point
of (A∪A′)C . Hence A∪A′ is closed as claimed.

It was just shown that A∪A′ ⊇ ∩{C : C ⊇ A}. Now suppose C ⊇ A and C is closed.
Then if p is a limit point of A, it follows from Theorem 4.8.11 that there exists a sequence
of distinct points of A converging to p. Since C is closed, and these points of A are all in C,
it follows that p ∈C. Hence C ⊇ A∪A′.Thus A∪A′ ⊇ ∩{C : C ⊇ A} ⊇ A∪A′. ■

Theorem 4.8.13 A set K ̸= /0 inRp is sequentially compact if and only if it is closed
and bounded. A set is bounded means it is contained in some ball having finite radius. If K
is sequentially compact and if H is a closed subset of K then H is sequentially compact.
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Proof:⇒ Suppose K is sequentially compact. Why is it closed? Let kn→ k where each
kn ∈ K. Why is k ∈ K? Since K is sequentially compact, there is a subsequence

{
kn j

}
such

that lim j→∞ kn j = k̂ ∈ K. However, the subsequence converges to k and so k = k̂ ∈ K. By
Theorem 4.8.11, K is closed. Why is K bounded? If it were not, there would exist ∥kn∥> n
where kn ∈K and n∈N which means this sequence could have no convergent subsequence
because the subsequence would not even be bounded. See Theorems 4.5.3 and 4.5.2.
⇐Suppose that K is closed and bounded. Since S is bounded, there exists

R =
p

∏
k=1

[ak,bk]

containing K. If {kn} ⊆ K, then from Corollary 4.8.3, there exists a subsequence
{

kn j

}
such that lim j→∞ kn j = k ∈ R. However, K is closed and so in fact, k ∈ K.

The last claim follows from a repeat of the preceding argument. Just use K in place
of R and H in place of K. Alternatively, if K is closed and bounded, then so is H, being a
closed subset of K. ■

What about the sequentially compact sets in Cp? This is actually a special case of
Theorem 4.8.13. For z ∈ Cp, z = (z1, · · · ,zp) where zk = xk + iyk. Thus(

x1,y1,x2,y2, · · · ,xp,yp)≡ θz ∈ R2p

A set K is bounded in Cp if and only if {θz : z ∈ K} is bounded in R2p. Also, zn→ z in Cp

if and only if θzn→ θz in R2p. Now K is closed and bounded in Cp if and only if θK ≡
{θz : z ∈ K} is closed and bounded in R2pand so K is closed and bounded in Cp if and
only if θK is sequentially compact in R2p. Thus if {zn} is a sequence in K, there exists a
subsequence, still denoted with n such that θzn converges in R2p if and only if zn converges
to some z ∈ Cp. However, z ∈ K because K is closed. Thus K is sequentially compact in
Cp.

Conversely, if K is sequentially compact, then it must be bounded since otherwise there
would be a sequence {kn} ⊆ K with ∥kn∥ > n and so no subsequence can be Cauchy so
no subsequence can converge. K must also be closed because if not, there would be x /∈ K
and a sequence {kn} ⊆ K with kn → x. However, by sequential compactness, there is a
subsequence

{
knk

}∞

k=1 , knk → k ∈ K and so k = x ∈ K after all. This proves most of the
following theorem.

Theorem 4.8.14 Let H ⊆ Fp. Then H is closed and bounded if and only if H is se-
quentially compact. A sequence {xn} is a Cauchy sequence in Fp if and only if it converges.
In particular, Fp is complete, p≥ 1.

Proof: Consider the last claim. If {zn} converges, then it is a Cauchy sequence by
Theorem 4.5.3. Conversely, if {zn} is a Cauchy sequence, then it is bounded by Theorem
4.5.2 so it is contained in some closed and bounded subset of Fp. Therefore, a subsequence
converges to a point of this closed and bounded set. However, by Theorem 4.5.4, the
original Cauchy sequence converges to this point. ■

4.8.3 Compactness and Open Coverings
In Theorem 4.8.13 it was shown that sequential compactness in Fp is the same as closed
and bounded. Here we give the traditional definition of compactness and show that this is
also equivalent to closed and bounded.



72 CHAPTER 4. FUNCTIONS AND SEQUENCES

Definition 4.8.15 A set K is called compact if whenever C is a collection of open
sets such that K ⊆∪C , there exists a finite subset of open sets {U1, · · · ,Um} ⊆ C such that
K ⊆ ∪m

i=1Ui. In words, it says that every open cover admits a finite subcover.

Lemma 4.8.16 If K is a compact set and H is a closed subset of K, then H is also
compact.

Proof: Let C be an open cover of H. Then HC,C is an open cover of K. It follows that
there are finitely many sets of C ,

{
U j
}m

j=1 such that HC∪∪m
j=1Ui ⊇ K. Therefore, since no

points of H are in the open set HC, it follows that ∪m
j=1Ui ⊇ H. ■

Now here is the main result, often called the Heine Borel theorem.

Theorem 4.8.17 Let K be a nonempty set in Fp. Then the following are equivalent.

1. K is compact

2. K is closed and bounded

3. K is sequentially compact.

Proof: It was shown above in Theorem 4.8.14 that 2. ⇐⇒ 3. Consider 3.⇒ 1. If C
is an open cover of K, then I claim there exists δ > 0 such that if k ∈ K, then B(k,δ )⊆U
for some U ∈ C . This δ is called a Lebesgue number. If not, then there exists kn ∈ K such
that B

(
kn,

1
n

)
is not contained in any set of C because 1/n is not a Lebesgue number. Then

by sequential compactness, there is a subsequence, still denoted by kn which converges to
k ∈ K. Now B(k,δ )⊆U for some δ > 0 and some U ∈ C . However, this is a contradiction
because for n large, 1

n < δ

2 and kn ∈ B
(

k, δ

2

)
so B

(
kn,

1
n

)
⊆ B(k,δ )⊆U which is a contra-

diction. Consider {B(k,δ ) : k ∈ K} . Finitely many of these sets contain K in their union
since otherwise, there would exist a sequence {kn} such that ∥kn− km∥ ≥ δ for all m ̸= n
and so it cannot have any Cauchy subsequence. Hence K would fail to be compact. Thus
K ⊆∪m

i=1B(ki,δ ) for suitable finite set {ki} . Pick Ui ∈ C with Ui ⊇ B(ki,δ ). Then {Ui}m
i=1

is an open cover.
It remains to verify that 1.⇒ 2. Suppose that K is compact. Why is it closed and

bounded? Suppose first it is not closed. Then there exists a limit point p which is not in K.
If x ∈ K, then there exists open Ux containing x and Vx containing p such that Ux∩Vx = /0.
Since K is compact, there are finitely many of these Ux which cover K. Say {Ux1 , ...,Uxn} .
Then let U = ∪iUxi ,V = ∩Vxi , an open set. Hence p ∈ V and V contains no points of K.
Thus p is not a limit point after all. To see that K is bounded, pick k0 ∈ K and consider
{B(k0,n)}∞

n=1 . This is an open cover of K and the sets are increasing so one of these balls
covers K. Hence K is bounded. ■

4.8.4 Complete Separability
By Theorem 2.7.9, the rational numbers are dense in R. They are also countable because
there is an onto map from the Cartesian product of the two countable sets Z and Z\{0} to
the rationals. Indeed, if m/n is a rational number you consider the ordered pair (m,n) in
Z×Z\{0} and let f ((m,n))≡m/n. Thus, it is possible to enumerate all rational numbers.
Of course, as shown earlier, this means there exists a one to one mapping fromN ontoQ but
this is not important here. The only thing which matters is that you can write Q= {ri}∞

i=1.
Now the following is the important theorem.
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Theorem 4.8.18 Let B(x,r) denote the interval (x− r,x+ r) . It is the set of all
real numbers y such that y is closer to x than r. Then there are countably many balls
B ≡ {B(x,r) : x ∈Q,r ∈Q∩ (0,∞)}. Also every open set is the union of some collection
of these balls.

Proof: Let U be a nonempty open set and let p ∈U . I need to show that p ∈ B ⊆U
for some B ∈ B. There exists R > 0 such that p ∈ B(p,R) ⊆ U . Let x ∈ Q such that
|p− x| < R

10 . This is possible because Q is dense. Then letting R
10 < r < R

5 for r ∈ Q, it
follows that

|p− x|< R
10

< r

and so p ∈ B≡ B(x,r) ∈B. Also, if z ∈ B(x,r) , then |z− p| ≤ |z− x|+ |x− p|< r+ r
10 <

2R
5 < R and so p ∈ B⊆ B(p,R)⊆U showing that U is indeed the union of some subset of

B. ■
When you have a countable set of open sets with the property that every open set is the

union of a subset of this countable set, you call this countable set of open sets a countable
basis. When this happens, you say the set is completely separable. . Thus R along with the
usual way of finding distance using the absolute value of the difference of two real numbers
is a completely separable set.

Definition 4.8.19 There is also something called the Lindelöf property.4 It says
that if you have any set of open sets C , then there is a countable subset of C denoted
here as Ĉ such that ∪ Ĉ = ∪C . Thus this property says that every open cover admits a
countable subcover.

Theorem 4.8.20 R has the Lindelöf property.

Proof: Let B consist of the open intervals having center a rational number and radius a
positive rational number. Then if C is any collection of open sets, let B̂ denote those balls
of B which are contained in some set of C . For each B ∈ B̂, let O(B) be one of the open
sets from C which contains B. Then since every open set of C is the union of sets of B, it
follows that

∪C = ∪B̂ ⊆ ∪
{

O(B) : B ∈ B̂
}
⊆ ∪C

So let Ĉ ≡
{

O(B) : B ∈ B̂
}

. It is a countable set because B̂ is countable, being a count-
able subset of a countable set B and the mapping B→ O(B) is onto by definition. Note
that the axiom of choice is used to select O(B) from the set of open sets of C which contain
B. ■

This is a very useful observation. It holds whenever you have a countable basis. Obvi-
ously much of what is being discussed applies to more general situations.

4.9 Exercises
1. Show the intersection of any collection of closed sets is closed and the union of any

collection of open sets is open.

4Lindelöf was a Finnish mathematician who lived from 1870 to 1946. He did important work in complex
analysis.
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2. Show that if H is closed and U is open, then H \U is closed. Next show that U \H
is open.

3. Show the finite intersection of any collection of open sets is open.

4. Show the finite union of any collection of closed sets is closed.

5. Suppose {Hn}N
n=1 is a finite collection of sets and suppose x is a limit point of

∪N
n=1Hn. Show x must be a limit point of at least one Hn.

6. Give an example of a set of closed sets whose union is not closed.

7. Give an example of a set of open sets whose intersection is not open.

8. Give an example of a set of open sets whose intersection is a closed interval.

9. Give an example of a set of closed sets whose union is open.

10. Give an example of a set of closed sets whose union is an open interval.

11. Give an example of a set of open sets whose intersection is closed.

12. Give an example of a set of open sets whose intersection is the natural numbers.

13. Explain why F and /0 are sets which are both open and closed when considered as
subsets of F.

14. Let A be a nonempty set of points and let A′ denote the set of limit points of A. Show
A∪A′ is closed. Hint: You must show the limit points of A∪A′ are in A∪A′. This is
shown in the chapter but do it yourself.

15. Let U be any open set in F. Show that every point of U is a limit point of U.

16. Suppose {Kn} is a sequence of sequentially compact nonempty sets which have the
property that Kn ⊇ Kn+1 for all n. Show there exists a point in the intersection of all
these sets, denoted by ∩∞

n=1Kn.

17. Now suppose {Kn} is a sequence of sequentially compact nonempty sets which have
the finite intersection property, every finite subset of {Kn} has nonempty intersection.
Show there exists a point in ∩∞

n=1Kn.

18. Show that any finite union of sequentially compact sets is compact.

19. Start with the unit interval, I0 ≡ [0,1] . In this interval, I0, remove the following
middle third open interval, (1/3,2/3) resulting in the two closed intervals, I1 =
[0,1/3]∪ [2/3,1] . Next delete the middle third of each of these intervals resulting
in I2 = [0,1/9]∪ [2/9]∪ [2/3,5/9]∪ [8/9,1] and continue doing this forever. Show
the intersection of all these In is nonempty. Letting P = ∩∞

n=1In explain why every
point of P is a limit point of P. Would the conclusion be any different if, instead
of the middle third open interval, you took out an open interval of arbitrary length,
each time leaving two closed intervals where there was one to begin with? This pro-
cess produces something called the Cantor set. It is the basis for many pathological
examples of unbelievably sick functions as well as being an essential ingredient in
some extremely important theorems.
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20. In Problem 19 in the case where the middle third is taken out, show the total length
of open intervals removed equals 1. Thus what is left is very “short”. For your
information, the Cantor set is uncountable. In addition, it can be shown there exists
a function which maps the Cantor set onto [0,1] , for example, although you could
replace [0,1] with the square [0,1]× [0,1] or more generally, any compact metric
space, something you may study later.

21. Show that there exists an onto map from the Cantor set P just described onto [0,1].
Show that this is so even if you do not always take out the middle third, but instead
an open interval of arbitrary length, leaving two closed intervals in place of one. It
turns out that all of these Cantor sets are topologically the same meaning that there
is a one to one onto and continuous mapping from one to another. Hint: Base your
argument on the nested interval lemma. This will yield ideas which go somewhere.

22. Suppose {Hn} is a sequence of sets with the property that for every point x, there
exists r > 0 such that B(x,r) intersects only finitely many of the Hn. Such a collection
of sets is called locally finite. Show that if the sets are all closed in addition to being
locally finite, then the union of all these sets is also closed. This concept of local
finiteness is of great significance although it will not be pursued further here.

23. Show that every uncountable set of points in F has a limit point. This is not nec-
essarily true if you replace the word, uncountable with the word, infinite. Explain
why.

24. In Section 4.8.4 generalize everything to Rp. In this case, the countable dense subset
will be Qp. Also explain why (Q+ iQ)p is countable and dense subset of Cp and
why Cp is completely separable.

4.10 Cauchy Sequences and Completeness
You recall the definition of completeness which stated that every nonempty set of real
numbers which is bounded above has a least upper bound and that every nonempty set of
real numbers which is bounded below has a greatest lower bound and this is a property
of the real line known as the completeness axiom. Geometrically, this involved filling in
the holes. There is another way of describing completeness in terms of Cauchy sequences.
Both of these concepts came during the first part of the nineteenth century and are due to
Bolzano and Cauchy.

The next definition has to do with sequences which are real numbers.

Definition 4.10.1 The sequence of real numbers, {an} , is monotone increasing if
for all n, an ≤ an+1. The sequence is monotone decreasing if for all n, an ≥ an+1. People
often leave off the word “monotone”.

If someone says a sequence is monotone, it usually means monotone increasing.
There exist different descriptions of completeness. An important result is the following

theorem which gives a version of completeness in terms of Cauchy sequences. This is
often more convenient to use than the earlier definition in terms of least upper bounds and
greatest lower bounds because this version of completeness, although it is equivalent to the
completeness axiom for the real line, also makes sense in many situations where Definition
2.10.1 on Page 27 does not make sense, C for example because by Problem 12 on Page 39
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there is no way to place an order on C. This is also the case whenever the sequence is of
points in multiple dimensions.

It is the concept of completeness and the notion of limits which sets analysis apart from
algebra. You will find that every existence theorem in analysis depends on the assumption
that some space is complete. In case of R the least upper bound version corresponds to a
statement about convergence of Cauchy sequences.

Theorem 4.10.2 The following are equivalent.

1. Every Cauchy sequence in R converges

2. Every non-empty set of real numbers which is bounded above has a least upper
bound.

3. Every nonempty set of real numbers which is bounded below has a greatest lower
bound.

Proof: 1.⇒ 2. First suppose every Cauchy sequence converges and let S be a nonempty
set which is bounded above. Let b1 be an upper bound. Pick s1 ∈ S. If s1 = b1, the least
upper bound has been found and equals b1. If (s1 +b1)/2 is an upper bound to S, let this
equal b2. If not, there exists b1 > s2 > (s1 +b1)/2 so let b2 = b1 and s2 be as just described.
Now let b2 and s2 play the same role as s1 and b1 and do the same argument. This yields a
sequence {sn} of points of S which is monotone increasing and another sequence of upper
bounds, {bn} which is monotone decreasing and |sn−bn| ≤ 2−n+1 (b1− s1) . Therefore, if
m > n

|bn−bm| ≤ bn− sm ≤ bn− sn ≤ 2−n+1 (b1− s1)

and so {bn} is a Cauchy sequence. Therefore, it converges to some number b. Then b must
be an upper bound of S because if not, there would exist s > b and then bn− b ≥ s− b
which would prevent {bn} from converging to b.

2.⇒ 3.,3.⇒ 2. The claim that every nonempty set of numbers bounded below has
a greatest lower bound follows similarly. Alternatively, consider −S ≡ {−x : x ∈ S} and
apply what was just shown. If S is bounded below, then −S is bounded above and so there
exists a least upper bound for −S called −l. Then l is a lower bound to S. If there is b > l
such that b is also a lower bound to S, then −b would also be an upper bound to −S and
would be smaller than −l which contradicts the definition of −l. Hence l is the greatest
lower bound to S. To show 3.⇒ 2., also consider −S and apply 3. to it similar to what was
just done in showing 2.⇒ 3.

2.,3.⇒ 1.Now suppose the condition about existence of least upper bounds and greatest
lower bounds. Let {an} be a Cauchy sequence. Then by Theorem 4.5.2 {an} ⊆ [a,b] for
some numbers a,b. By Theorem 4.8.2 there is a subsequence,

{
ank

}
which converges to

x ∈ [a,b] . By Theorem 4.5.4, the original sequence converges to x also. ■

Theorem 4.10.3 If either of the above conditions for completeness holds, then
whenever {an} is a monotone increasing sequence which is bounded above, it converges
and whenever {bn} is a monotone sequence which is bounded below, it converges.

Proof: Let a = sup{an : n≥ 1} and let ε > 0 be given. Then from Proposition 2.10.3
on Page 27 there exists m such that a− ε < am ≤ a. Since the sequence is increasing, it
follows that for all n ≥ m, a− ε < an ≤ a. Thus a = limn→∞ an. The case of a decreasing
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sequence is similar. Alternatively, you could consider the sequence {−an} and apply what
was just shown to this decreasing sequence. ■

By Theorem 4.10.2 the following definition of completeness is equivalent to the original
definition when both apply. However, note that convergence of Cauchy sequences does not
depend on an order to it applies to much more general situations. Recall from Theorem
4.8.14 that C and R are complete. Just apply that theorem to the case where p = 1.

4.10.1 Decimals
You are all familiar with decimals. In the United States these are written in the form
.a1a2a3 · · · where the ai are integers between 0 and 9.5 Thus .23417432 is a number writ-
ten as a decimal. You also recall the meaning of such notation in the case of a terminating
decimal. For example, .234 is defined as 2

10 +
3

102 +
4

103 . Now what is meant by a nonter-
minating decimal?

Definition 4.10.4 Let .a1a2 · · · be a decimal. Define

.a1a2 · · · ≡ lim
n→∞

n

∑
k=1

ak

10k .

Proposition 4.10.5 The above definition makes sense. Also every number in [0,1] can
be written as such a decimal.

Proof: Note the sequence
{

∑
n
k=1

ak
10k

}∞

n=1
is an increasing sequence. Therefore, if there

exists an upper bound, it follows from Theorem 4.10.3 that this sequence converges and so
the definition is well defined.

n

∑
k=1

ak

10k ≤
n

∑
k=1

9
10k = 9

n

∑
k=1

1
10k .

Now 9
10

(
∑

n
k=1

1
10k

)
= ∑

n
k=1

1
10k − 1

10 ∑
n
k=1

1
10k = ∑

n
k=1

1
10k −∑

n+1
k=2

1
10k = 1

10 −
1

10n+1 and so

∑
n
k=1

1
10k ≤ 10

9

(
1
10 −

1
10n+1

)
≤ 10

9

( 1
10

)
= 1

9 . Therefore, since this holds for all n, it follows
the above sequence is bounded above. It follows the limit exists.

Now suppose x ∈ [0,1). Let a1
10 ≤ x < a1+1

10 where a1 is an integer between 0 and 9.
If integers a1, · · · ,an each between 0 and 9 have been obtained such that ∑

n
k=1

ak
10k ≤ x <

∑
n−1
k=1

ak
10k +

an+1
10n (∑0

k=1 ≡ 0). Then from the above, 10n
(

x−∑
n
k=1

ak
10k

)
< 1 and so there

exists an+1 such that

an+1

10
≤ 10n

(
x−

n

∑
k=1

ak

10k

)
<

an+1 +1
10

which shows that an+1
10n+1 ≤

(
x−∑

n
k=1

ak
10k

)
<

an+1+1
10n+1 . Therefore,

x = lim
n→∞

n

∑
k=1

ak

10k

5In France and Russia they use a comma instead of a period. This looks very strange but that is just the way
they do it.
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because the distance between the partial sum up to n and x is always no more than 1/10n.
In case x = 1, just let each an = 9 and observe that the sum of the geometric series equals
1. ■

An amusing application of the above is in the following theorem. It gives an easy way
to verify that the unit interval is uncountable.

Theorem 4.10.6 The interval [0,1) is not countable.

Proof: Suppose it were. Then there would exist a list of all the numbers in this interval.
Writing these as decimals,

x1 ≡ .a11a12a13a14a15 · · ·
x2 ≡ .a21a22a23a14a25 · · ·
x3 ≡ .a31a32a33a34a35 · · ·

...

Consider the diagonal decimal, .a11a22a33a44 · · · . Now define a decimal expansion for an-
other number in [0,1) as follows. y ≡ .b1b2b3b4 · · · where |bk−akk| ≥ 4. Then |y− xk| ≥

4
10k .Thus y is not equal to any of the xk which is a contradiction since y ∈ [0,1). ■

4.10.2 lim sup and lim inf

Sometimes the limit of a sequence does not exist. For example, if an = (−1)n , then
limn→∞ an does not exist. This is because the terms of the sequence are a distance of 1
apart. Therefore there can’t exist a single number such that all the terms of the sequence
are ultimately within 1/4 of that number. The nice thing about limsup and liminf is that
they always exist. First here is a simple lemma and definition. First review the definition of
inf and sup on Page 27 along with the simple properties of these things. Also limn→∞ an =∞

means that if l ∈ R is given, then for large enough n,an > l. A similar definition holds for
limn→∞ an =−∞.

Definition 4.10.7 Denote by [−∞,∞] the real line along with symbols ∞ and −∞.
It is understood that ∞ is larger than every real number and −∞ is smaller than every real
number. Then if {An} is an increasing sequence of points of [−∞,∞] , limn→∞ An equals ∞ if
the only upper bound of the set {An} is ∞. If {An} is bounded above by a real number, then
limn→∞ An is defined in the usual way and equals the least upper bound of {An}. If {An} is
a decreasing sequence of points of [−∞,∞] , limn→∞ An equals −∞ if the only lower bound
of the sequence {An} is −∞. If {An} is bounded below by a real number, then limn→∞ An is
defined in the usual way and equals the greatest lower bound of {An}. More simply, if {An}
is increasing, limn→∞ An ≡ sup{An}and if {An} is decreasing then limn→∞ An ≡ inf{An} .

Lemma 4.10.8 Let {an} be a sequence of real numbers and let Un ≡ sup{ak : k ≥ n} .
Then {Un} is a decreasing sequence. Also if Ln ≡ inf{ak : k ≥ n} , then {Ln} is an increas-
ing sequence. Therefore, limn→∞ Ln and limn→∞ Un both exist.

Proof: From the definition, if m ≤ n, Lm ≡ inf{ak : k ≥ m} ≤ inf{ak : k ≥ n} ≡ Ln.
Thus the Ln are increasing. If you take inf of a smaller set, it will be as large as inf of the
larger set. Similarly the Un are decreasing. Thus their limits exist as in the above definition.
■

From the lemma, the following definition makes sense.
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Definition 4.10.9 Let {an} be any sequence of points of [−∞,∞]

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n}

lim inf
n→∞

an ≡ lim
n→∞

inf{ak : k ≥ n} .

Theorem 4.10.10 Suppose {an} is a sequence of real numbers and that

lim sup
n→∞

an and lim inf
n→∞

an

are both real numbers. Then limn→∞ an exists if and only if liminfn→∞ an = limsupn→∞ an
and in this case, limn→∞ an = liminfn→∞ an = limsupn→∞ an.

Proof: First note that sup{ak : k ≥ n} ≥ inf{ak : k ≥ n} and so from Theorem 4.4.13,

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n} ≥ lim
n→∞

inf{ak : k ≥ n} ≡ lim inf
n→∞

an.

⇒ Suppose limn→∞ an = a ∈ R. Then given ε > 0, there is N such that if n≥ N,

a− ε ≤ an ≤ a+ ε

It follows that if n≥N,a−ε ≤ Ln ≤Un ≤ a+ε.Passing to a limit, it follows from Theorem
4.4.13

a− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ a+ ε

and so, since ε is arbitrary, liminf and limsup are equal to the limit a.
⇐ Suppose liminfn→∞ an = limsupn→∞ an = a ∈ R. Then if n is large enough,

a− ε ≤ Ln ≤ an ≤Un ≤ a+ ε

Since ε is arbitrary, limn→∞ an = a. ■
With the above theorem, here is how to define the limit of a sequence of points in

[−∞,∞], the new case being that an is allowed to be ±∞.

Definition 4.10.11 Let {an} be a sequence in [−∞,∞]. limn→∞ an exists exactly
when liminfn→∞ an = limsupn→∞ an, and in this case

lim
n→∞

an ≡ lim inf
n→∞

an = lim sup
n→∞

an.

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.

Theorem 4.10.12 Suppose {an} is a sequence of points of [−∞,∞]. Then let λ =
limsupn→∞ an. Then if b > λ , it follows there exists N such that whenever n ≥ N,an ≤ b.
If c < λ , then an > c for infinitely many values of n. Let γ = liminfn→∞ an. Then if d < γ,
it follows there exists N such that whenever n ≥ N,an ≥ d. If e > γ, it follows an < e for
infinitely many values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.
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Proposition 4.10.13 Let limn→∞ an = a > 0 and suppose each bn > 0. Then

lim sup
n→∞

anbn = a lim sup
n→∞

bn.

Proof: This follows from the definition. Let λ n = sup{akbk : k ≥ n} . For all n large
enough, an > a− ε where ε is small enough that a− ε > 0. Therefore,

λ n ≥ sup{bk : k ≥ n}(a− ε)

for all n large enough. Then limsupn→∞ anbn = limn→∞ λ n ≡

lim sup
n→∞

anbn ≥ lim
n→∞

(sup{bk : k ≥ n}(a− ε)) = (a− ε) lim sup
n→∞

bn

Similar reasoning shows limsupn→∞ anbn ≤ (a+ ε) limsupn→∞ bn. Now since ε > 0 is ar-
bitrary, the conclusion follows. ■

4.10.3 Shrinking Diameters
It is useful to consider another version of the nested interval lemma. This involves a se-
quence of sets such that set (n+1) is contained in set n and such that their diameters
converge to 0. It turns out that if the sets are also closed, then often there exists a unique
point in all of them. This is just a more general version of the nested interval theorem which
holds in the context that the sets are not necessarily intervals.

Definition 4.10.14 Let S be a nonempty set. Then diam(S) is defined as

diam(S)≡ sup{|x− y| : x,y ∈ S} .

This is called the diameter of S.

Theorem 4.10.15 Let {Fn}∞

n=1 be a sequence of closed sets in Fp such that

lim
n→∞

diam(Fn) = 0

and Fn ⊇ Fn+1 for each n. Then there exists a unique p ∈ ∩∞
k=1Fk.

Proof: Pick pk ∈ Fk. This is always possible because by assumption each set is non-
empty. Then {pk}∞

k=m ⊆ Fm and since the diameters converge to 0 it follows {pk} is a
Cauchy sequence. Therefore, it converges to a point, p by completeness of Fp. Since each
Fk is closed, it must be that p ∈ Fk for all k. Therefore, p ∈ ∩∞

k=1Fk. If q ∈ ∩∞
k=1Fk, then

since both p,q ∈ Fk, |p−q| ≤ diam(Fk). It follows since these diameters converge to 0,
|p−q| ≤ ε for every ε. Hence p = q. ■

A sequence of sets, {Gn}which satisfies Gn ⊇Gn+1 for all n is called a nested sequence
of sets.

The next theorem is a major result called Bair’s theorem. In fact, you just need the
context of a complete metric space but we are emphasizing Fp here.

Definition 4.10.16 An open set U ⊆ Fp is dense if for every x ∈ Fp and r >
0,B(x,r)∩U ̸= /0.
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Theorem 4.10.17 Let {Un} be a sequence of dense open sets. Then ∩nUn is dense.

Proof: Let p ∈ Fp and let r0 > 0. I need to show D∩B(p,r0) ̸= /0. Since U1 is dense,
there exists p1 ∈U1∩B(p,r0), an open set. Let p1 ∈ B(p1,r1)⊆ B(p1,r1)⊆U1∩B(p,r0)
and r1 < 2−1. This is possible because U1 ∩B(p,r0) is an open set and so there exists
r1 such that B(p1,2r1) ⊆U1 ∩B(p,r0). But B(p1,r1) ⊆ B(p1,r1) ⊆ B(p1,2r1) because
B(p1,r1) = {x ∈ X : d (x, p)≤ r1}. (Why?)

pr0

p1

There exists p2 ∈U2∩B(p1,r1) because U2 is dense. Let

p2 ∈ B(p2,r2)⊆ B(p2,r2)⊆U2∩B(p1,r1)⊆U1∩U2∩B(p,r0).

and let r2 < 2−2. Continue in this way. Thus rn < 2−n,

B(pn,rn)⊆U1∩U2∩ ...∩Un∩B(p,r0), B(pn,rn)⊆ B(pn−1,rn−1).

The sequence, {pn} is a Cauchy sequence because all terms of {pk} for k ≥ n are
contained in B(pn,rn), a set whose diameter is no larger than 2−n. Since Fp is complete,
(Theorem 4.8.14) there exists p∞ such that limn→∞ pn = p∞. Since all but finitely many
terms of {pn} are in B(pm,rm), it follows that p∞ ∈ B(pm,rm) for each m. Therefore,

p∞ ∈ ∩∞
m=1B(pm,rm)⊆ ∩∞

i=1Ui∩B(p,r0). ■

The countable intersection of open sets is called a Gδ set.

4.11 The Euclidean Norm

For a≡ (a1, · · · ,ap)∈F, define |a| ≡
(

∑
p
k=1 |ak|2

)1/2
. Then it is obvious that |αa|= |α| |a|

whenever α ∈ F and it is obvious that |a| ≥ 0 and equals 0 if and only if a = 0, the zero
vector. As to the triangle inequality 4.2, by the Cauchy Schwarz inequality,

|x+ y|2 ≡
p

∑
k=1
|xk + yk|2 =

p

∑
k=1
|xk|2 +

p

∑
k=1
|yk|2 +2

p

∑
k=1

Re(xkyk)

≤
p

∑
k=1
|xk|2 +

p

∑
k=1
|yk|2 +2

p

∑
k=1
|xk| |yk|

≤
p

∑
k=1
|xk|2 + |yk|2 +2

(
p

∑
k=1
|xk|2

)1/2( p

∑
k=1
|yk|2

)1/2

= (|x|+ |y|)2

so |x+ y| ≤ |x|+ |y| . Also, it is obvious that

n∥x∥2 ≥ |x|2 ≥ ∥x∥2 so
√

n∥x∥ ≥ |x| ≥ ∥x∥

Thus, with this Euclidean norm Fp has the same Cauchy sequences, the same open and
closed sets, and all the same theorems concerning compactness. Thus, from the point of
view of analysis, there is no difference. The reason for the Euclidean norm is that it is
geometrically better.
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4.12 Exercises
1. Suppose x = .3434343434 where the bar over the last 34 signifies that this repeats

forever. In elementary school you were probably given the following procedure for
finding the number x as a quotient of integers. First multiply by 100 to get 100x =
34.34343434 and then subtract to get 99x = 34. From this you conclude that x =

34/99. Fully justify this procedure. Hint: .34343434 = limn→∞ 34∑
n
k=1
( 1

100

)k
now

use Problem 7 on Page 66.

2. Let a ∈ [0,1]. Show a = .a1a2a3... for some choice of integers in {0,1,2, · · · ,9},
a1,a2, · · · if it is possible to do this. Give an example where there may be more than
one way to do this.

3. Show every rational number between 0 and 1 has a decimal expansion which either
repeats or terminates.

4. Using Corollary 3.2.5, show that there exists a one to one and onto map θ from the
natural numbers N onto Q, the rational number. Denoting the resulting countable set
of numbers as the sequence {rn} , show that if x is any real number, there exists a
subsequence from this sequence which converges to that number.

5. A number has decimal expansion .01001000100001000001· · · . Show this is an irra-
tional number.

6. Prove
√

2 is irrational. Hint: Suppose
√

2 = p/q where p,q are positive integers and
the fraction is in lowest terms. Then 2q2 = p2 and so p2 is even. Explain why p = 2r
so p must be even. Next argue q must be even.

7. Show that between any two integers there exists an irrational number. Next show
that between any two numbers there exists an irrational number. You can use the fact
that
√

2 is irrational if you like.

8. Let a be a positive number and let x1 = b > 0 where b2 > a. Explain why there exists
such a number, b. Now having defined xn, define xn+1 ≡ 1

2

(
xn +

a
xn

)
. Verify that

{xn} is a decreasing sequence and that it satisfies x2
n ≥ a for all n and is therefore,

bounded below. Explain why limn→∞ xn exists. If x is this limit, show that x2 = a.
Explain how this shows that every positive real number has a square root. This is an
example of a recursively defined sequence. Note this does not give a formula for xn,
just a rule which tells how to define xn+1 if xn is known.

9. Let a1 = 0 and suppose that an+1 =
9

9−an
. Write a2,a3,a4. Now prove that for all n,

it follows that an ≤ 9
2 +

3
2

√
5. Find the limit of the sequence. Hint: You should prove

these things by induction. Finally, to find the limit, let n→∞ in both sides and argue
that the limit a, must satisfy a = 9

9−a .

10. If limn→∞ an = a, does it follow that limn→∞ |an|= |a|? Prove or else give a counter
example.

11. Show limn→∞
n5

1.01n = 0, limn→∞
100n

n! = 0.
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12. Suppose limn→∞ xn = x. Show that then limn→∞
1
n ∑

n
k=1 xk = x. Give an example

where limn→∞ xn does not exist but limn→∞
1
n ∑

n
k=1 xk does.

13. Suppose r ∈ (0,1) . Show that limn→∞ rn = 0. Hint: Use the binomial theorem. r =
1

1+δ
where δ > 0. Therefore, rn = 1

(1+δ )n < 1
1+nδ

, etc.

14. Prove limn→∞
n
√

n = 1. Hint: Let en ≡ n
√

n− 1 so that (1+ en)
n = n. Now observe

that en > 0 and use the binomial theorem to conclude 1+ nen +
n(n−1)

2 e2
n ≤ n. This

nice approach to establishing this limit using only elementary algebra is in Rudin
[24].

15. Find limn→∞ (xn +5)1/n for x ≥ 0. There are two cases here, x ≤ 1 and x > 1. Show
that if x > 1, the limit is x while if x≤ 1 the limit equals 1. Hint: Use the argument
of Problem 14. This interesting example is in [11].

16. Find limsupn→∞ (−1)n and liminfn→∞ (−1)n . Explain your conclusions.

17. Give a careful proof of Theorem 4.10.12.

18. Let {an} be a sequence in (−∞,∞). Let Ak ≡ sup{an : n≥ k} so that

λ ≡ lim sup
n→∞

an = lim
n→∞

An,

the An being a decreasing sequence.

(a) Show that in all cases, there exists Bn < An such that Bn is increasing and
limn→∞ Bn = λ .

(b) Explain why, in all cases there are infinitely many k such that ak ∈ [Bn,An].
Hint: If for all k≥m> n, ak ≤Bn, then ak <Bm also and so sup{ak : k ≥ m}≤
Bm < Am contrary to the definition of Am.

(c) Explain why there exists a subsequence
{

ank

}
such that limk→∞ ank = λ .

(d) Show that if γ ∈ [−∞,∞] and there is a subsequence
{

ank

}
which has the prop-

erty that limk→∞ ank = γ, then γ ≤ λ .

This shows that limsupn→∞ an is the largest in [−∞,∞] such that some subsequence
converges to it. Would it all work if you only assumed that {an} is not −∞ for
infinitely many n? What if an = −∞ for all n large enough? Isn’t this case fairly
easy? The next few problems are similar.

19. Let λ = limsupn→∞ an. Show there exists a subsequence,
{

ank

}
such that

lim
k→∞

ank = λ .

Now consider the set S of all points in [−∞,∞] such that for s∈ S, some subsequence
of {an} converges to s. Show that S has a largest point and this point is limsupn→∞ an.

20. Let {an} ⊆ R and suppose it is bounded above. Let

S≡ {x ∈ R such that x≤ an for infinitely many n}

Show that for each n, sup(S) ≤ sup{ak : k ≥ n} . Why is sup(S) ≤ limsupn→∞ ak?
Next explain why the two numbers are actually equal. Explain why such a sequence
has a convergent subsequence. For the last part, see Problem 19 above.
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21. Let λ = liminfn→∞ an. Show there exists a subsequence,
{

ank

}
and limk→∞ ank = λ .

Now consider the set, S of all points in [−∞,∞] such that for s ∈ S, some subse-
quence of {an} converges to s. Show that S has a smallest point and this point is
liminfn→∞ an. Formulate a similar conclusion to Problem 20 in terms of liminf and
a sequence which is bounded below.

22. Prove that if an ≤ bn for all n sufficiently large that

lim inf
n→∞

an ≤ lim inf
n→∞

bn, lim sup
n→∞

an ≤ lim sup
n→∞

bn.

23. Prove that limsupn→∞ (−an) =− liminfn→∞ an.

24. Prove that if a≥ 0, then limsupn→∞ aan = a limsupn→∞ an while if a < 0,

lim sup
n→∞

aan = a lim inf
n→∞

an.

25. Prove that if limn→∞ bn = b, then limsupn→∞ (bn +an) = b+ limsupn→∞ an. Conjec-
ture and prove a similar result for liminf .

26. Give conditions under which the following inequalities hold.

lim sup
n→∞

(an +bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

lim inf
n→∞

(an +bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn.

Hint: You need to consider whether the right hand sides make sense. Thus you can’t
consider −∞+∞.

27. Give an example of a nested sequence of nonempty sets whose diameters converge
to 0 which have no point in their intersection.

28. Give an example of a nested sequence of nonempty sets Sn such that Sn⫌ Sn+1 whose
intersection has more than one point. Next give an example of a nested sequence of
nonempty sets Sn, Sn ⫌ Sn+1which has 2 points in their intersection.

29. For F = R or C, suppose F = ∪∞
n=1Hn where each Hn is closed. Show that at least

one of these must have nonempty interior. That is, one of them contains an open ball.
You can use Theorem 4.10.17 if you like.



Chapter 5

Infinite Series of Numbers
5.1 Basic Considerations

Earlier in Definition 4.4.1 on Page 60 the notion of limit of a sequence was discussed.
There is a very closely related concept called an infinite series which is dealt with in this
section.

Definition 5.1.1 Define ∑
∞
k=m ak ≡ limn→∞ ∑

n
k=m ak whenever the limit exists and is

finite. In this case the series is said to converge. If the series does not converge, it is said to
diverge. The sequence {∑n

k=m ak}∞

n=m in the above is called the sequence of partial sums.
This is always the definition. Here it is understood that the ak are in F, either R or C but it
is the same definition in more general situations.

From this definition, it should be clear that infinite sums do not always make sense.
Sometimes they do and sometimes they don’t, depending on the behavior of the partial
sums. As an example, consider ∑

∞
k=1 (−1)k. The partial sums corresponding to this symbol

alternate between −1 and 0. Therefore, there is no limit for the sequence of partial sums.
It follows the symbol just written is meaningless and the infinite sum diverges.

Example 5.1.2 Find the infinite sum, ∑
∞
n=1

1
n(n+1) .

Note 1
n(n+1) =

1
n −

1
n+1 and so ∑

N
n=1

1
n(n+1) = ∑

N
n=1
( 1

n −
1

n+1

)
=− 1

N+1 +1. Therefore,

limN→∞ ∑
N
n=1

1
n(n+1) = limN→∞

(
− 1

N+1 +1
)
= 1.

Proposition 5.1.3 Let ak ≥ 0. Then {∑n
k=m ak}∞

n=m is an increasing sequence. If this
sequence is bounded above, then ∑

∞
k=m ak converges and its value equals

sup

{
n

∑
k=m

ak : n = m,m+1, · · ·

}
.

When the sequence is not bounded above, ∑
∞
k=m ak diverges.

Proof: It follows that {∑n
k=m ak}∞

n=m is an increasing sequence because

n+1

∑
k=m

ak−
n

∑
k=m

ak = an+1 ≥ 0.

If it is bounded above, then by the form of completeness found in Theorem 4.10.2 on Page
76 it follows that the sequence of partial sums converges to

sup

{
n

∑
k=m

ak : n = m,m+1, · · ·

}

If the sequence of partial sums is not bounded, then it is not a Cauchy sequence and so it
does not converge. See Theorem 4.5.3 on Page 64. ■

In the case where ak ≥ 0, the above proposition shows there are only two alternatives
available. Either the sequence of partial sums is bounded above or it is not bounded above.

85
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In the first case convergence occurs and in the second case, the infinite series diverges. For
this reason, people will sometimes write ∑

∞
k=m ak <∞ to denote the case where convergence

occurs and ∑
∞
k=m ak = ∞ for the case where divergence occurs. Be very careful you never

think this way in the case where it is not true that all ak ≥ 0. For example, the partial
sums of ∑

∞
k=1 (−1)k are bounded because they are all either −1 or 0 but the series does not

converge.
One of the most important examples of a convergent series is the geometric series.

This series is ∑
∞
n=0 rn. The study of this series depends on simple high school algebra and

Theorem 4.4.11 on Page 63. Let Sn ≡ ∑
n
k=0 rk. Then

Sn =
n

∑
k=0

rk, rSn =
n

∑
k=0

rk+1 =
n+1

∑
k=1

rk.

Therefore, subtracting the second equation from the first yields (1− r)Sn = 1−rn+1 and so
a formula for Sn is available. In fact, if r ̸= 1,Sn =

1−rn+1

1−r .By Theorem 4.4.11, limn→∞ Sn =
1

1−r in the case when |r|< 1. Now if |r| ≥ 1, the limit clearly does not exist because Sn fails
to be a Cauchy sequence (Why?). This shows the following.

Theorem 5.1.4 The geometric series, ∑
∞
n=0 rn converges and equals 1

1−r if |r| < 1
and diverges if |r| ≥ 1.

If the series do converge, the following holds.

Theorem 5.1.5 If ∑
∞
k=m ak and ∑

∞
k=m bk both converge and x,y are numbers, then

∞

∑
k=m

ak =
∞

∑
k=m+ j

ak− j (5.1)

∞

∑
k=m

xak + ybk = x
∞

∑
k=m

ak + y
∞

∑
k=m

bk (5.2)∣∣∣∣∣ ∞

∑
k=m

ak

∣∣∣∣∣≤ ∞

∑
k=m
|ak| (5.3)

where in the last inequality, the last sum equals +∞ if the partial sums are not bounded
above.

Proof: The above theorem is really only a restatement of Theorem 4.4.8 on Page 62
and the above definitions of infinite series. Thus

∞

∑
k=m

ak = lim
n→∞

n

∑
k=m

ak = lim
n→∞

n+ j

∑
k=m+ j

ak− j =
∞

∑
k=m+ j

ak− j.

To establish 5.2, use Theorem 4.4.8 on Page 62 to write

∞

∑
k=m

xak + ybk = lim
n→∞

n

∑
k=m

xak + ybk = lim
n→∞

(
x

n

∑
k=m

ak + y
n

∑
k=m

bk

)

= x
∞

∑
k=m

ak + y
∞

∑
k=m

bk.
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Formula 5.3 follows from the observation that, from the triangle inequality,∣∣∣∣∣ n

∑
k=m

ak

∣∣∣∣∣≤ n

∑
k=m
|ak| ≤

∞

∑
k=m
|ak|

and so |∑∞
k=m ak|= limn→∞ |∑n

k=m ak| ≤ ∑
∞
k=m |ak| . ■

Recall that if limn→∞ An = A, then limn→∞ |An|= |A|.

Example 5.1.6 Find ∑
∞
n=0
( 5

2n +
6
3n

)
.

From the above theorem and Theorem 5.1.4,

∞

∑
n=0

(
5
2n +

6
3n

)
= 5

∞

∑
n=0

1
2n +6

∞

∑
n=0

1
3n = 5

1
1− (1/2)

+6
1

1− (1/3)
= 19.

The following criterion is useful in checking convergence. All it is saying is that the
series converges if and only if the sequence of partial sums is Cauchy. This is what the
given criterion says. However, this is not new information.

Theorem 5.1.7 Let {ak} be a sequence of points in F. The sum ∑
∞
k=m ak converges

if and only if for all ε > 0, there exists nε such that if q≥ p≥ nε , then∣∣∣∣∣ q

∑
k=p

ak

∣∣∣∣∣< ε. (5.4)

Proof: Suppose first that the series converges. Then {∑n
k=m ak}∞

n=m is a Cauchy se-
quence by Theorem 4.5.3 on Page 64. Therefore, there exists nε > m such that if q ≥
p−1≥ nε > m, ∣∣∣∣∣ q

∑
k=m

ak−
p−1

∑
k=m

ak

∣∣∣∣∣=
∣∣∣∣∣ q

∑
k=p

ak

∣∣∣∣∣< ε. (5.5)

Next suppose 5.4 holds. Then from 5.5 it follows upon letting p be replaced with p+1
that {∑n

k=m ak}∞

n=m is a Cauchy sequence and so, by Theorem 4.8.14, it converges. By the
definition of infinite series, this shows the infinite sum converges as claimed. ■

5.2 Absolute Convergence
Definition 5.2.1 The statement that a series ∑

∞
k=m ak converges absolutely means

∑
∞
k=m |ak| converges. If the series does converge but does not converge absolutely, then it is

said to converge conditionally.

Theorem 5.2.2 If ∑
∞
k=m ak converges absolutely, then it converges.

Proof: Let ε > 0 be given. Then by assumption and Theorem 5.1.7, there exists nε

such that whenever q ≥ p ≥ nε , ∑
q
k=p |ak| < ε. Therefore, from the triangle inequality,

ε > ∑
q
k=p |ak| ≥

∣∣∣∑q
k=p ak

∣∣∣ . By Theorem 5.1.7, ∑
∞
k=m ak converges. ■

In fact, the above theorem is really another version of the completeness axiom. Thus
its validity implies completeness. You might try to show this.
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One of the interesting things about absolutely convergent series is that you can “add
them up” in any order and you will always get the same thing. This is the meaning of the
following theorem. Of course there is no problem when you are dealing with finite sums
thanks to the commutative law of addition. However, when you have infinite sums strange
and wonderful things can happen because these involve a limit.

Theorem 5.2.3 Let θ : N→ N be one to one and onto. Suppose ∑
∞
k=1 ak converges

absolutely. Then ∑
∞
k=1 aθ(k) = ∑

∞
k=1 ak.

Proof: From absolute convergence, there exists M such that

∞

∑
k=M+1

|ak| ≡

(
∞

∑
k=1
|ak|−

M

∑
k=1
|ak|
)

< ε.

Since θ is one to one and onto, there exists N ≥M such that

{1,2, · · · ,M} ⊆ {θ (1) ,θ (2) , · · · ,θ (N)} .

It follows that it is also the case that ∑
∞
k=N+1

∣∣aθ(k)
∣∣ < ε. This is because the partial sums

of the above series are each dominated by a partial sum for ∑
∞
k=M+1 |ak| since every index

θ (k) equals some n for n ≥ M + 1. Then since ε is arbitrary, this shows that the partial
sums of ∑aθ(k) are Cauchy. Hence, this series does converge and also∣∣∣∣∣ M

∑
k=1

ak−
N

∑
k=1

aθ(k)

∣∣∣∣∣≤ ∞

∑
k=M+1

|ak|< ε

Hence ∣∣∣∣∣ ∞

∑
k=1

ak−
∞

∑
k=1

aθ(k)

∣∣∣∣∣≤
∣∣∣∣∣ ∞

∑
k=1

ak−
M

∑
k=1

ak

∣∣∣∣∣+
∣∣∣∣∣ M

∑
k=1

ak−
N

∑
k=1

aθ(k)

∣∣∣∣∣
+

∣∣∣∣∣ N

∑
k=1

aθ(k)−
∞

∑
k=1

aθ(k)

∣∣∣∣∣< ∞

∑
k=M+1

|ak|+ ε +
∞

∑
k=N+1

∣∣aθ(k)
∣∣< 3ε

Since ε is arbitrary, this shows the two series are equal as claimed. ■
So what happens when series converge only conditionally?

Example 5.2.4 Consider the series ∑
∞
k=1 (−1)k 1

k . Show that there is a rearrangement
which converges to 7 although this series does converge. (In fact, it converges to − ln2
for those who remember calculus.)

First of all consider why it converges. Notice that if Sn denotes the nth partial sum, then

S2n−S2n−2 =
1

2n
− 1

2n−1
< 0

S2n+1−S2n−1 = − 1
2n+1

+
1

2n
> 0

S2n−S2n−1 =
1

2n

Thus the even partial sums are decreasing and the odd partial sums are increasing. The
even partial sums are bounded below also. (Why?) Therefore, the limit of the even partial
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sums exists. However, it must be the same as the limit of the odd partial sums because
of the last equality above. Thus limn→∞ Sn exists and so the series converges. Now I will
show later that ∑

∞
k=1

1
2k and ∑

∞
k=1

1
2k−1 both diverge. Include enough even terms for the

sum to exceed 7. Next add in enough odd terms so that the result will be less than 7. Next
add enough even terms to exceed 7 and continue doing this. Since 1/k converges to 0, this
rearrangement of the series must converge to 7. Of course you could also have picked 5 or
−8 just as well. In fact, given any number, there is a rearrangement of this series which
converges to this number.

Theorem 5.2.5 (comparison test) Suppose {an} and {bn} are sequences of non neg-
ative real numbers and suppose for all n sufficiently large, an ≤ bn. Then

1. If ∑
∞
n=k bn converges, then ∑

∞
n=m an converges.

2. If ∑
∞
n=k an diverges, then ∑

∞
n=m bn diverges.

Proof: Consider the first claim. From the assumption, there exists n∗ such that n∗ >
max(k,m) and for all n≥ n∗ bn ≥ an. Then if p≥ n∗,

p

∑
n=m

an ≤
n∗

∑
n=m

an +
k

∑
n=n∗+1

bn ≤
n∗

∑
n=m

an +
∞

∑
n=k

bn.

Thus the sequence,{∑p
n=m an}∞

p=m is bounded above and increasing. Therefore, it converges
by completeness. The second claim is left as an exercise. ■

Example 5.2.6 Determine the convergence of ∑
∞
n=1

1
n2 .

For n > 1, 1
n2 ≤ 1

n(n−1) . Now ∑
p
n=2

1
n(n−1) = ∑

p
n=2

[ 1
n−1 −

1
n

]
= 1− 1

p → 1. Therefore,

use the comparison test with an =
1
n2 and bn =

1
n(n−1)

A convenient way to implement the comparison test is to use the limit comparison test.
This is considered next.

Theorem 5.2.7 Let an,bn > 0 and suppose for all n large enough,

0 < a <
an

bn
≤ an

bn
< b < ∞.

Then ∑an and ∑bn converge or diverge together.

Proof: Let n∗ be such that n ≥ n∗, then an
bn

> a and an
bn

< b and so for all such n,abn <
an < bbn and so the conclusion follows from the comparison test. ■

The following corollary follows right away from the definition of the limit.

Corollary 5.2.8 Let an,bn > 0 and suppose limn→∞
an
bn

= λ ∈ (0,∞) . Then ∑an and
∑bn converge or diverge together.

Example 5.2.9 Determine the convergence of ∑
∞
k=1

1√
n4+2n+7

.
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This series converges by the limit comparison test above. Compare with the series of
Example 5.2.6.

lim
n→∞

(
1
n2

)
(

1√
n4+2n+7

) = lim
n→∞

√
n4 +2n+7

n2 = lim
n→∞

√
1+

2
n3 +

7
n4 = 1.

Therefore, the series converges with the series of Example 5.2.6. How did I know what to
compare with? I noticed that

√
n4 +2n+7 is essentially like

√
n4 = n2 for large enough

n. You see, the higher order term n4 dominates the other terms in n4 + 2n+ 7. Therefore,
reasoning that 1/

√
n4 +2n+7 is a lot like 1/n2 for large n, it was easy to see what to

compare with. Of course this is not always easy and there is room for acquiring skill
through practice.

To really exploit this limit comparison test, it is desirable to get lots of examples of
series, some which converge and some which do not. The tool for obtaining these examples
here will be the following wonderful theorem known as the Cauchy condensation test.

Theorem 5.2.10 Let an ≥ 0 and suppose the terms of the sequence {an} are de-
creasing. Thus an ≥ an+1 for all n. Then

∞

∑
n=1

an and
∞

∑
n=0

2na2n

converge or diverge together.

Proof: This follows from the inequality of the following claim.
Claim:

n

∑
k=1

2ka2k−1 ≥
2n

∑
k=1

ak ≥
n

∑
k=0

2k−1a2k . (5.6)

Proof of the Claim: Note the claim is true for n = 1. Suppose the claim is true for n.
Then, since 2n+1−2n = 2n, and the terms an, are decreasing,

n+1

∑
k=1

2ka2k−1 = 2n+1a2n +
n

∑
k=1

2ka2k−1 ≥ 2n+1a2n +
2n

∑
k=1

ak

≥
2n+1

∑
k=1

ak ≥ 2na2n+1 +
2n

∑
k=1

ak ≥ 2na2n+1 +
n

∑
k=0

2k−1a2k =
n+1

∑
k=0

2k−1a2k .

By induction, the claim is valid. Then passing to a limit in 5.6

2
∞

∑
k=0

2ka2k =
∞

∑
k=1

2ka2k−1 ≥
∞

∑
k=1

ak ≥
∞

∑
k=0

2k−1a2k =
1
2

∞

∑
k=0

2ka2k

Thus, if ∑
∞
k=0 2ka2k < ∞ then the partial sums of ∑

∞
k=1 ak are bounded above by ∑

∞
k=0 2ka2k

so these partial sums converge. If ∑
∞
k=0 2ka2k diverges, then

∞ = lim
n→∞

1
2

n

∑
k=0

2ka2k ≤ lim
n→∞

n

∑
k=1

ak

and so ∑ak also diverges. Thus the two series converge or diverge together. ■
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Example 5.2.11 Determine the convergence of ∑
∞
k=1

1
kp where p is a positive number.

These are called the p series.

Let an =
1

np . Then a2n =
( 1

2p

)n
. From the Cauchy condensation test the two series

∞

∑
n=1

1
np and

∞

∑
n=0

2n
(

1
2p

)n

=
∞

∑
n=0

(
2(1−p)

)n

converge or diverge together. If p > 1, the last series above is a geometric series having
common ratio less than 1 and so it converges. If p ≤ 1, it is still a geometric series but in
this case the common ratio is either 1 or greater than 1 so the series diverges. It follows
that the p series converges if p > 1 and diverges if p≤ 1. In particular, ∑

∞
n=1 n−1 diverges

while ∑
∞
n=1 n−2 converges.

∑
∞
n=1

1
np p > 1 converges

∑
∞
n=1

1
np p≤ 1 diverges

Example 5.2.12 Determine the convergence of ∑
∞
k=1

1√
n2+100n

.

Use the limit comparison test. limn→∞

( 1
n )(
1√

n2+100n

) = 1 and so this series diverges with

∑
∞
k=1

1
k .

Sometimes it is good to be able to say a series does not converge. The nth term test
gives such a condition which is sufficient for this. It is really a corollary of Theorem 5.1.7.

Theorem 5.2.13 If ∑
∞
n=m an converges, then limn→∞ an = 0.

Proof: Apply Theorem 5.1.7 to conclude that limn→∞ an = limn→∞ ∑
n
k=n ak = 0.■

It is very important to observe that this theorem goes only in one direction. That is,
you cannot conclude the series converges if limn→∞ an = 0. If this happens, you don’t
know anything from this information. Recall limn→∞ n−1 = 0 but ∑

∞
n=1 n−1 diverges. The

following picture is descriptive of the situation.

∑an converges

liman = 0

an = n−1

5.3 Exercises
1. Determine whether the following series converge and give reasons for your answers.
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(a) ∑
∞
n=1

1√
n2+n+1

(b) ∑
∞
n=1
(√

n+1−
√

n
)

(c) ∑
∞
n=1

(n!)2

(2n)!

(d) ∑
∞
n=1

(2n)!
(n!)2

(e) ∑
∞
n=1

1
2n+2

(f) ∑
∞
n=1
( n

n+1

)n

(g) ∑
∞
n=1
( n

n+1

)n2

2. Determine whether the following series converge and give reasons for your answers.

(a) ∑
∞
n=1

2n+n
n2n

(b) ∑
∞
n=1

2n+n
n22n

(c) ∑
∞
n=1

n
2n+1

(d) ∑
∞
n=1

n100

1.01n

3. Find the exact values of the following infinite series if they converge.

(a) ∑
∞
k=3

1
k(k−2)

(b) ∑
∞
k=1

1
k(k+1)

(c) ∑
∞
k=3

1
(k+1)(k−2)

(d) ∑
N
k=1

(
1√
k
− 1√

k+1

)
4. Suppose ∑

∞
k=1 ak converges and each ak ≥ 0. Does it follow that ∑

∞
k=1 a2

k also con-
verges?

5. Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

6. If ∑
∞
n=1 an and ∑

∞
n=1 bn both converge and an,bn are nonnegative, can you conclude

the sum, ∑
∞
n=1 anbn converges?

7. If ∑
∞
n=1 an converges and an ≥ 0 for all n and bn is bounded, can you conclude

∑
∞
n=1 anbn converges?

8. Determine the convergence of the series ∑
∞
n=1
(
∑

n
k=1

1
k

)−n/2
.

9. Is it possible there could exist a decreasing sequence of positive numbers, {an} such
that limn→∞ an = 0 but ∑

∞
n=1

(
1− an+1

an

)
converges? (This seems to be a fairly diffi-

cult problem.)Hint: You might do something like this. Show

lim
x→1

1− x
− ln(x)

=
1− x

ln(1/x)
= 1

Next use a limit comparison test with ∑
∞
n=1 ln

(
an

an+1

)
Go ahead and use what you

learned in calculus about ln and any other techniques for finding limits. These things
will be discussed better later on, but you have seen them in calculus so this is a little
review.

10. Suppose ∑an converges conditionally and each an is real. Show it is possible to add
the series in some order such that the result converges to 13. Then show it is possible
to add the series in another order so that the result converges to 7. Thus there is no
generalization of the commutative law for conditionally convergent infinite series.
Hint: To see how to proceed, consider Example 5.2.4.
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5.4 More Tests for Convergence
5.4.1 Convergence Because of Cancellation
So far, the tests for convergence have been applied to non negative terms only. Sometimes,
a series converges, not because the terms of the series get small fast enough, but because of
cancellation taking place between positive and negative terms. A discussion of this involves
some simple algebra.

Let {an} and {bn} be sequences and let An ≡ ∑
n
k=1 ak, A−1 ≡ A0 ≡ 0. Then if p < q

q

∑
n=p

anbn =
q

∑
n=p

bn (An−An−1) =
q

∑
n=p

bnAn−
q

∑
n=p

bnAn−1

=
q

∑
n=p

bnAn−
q−1

∑
n=p−1

bn+1An = bqAq−bpAp−1 +
q−1

∑
n=p

An (bn−bn+1) (5.7)

This formula is called the partial summation formula of Dirichlet.

Theorem 5.4.1 (Dirichlet’s test) Suppose An ≡ ∑
n
k=1 ak is bounded and also that

limn→∞ bn = 0, with bn ≥ bn+1 for all n. Then ∑
∞
n=1 anbn converges.

Proof: This follows quickly from Theorem 5.1.7. Indeed, letting |An| ≤C, and using
the partial summation formula above along with the assumption that the bn are decreasing,∣∣∣∣∣ q

∑
n=p

anbn

∣∣∣∣∣=
∣∣∣∣∣bqAq−bpAp−1 +

q−1

∑
n=p

An (bn−bn+1)

∣∣∣∣∣
≤C

(∣∣bq
∣∣+ ∣∣bp

∣∣)+C
q−1

∑
n=p

(bn−bn+1) =C
(∣∣bq

∣∣+ ∣∣bp
∣∣)+C (bp−bq)

and by assumption, this last expression is small whenever p and q are sufficiently large. ■

Definition 5.4.2 If bn > 0 for all n, a series of the form ∑k (−1)k bk or ∑k (−1)k−1 bk
is known as an alternating series.

The following corollary is known as the alternating series test.

Corollary 5.4.3 (alternating series test) If limn→∞ bn = 0, with bn ≥ bn+1, then the
series, ∑

∞
n=1 (−1)n bn converges.

Proof: Let an = (−1)n . Then the partial sums of ∑n an are bounded and so Theorem
5.4.1 applies. ■

In the situation of Corollary 5.4.3 there is a convenient error estimate available.

Theorem 5.4.4 Let bn > 0 for all n such that bn ≥ bn+1 for all n and limn→∞ bn = 0.
and consider either ∑

∞
n=1 (−1)n bn or ∑

∞
n=1 (−1)n−1 bn. Then∣∣∣∣∣ ∞

∑
n=1

(−1)n bn−
N

∑
n=1

(−1)n bn

∣∣∣∣∣ ≤ |bN+1| ,∣∣∣∣∣ ∞

∑
n=1

(−1)n−1 bn−
N

∑
n=1

(−1)n−1 bn

∣∣∣∣∣ ≤ |bN+1|
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See Problem 8 on Page 99 for an outline of the proof of this theorem along with another
way to prove the alternating series test.

Example 5.4.5 How many terms must I take in the sum, ∑
∞
n=1 (−1)n 1

n2+1 to be closer than
1

10 to ∑
∞
n=1 (−1)n 1

n2+1 ?

From Theorem 5.4.4, I need to find n such that 1
n2+1 ≤

1
10 and then n−1 is the desired

value. Thus n = 3 and so
∣∣∣∑∞

n=1 (−1)n 1
n2+1 −∑

2
n=1 (−1)n 1

n2+1

∣∣∣≤ 1
10

Definition 5.4.6 A series ∑an is said to converge absolutely if ∑ |an| converges. It
is said to converge conditionally if ∑ |an| fails to converge but ∑an converges.

Thus the alternating series or more general Dirichlet test can determine convergence of
series which converge conditionally.

5.4.2 Ratio And Root Tests
A favorite test for convergence is the ratio test. This is discussed next. It is at the other
extreme from the alternating series test, being completely oblivious to any sort of cancella-
tion. It only gives absolute convergence or spectacular divergence.

Theorem 5.4.7 Suppose |an|> 0 for all n and suppose limn→∞
|an+1|
|an| = r. Then

∞

∑
n=1

an

 diverges if r > 1
converges absolutely if r < 1
test fails if r = 1

.

Proof: Suppose r < 1. Then there exists n1 such that if n≥ n1, then

0 <

∣∣∣∣an+1

an

∣∣∣∣< R

where r < R < 1. Then |an+1|< R |an| for all such n. Therefore,∣∣an1+p
∣∣< R

∣∣an1+p−1
∣∣< R2 ∣∣an1+p−2

∣∣< · · ·< Rp |an1 | (5.8)

and so if m > n, then |am| < Rm−n1 |an1 | . By the comparison test and the theorem on geo-
metric series, ∑ |an| converges. This proves the convergence part of the theorem.

To verify the divergence part, note that if r > 1, then 5.8 can be turned around for some
R > 1. Showing limn→∞ |an| = ∞. Since the nth term fails to converge to 0, it follows the
series diverges.

To see the test fails if r = 1, consider ∑n−1 and ∑n−2. The first series diverges while
the second one converges but in both cases, r = 1. (Be sure to check this last claim.) ■

The ratio test is very useful for many different examples but it is somewhat unsatisfac-
tory mathematically. One reason for this is the assumption that an ̸= 0, necessitated by the
need to divide by an, and the other reason is the possibility that the limit might not exist.
The next test, called the root test removes both of these objections. Before presenting this
test, it is necessary to first prove the existence of the pth root of any positive number. This
was shown earlier in Theorem 2.11.2 but the following lemma gives an easier treatment of
this issue based on theorems about sequences.
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Lemma 5.4.8 Let α > 0 be any nonnegative number and let p ∈ N. Then α1/p exists.
This is the unique positive number which when raised to the pth power gives α.

Proof: Consider the function f (x)≡ xp−α . Then there exists b1 such that f (b1)> 0
and a1 such that f (a1)< 0. (Why?) Now cut the interval [a1,b1] into two closed intervals
of equal length. Let [a2,b2] be one of these which has f (a2) f (b2)≤ 0. Now do for [a2,b2]
the same thing which was done to get [a2,b2] from [a1,b1]. Continue this way obtaining a
sequence of nested intervals [ak,bk] with the property that

bk−ak = 21−k (b1−a1) .

By the nested interval theorem, there exists a unique point x in all these intervals. By
Theorem 4.4.8

f (ak)→ f (x) , f (bk)→ f (x) .

Then from Theorem 4.4.13,

f (x) f (x) = lim
k→∞

f (ak) f (bk)≤ 0

Hence f (x) = 0. ■

Theorem 5.4.9 Suppose |an|1/n < R < 1 for all n sufficiently large. Then

∞

∑
n=1

an converges absolutely.

If there are infinitely many values of n such that |an|1/n ≥ 1, then

∞

∑
n=1

an diverges.

Proof: Suppose first that |an|1/n < R < 1 for all n sufficiently large. Say this holds
for all n ≥ nR. Then for such n, n

√
|an| < R. Therefore, for such n, |an| ≤ Rn and so the

comparison test with a geometric series applies and gives absolute convergence as claimed.
Next suppose |an|1/n ≥ 1 for infinitely many values of n. Then for those values of n,

|an| ≥ 1 and so the series fails to converge by the nth term test. ■
Stated more succinctly the condition for the root test is this: Let r = limsupn→∞ |an|1/n

then
∞

∑
k=m

ak

 converges absolutely if r < 1
test fails if r = 1
diverges if r > 1

To see the test fails when r = 1, consider the same example given above, ∑n
1
n and ∑n

1
n2 .

Indeed, limn→∞ n1/n = 1. To see this, let en = n1/n− 1 so (1+ en)
n = n By the binomial

theorem, 1+nen +
n(n−1)

2 e2
n ≤ n and so e2

n ≤ 2n
n(n−1) showing that en→ 0.

A special case occurs when the limit exists.

Corollary 5.4.10 Suppose limn→∞ |an|1/n exists and equals r. Then

∞

∑
k=m

ak

 converges absolutely if r < 1
test fails if r = 1
diverges if r > 1
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Proof: The first and last alternatives follow from Theorem 5.4.9. To see the test fails
if r = 1, consider the two series ∑

∞
n=1

1
n and ∑

∞
n=1

1
n2 both of which have r = 1 but having

different convergence properties. The first diverges and the second converges. ■

5.5 Double Series
Sometimes it is required to consider double series which are of the form

∞

∑
k=m

∞

∑
j=m

a jk ≡
∞

∑
k=m

(
∞

∑
j=m

a jk

)
.

In other words, first sum on j yielding something which depends on k and then sum these.
The major consideration for these double series is the question of when

∞

∑
k=m

∞

∑
j=m

a jk =
∞

∑
j=m

∞

∑
k=m

a jk.

In other words, when does it make no difference which subscript is summed over first? In
the case of finite sums there is no issue here. You can always write

M

∑
k=m

N

∑
j=m

a jk =
N

∑
j=m

M

∑
k=m

a jk

because addition is commutative. However, there are limits involved with infinite sums and
the interchange in order of summation involves taking limits in a different order. Therefore,
it is not always true that it is permissible to interchange the two sums. A general rule of
thumb is this: If something involves changing the order in which two limits are taken, you
may not do it without agonizing over the question. In general, limits foul up algebra and
also introduce things which are counter intuitive. Here is an example. This example is a
little technical. It is placed here just to prove conclusively there is a question which needs
to be considered.

Example 5.5.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.

...
0 0 c 0 −c
0 c 0 −c 0
b 0 −c 0 0
0 a 0 0 0

· · ·

The a,b,c are the values of amn. Thus ann = 0 for all n≥ 1, a21 = a,a12 = b,am(m+1) =−c
whenever m > 1, and am(m−1) = c whenever m > 2. The numbers next to the point are the
values of amn. You see ann = 0 for all n, a21 = a,a12 = b,amn = c for (m,n) on the line
y = 1+ x whenever m > 1, and amn = −c for all (m,n) on the line y = x− 1 whenever
m > 2.

Then ∑
∞
m=1 amn = a if n = 1, ∑

∞
m=1 amn = b− c if n = 2 and if n > 2,∑∞

m=1 amn = 0.
Therefore, ∑

∞
n=1 ∑

∞
m=1 amn = a+b−c. Next observe that ∑

∞
n=1 amn = b if m= 1,∑∞

n=1 amn =
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a+ c if m = 2, and ∑
∞
n=1 amn = 0 if m > 2. Therefore, ∑

∞
m=1 ∑

∞
n=1 amn = b+ a+ c and so

the two sums are different. Moreover, you can see that by assigning different values of a,b,
and c, you can get an example for any two different numbers desired.

Don’t become upset by this. It happens because, as indicated above, limits are taken
in two different orders. An infinite sum always involves a limit and this illustrates why
you must always remember this. This example in no way violates the commutative law of
addition which has nothing to do with limits. Algebra is not analysis. Crazy things happen
when you take limits. Intuition is routinely rendered useless.

However, it turns out that if ai j ≥ 0 for all i, j, then you can always interchange the
order of summation. This is shown next and is based on the Lemma 2.10.5 which says you
can intercange supremums.

Lemma 5.5.2 If {An} is an increasing sequence in [−∞,∞], then sup{An}= limn→∞ An.

Proof: Let sup({An : n ∈ N}) = r. In the first case, suppose r < ∞. Then letting ε > 0
be given, there exists n such that An ∈ (r− ε,r]. Since {An} is increasing, it follows if
m > n, then r− ε < An ≤ Am ≤ r and so limn→∞ An = r as claimed. In the case where
r = ∞, then if a is a real number, there exists n such that An > a. Since {Ak} is increasing,
it follows that if m > n, Am > a. But this is what is meant by limn→∞ An = ∞. The other
case is that r =−∞. But in this case, An =−∞ for all n and so limn→∞ An =−∞. ■

Theorem 5.5.3 Let ai j ≥ 0. Then ∑
∞
i=1 ∑

∞
j=1 ai j = ∑

∞
j=1 ∑

∞
i=1 ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Next
note that ∑

∞
j=r ∑

∞
i=r ai j ≥ supn ∑

∞
j=r ∑

n
i=r ai j because for all j, ∑

∞
i=r ai j ≥∑

n
i=r ai j.Therefore,

using Lemma 5.5.2,

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

m

∑
j=r

n

∑
i=r

ai j

= sup
n

lim
m→∞

n

∑
i=r

m

∑
j=r

ai j = sup
n

n

∑
i=r

lim
m→∞

m

∑
j=r

ai j

= sup
n

n

∑
i=r

∞

∑
j=r

ai j = lim
n→∞

n

∑
i=r

∞

∑
j=r

ai j =
∞

∑
i=r

∞

∑
j=r

ai j

Interchanging the i and j in the above argument proves the theorem. ■
The following is the fundamental result on double sums.

Theorem 5.5.4 Let ai j ∈ F and suppose ∑
∞
i=r ∑

∞
j=r
∣∣ai j
∣∣ < ∞. Then ∑

∞
i=r ∑

∞
j=r ai j =

∑
∞
j=r ∑

∞
i=r ai j and every infinite sum encountered in the above equation converges.

Proof: By Theorem 5.5.3 ∑
∞
j=r ∑

∞
i=r
∣∣ai j
∣∣ = ∑

∞
i=r ∑

∞
j=r
∣∣ai j
∣∣ < ∞. Therefore, for each

j, ∑
∞
i=r
∣∣ai j
∣∣ < ∞ and for each i, ∑

∞
j=r
∣∣ai j
∣∣ < ∞. By Theorem 5.2.2 on Page 87, both of

the series ∑
∞
i=r ai j, ∑

∞
j=r ai j converge, the first one for every j and the second for every i.

Also, ∑
∞
j=r
∣∣∑∞

i=r ai j
∣∣≤∑

∞
j=r ∑

∞
i=r
∣∣ai j
∣∣< ∞ and ∑

∞
i=r
∣∣∑∞

j=r ai j
∣∣≤∑

∞
i=r ∑

∞
j=r
∣∣ai j
∣∣< ∞ so by

Theorem 5.2.2 again, ∑
∞
j=r ∑

∞
i=r ai j, ∑

∞
i=r ∑

∞
j=r ai j both exist. It only remains to verify they
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are equal. By similar reasoning you can replace ai j with Reai j or with Imai j in the above
and the two sums will exist.

The real part of a finite sum of complex numbers equals the sum of the real parts.
Then passing to a limit, it follows Re∑

∞
j=r ∑

∞
i=r ai j = ∑

∞
j=r ∑

∞
i=r Reai j and similarly, one

can conclude that Im∑
∞
i=r ∑

∞
j=r ai j = ∑

∞
i=r ∑

∞
j=r Imai j. Note 0 ≤

(∣∣ai j
∣∣+Reai j

)
≤ 2

∣∣ai j
∣∣ .

Therefore, by Theorem 5.5.3 and Theorem 5.1.5 on Page 86
∞

∑
j=r

∞

∑
i=r

∣∣ai j
∣∣+ ∞

∑
j=r

∞

∑
i=r

Reai j =
∞

∑
j=r

∞

∑
i=r

(∣∣ai j
∣∣+Reai j

)

=
∞

∑
i=r

∞

∑
j=r

(∣∣ai j
∣∣+Reai j

)
=

∞

∑
i=r

∞

∑
j=r

∣∣ai j
∣∣+ ∞

∑
i=r

∞

∑
j=r

Reai j

=
∞

∑
j=r

∞

∑
i=r

∣∣ai j
∣∣+ ∞

∑
i=r

∞

∑
j=r

Reai j

and so

Re
∞

∑
j=r

∞

∑
i=r

ai j =
∞

∑
j=r

∞

∑
i=r

Reai j =
∞

∑
i=r

∞

∑
j=r

Reai j = Re
∞

∑
i=r

∞

∑
j=r

ai j

Similar reasoning applies to the imaginary parts. Since the real and imaginary parts of the
two series are equal, it follows the two series are equal. ■

One of the most important applications of this theorem is to the problem of multiplica-
tion of series.

Definition 5.5.5 Let ∑
∞
i=r ai and ∑

∞
i=r bi be two series. For n≥ r, define

cn ≡
n

∑
k=r

akbn−k+r.

The series ∑
∞
n=r cn is called the Cauchy product of the two series.

It isn’t hard to see where this comes from. Formally write the following in the case
r = 0:

(a0 +a1 +a2 +a3 · · ·)(b0 +b1 +b2 +b3 · · ·)
and start multiplying in the usual way. This yields

a0b0 +(a0b1 +b0a1)+(a0b2 +a1b1 +a2b0)+ · · ·

and you see the expressions in parentheses above are just the cn for n = 0,1,2, · · · . There-
fore, it is reasonable to conjecture that ∑

∞
i=r ai ∑

∞
j=r b j = ∑

∞
n=r cn and of course there would

be no problem with this in the case of finite sums but in the case of infinite sums, it is
necessary to prove a theorem. The following is a special case of Merten’s theorem.

Theorem 5.5.6 Suppose ∑
∞
i=r ai and ∑

∞
j=r b j both converge absolutely1. Then(

∞

∑
i=r

ai

)(
∞

∑
j=r

b j

)
=

∞

∑
n=r

cn

where cn = ∑
n
k=r akbn−k+r.

1Actually, it is only necessary to assume one of the series converges and the other converges absolutely. This
is known as Merten’s theorem and may be read in the 1974 book by Apostol listed in the bibliography.
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Proof: Let pnk = 1 if r ≤ k ≤ n and pnk = 0 if k > n. Then cn = ∑
∞
k=r pnkakbn−k+r.

Also,
∞

∑
k=r

∞

∑
n=r

pnk |ak| |bn−k+r|=
∞

∑
k=r
|ak|

∞

∑
n=r

pnk |bn−k+r|

=
∞

∑
k=r
|ak|

∞

∑
n=k
|bn−k+r|=

∞

∑
k=r
|ak|

∞

∑
n=k

∣∣bn−(k−r)
∣∣= ∞

∑
k=r
|ak|

∞

∑
m=r
|bm|< ∞.

Therefore, by Theorem 5.5.4

∞

∑
n=r

cn =
∞

∑
n=r

n

∑
k=r

akbn−k+r =
∞

∑
n=r

∞

∑
k=r

pnkakbn−k+r

=
∞

∑
k=r

ak

∞

∑
n=r

pnkbn−k+r =
∞

∑
k=r

ak

∞

∑
n=k

bn−k+r =
∞

∑
k=r

ak

∞

∑
m=r

bm ■

5.6 Exercises
1. Determine whether the following series converge absolutely, conditionally, or not at

all and give reasons for your answers.

(a) ∑
∞
n=1 (−1)n 2n+n

n2n

(b) ∑
∞
n=1 (−1)n 2n+n

n22n

(c) ∑
∞
n=1 (−1)n n

2n+1

(d) ∑
∞
n=1 (−1)n 10n

n!

(e) ∑
∞
n=1 (−1)n n100

1.01n

(f) ∑
∞
n=1 (−1)n 3n

n3

(g) ∑
∞
n=1 (−1)n n3

3n

(h) ∑
∞
n=1 (−1)n n3

n!

(i) ∑
∞
n=1 (−1)n n!

n100

2. Suppose ∑
∞
n=1 an converges. Can the same thing be said about ∑

∞
n=1 a2

n? Explain.

3. A person says a series converges conditionally by the ratio test. Explain why his
statement is total nonsense.

4. A person says a series diverges by the alternating series test. Explain why his state-
ment is total nonsense.

5. Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

6. If ∑
∞
n=1 an and ∑

∞
n=1 bn both converge, can you conclude the sum, ∑

∞
n=1 anbn con-

verges?

7. If ∑
∞
n=1 an converges absolutely, and bn is bounded, does ∑

∞
n=1 anbn always converge?

What if it is only the case that ∑
∞
n=1 an converges?

8. Prove Theorem 5.4.4. Hint: For ∑
∞
n=1 (−1)n bn, show the odd partial sums are all no

larger than ∑
∞
n=1 (−1)n bn and are increasing while the even partial sums are at least

as large as ∑
∞
n=1 (−1)n bn and are decreasing. Use this to give another proof of the

alternating series test. If you have trouble, see most standard calculus books.
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9. Use Theorem 5.4.4 in the following alternating series to tell how large n must be so
that

∣∣∣∑∞
k=1 (−1)k ak−∑

n
k=1 (−1)k ak

∣∣∣ is no larger than the given number.

(a) ∑
∞
k=1 (−1)k 1

k , .001

(b) ∑
∞
k=1 (−1)k 1

k2 , .001

(c) ∑
∞
k=1 (−1)k−1 1√

k
, .001

10. Consider the series ∑
∞
k=0 (−1)n 1√

n+1
. Show this series converges and so it makes

sense to write
(

∑
∞
k=0 (−1)n 1√

n+1

)2
. What about the Cauchy product of this series?

Does it even converge? What does this mean about using algebra on infinite sums as
though they were finite sums?

11. Verify Theorem 5.5.6 on the two series ∑
∞
k=0 2−k and ∑

∞
k=0 3−k.

12. You can define infinite series of complex numbers in exactly the same way as infinite
series of real numbers. That is w = ∑

∞
k=1 zk means: For every ε > 0 there exists N

such that if n ≥ N, then |w−∑
n
k=1 zk| < ε. Here the absolute value is the one which

applies to complex numbers. That is, |a+ ib| =
√

a2 +b2. Show that if {an} is a
decreasing sequence of nonnegative numbers with the property that limn→∞ an = 0
and if ω is any complex number which is not equal to 1 but which satisfies |ω|= 1,
then ∑

∞
n=1 ωnan must converge. Note a sequence of complex numbers, {an + ibn}

converges to a+ ib if and only if an → a and bn → b. See Problem 6 on Page 66.
There are quite a few things in this problem you should think about.

13. Suppose limk→∞ sk = s. Show it follows limn→∞
1
n ∑

n
k=1 sk = s.

14. Using Problem 13 show that if ∑
∞
j=1

a j
j converges, then it follows

limn→∞
1
n ∑

n
j=1 a j = 0.

15. Show that if {pi}∞

i=1 are the prime numbers, then ∑
∞
i=1

1
pi
= ∞. That is, there are

enough primes that the sum of their reciprocals diverges. Hint: Let π (n) denote the
number of primes less than equal to n,

{
p1, ..., pπ(n)

}
. Then explain why

n

∑
k=1

1
k
≤

(
n

∑
k=1

1
pk

1

)
· · ·

(
n

∑
k=1

1
pk

π(n)

)
≤

π(n)

∏
k=1

1
1− 1

pk

≤
π(n)

∏
k=1

e2/pk = e2∑
π(n)
k=1

1
pk

and consequently why limn→∞ π (n) = ∞ and ∑
∞
i=1

1
pi
= ∞.

16. Verify the allegation about the Euclidean norm |x| ≡
(

∑
p
k=1 |xk|2

)1/2
that Fp with

the Euclidean norm yields the same Cauchy sequences, compact sets, and open and
closed sets as Fp with the norm ∥·∥.

17. Suppose S is an uncountable set and suppose f (s) is a positive number for each s∈ S.
Also let Ŝ denote a finite subset of S. Show that

sup

{
∑
s∈Ŝ

f (s) : Ŝ⊆ S

}
= ∞



Chapter 6

Continuous Functions
The concept of function is far too general to be useful in calculus. There are various ways
to restrict the concept in order to study something interesting and the types of restrictions
considered depend very much on what you find interesting. In Calculus, the most funda-
mental restriction made is to assume the functions are continuous. Continuous functions
are those in which a sufficiently small change in x results in a small change in f (x) . They
rule out things which could never happen physically. For example, it is not possible for a
car to jump from one point to another instantly. Making this restriction precise turns out to
be surprisingly difficult although many of the most important theorems about continuous
functions seem intuitively clear.

Before giving the careful mathematical definitions, here are examples of graphs of func-
tions which are not continuous at the point x0.

x

y
•

x0 1 2−2 −1

1

2

You see, there is a hole in the picture of the graph of this function and instead of
filling in the hole with the appropriate value, f (x0) is too large. This is called a removable
discontinuity because the problem can be fixed by redefining the function at the point x0.
Here is another example.

x

y

x0 1 2−2 −1

1

2

You see from this picture that there is no way to get rid of the jump in the graph of
this function by simply redefining the value of the function at x0. That is why it is called
a nonremovable discontinuity or jump discontinuity. Now that pictures have been given of
what it is desired to eliminate, it is time to give the precise definition.

The definition which follows, due to Bolzano, Cauchy1 Bolzano, and Weierstrass and

1Augustin Louis Cauchy 1789-1857 was the son of a lawyer who was married to an aristocrat. He was born
in France just after the fall of the Bastille and his family fled the reign of terror and hid in the countryside till it
was over. Cauchy was educated at first by his father who taught him Greek and Latin. Eventually Cauchy learned
many languages.

101
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Weierstrass2 is the precise way to exclude the sort of behavior described above and all
statements about continuous functions must ultimately rest on this definition from now
on or something which is equivalent to it. I am going to present this in the context of
functions which are defined on D( f ) ⊆ Fp having values in Fq where p,q are positive
integers because it is no harder. However, in most of the applications in this book, D( f )
will be in R or C.

Definition 6.0.1 A function f : D( f ) ⊆ Fp → Fq is continuous at x ∈ D( f ) if for
each ε > 0 there exists δ > 0 such that whenever y ∈ D( f ) and ∥y− x∥< δ it follows that
∥ f (x)− f (y)∥< ε. A function f is continuous if it is continuous at every point of D( f ) .

If f has values in Fp, it is of the form x→ ( f1 (x) , · · · , fp (x)) where the fi are real
valued functions.

In sloppy English this definition says roughly the following: A function f is continuous
at x when it is possible to make f (y) as close as desired to f (x) provided y is taken close
enough to x. In fact this statement in words is pretty much the way Cauchy described it.
The completely rigorous definition above is usually ascribed to Weierstrass.

If you are like me, you may find the following equivalent description of continuity
easier to remember and use. I don’t have a very good reason why this is so, but it seems to
be the case, at least for many people. I will use either definition whenever convenient.

Theorem 6.0.2 A function f is continuous if and only if whenever xn → x with
xn,x ∈ D( f ) , it follows that f (xn)→ f (x). In words, convergent sequences get taken
to convergent sequences.

Proof: ⇒ Suppose xn → x as described. I need to verify that f (xn)→ f (x) . I know
that for any ε > 0 there exists a suitable δ such that the conditions of continuity hold. I also
know that, since xn→ x, eventually, for all n large enough, ∥xn− x∥< δ . Therefore, for all
n large enough, ∥ f (x)− f (xn)∥ < ε , but this is the definition of what it means to say that
f (xn)→ f (x).

After the reign of terror, the family returned to Paris and Cauchy studied at the university to be an engineer but
became a mathematician although he made fundamental contributions to physics and engineering. Cauchy was
one of the most prolific mathematicians who ever lived. He wrote several hundred papers which fill 24 volumes.
He also did research on many topics in mechanics and physics including elasticity, optics and astronomy. More
than anyone else, Cauchy invented the subject of complex analysis. He is also credited with giving the first
rigorous use of continuity in terms of ε,δ arguments in some of his work, although he clung to the notion of
infinitesimals. He might have his name associated with more important topics in mathematics and engineering
than any other person. He was a devout Catholic, a royalist, adhering to the Bourbons, and a man of integrity and
principle, according to his understanding.

He married in 1818 and lived for 12 years with his wife and two daughters in Paris till the revolution of 1830.
Cauchy was a “Legitimist” and refused to take the oath of allegiance to the new ruler, Louis Philippe because
Louis was not sufficiently Bourbon, and ended up leaving his family and going into exile for 8 years. It wasn’t
the last time that he refused to take such an oath.

Notwithstanding his great achievements he was not a popular teacher.
2Wilhelm Theodor Weierstrass 1815-1897 brought calculus to essentially the state it is in now. When he was

a secondary school teacher, he wrote a paper which was so profound that he was granted a doctor’s degree. He
made fundamental contributions to partial differential equations, complex analysis, calculus of variations, and
many other topics. He also discovered some pathological examples such as nowhere differentiable continuous
functions. Cauchy and Bolzano were the first to use the ε δ definition presented here but this rigorous definition
is associated more with Weierstrass. Cauchy clung to the notion of infinitesimals and Bolzano’s work was not
readily available. The need for rigor in the subject of calculus was only realized over a long period of time and
this definition is part of a trend which went on during the nineteenth century to define exactly what was meant.
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⇐ Suppose the sequence condition holds. Why is f continuous at x? If it isn’t, then
there exists ε > 0 for which there is no suitable definition from the definition of continuity.
Hence 1/n is not a suitable δ for this ε . It follows that there exists xn such that ∥xn− x∥<
1/n and yet ∥ f (xn)− f (x)∥ ≥ ε. But then xn→ x and f (xn)↛ f (x) where the symbol↛
indicates that f (xn) does not converge to f (x). Hence f must be continuous at x after all.
■

This definition or its equivalent formulation rules out the sorts of graphs drawn above.
Consider the second nonremovable discontinuity. The removable discontinuity case is

similar. You could let xn→ x0 where each xn < x0 and the limit of f (xn) will fill in the hole
at the bottom of the graph although the actual value of the function at f (x0) is larger. Thus
f (xn)↛ f (x0) so f is not continuous at x0.

Notice that the concept of continuity as described in the definition is a point property.
That is to say it is a property which a function may or may not have at a single point. Here
is an example.

Example 6.0.3 Let

f (x) =
{

x if x is rational
0 if x is irrational .

This function is continuous at x = 0 and nowhere else.

If xn → 0, then | f (xn)| ≤ |xn| and |xn| → 0 so it follows that f (xn)→ 0 ≡ f (0) and
so the function is continuous at 0. However, if x ̸= 0 and rational, you could consider a
sequence of irrational numbers converging to x, {xn} and f (xn) = 0→ 0 ̸= f (x). If x
is irrational, you could pick a sequence of rational numbers {xn} converging to x and so
f (xn) = xn→ x ̸= f (x). Here is another example.

Example 6.0.4 Show the function f (x) =−5x+10 is continuous at x = −3.

To do this, note first that f (−3) = 25 and it is desired to verify the conditions for
continuity. Consider the following. |−5x+10− (25)|= 5 |x− (−3)| .

This allows one to find a suitable δ . If ε > 0 is given, let 0 < δ ≤ 1
5 ε. Then if 0 <

|x− (−3)| < δ , it follows from this inequality that |−5x+10− (25)| = 5 |x− (−3)| <
5 1

5 ε = ε.
Sometimes the determination of δ in the verification of continuity can be a little more

involved. Here is another example.

Example 6.0.5 Show the function f (x) =
√

2x+12 is continuous at x = 5.

First note f (5) =
√

22. Now consider:
∣∣∣√2x+12−

√
22
∣∣∣= ∣∣∣ 2x+12−22√

2x+12+
√

22

∣∣∣
=

2
√

2x+12+
√

22
|x−5| ≤ 1

11

√
22 |x−5|

whenever |x−5|< 1 because for such x,
√

2x+12 > 0. Now let ε > 0 be given. Choose δ

such that 0 < δ ≤min
(

1, ε
√

22
2

)
. Then if |x−5|< δ , all the inequalities above hold and

∣∣∣√2x+12−
√

22
∣∣∣≤ 2√

22
|x−5|< 2√

22
ε
√

22
2

= ε.
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Example 6.0.6 Show f (x) =−3x2 +7 is continuous at x = 7.

Suppose xn→ x. Then by the theorem on limits, Theorem 4.4.8, −3x2
n +7→−3x2 +7

and so this function is continuous at x. In particular, it is continuous at 7.

Proposition 6.0.7 For x ∈ Fp, and S⊆ Fp,S ̸= /0, let

inf{∥x− s∥ : s ∈ S} ≡ dist(x,S)

Then
|dist(x,S)−dist(y,S)| ≤ ∥x− y∥ (∗)

so dist : Fp→ R is continuous.

Proof: One of dist(x,S) ,dist(y,S) is larger. Say dist(y,S)≥ dist(x,S) . Then pick ŝ∈ S
such that dist(x,S)+ ε > ∥x− ŝ∥ . Then

|dist(x,S)−dist(y,S)| = dist(y,S)−dist(x,S)≤ ∥y− ŝ∥− (∥x− ŝ∥− ε)

≤ ∥y− x∥+∥x− ŝ∥− (∥x− ŝ∥− ε)≤ ∥y− x∥+ ε

If dist(x,S) > dist(y,S), reverse x,y in the argument. Since ε is arbitrary, this shows ∗.
Then letting δ = ε in the definition for continuity shows x→ dist(x,S) is continuous. ■

The following is a useful theorem which makes it easy to recognize many examples of
continuous functions.

Theorem 6.0.8 The following assertions are valid

1. The function a f +bg is continuous at x when f , g are continuous at x ∈D( f )∩D(g)
and a,b ∈ F.

2. If f has values in Fq and g has values in F are each continuous at x, then f g is
continuous at x. If, in addition to this, g(x) ̸= 0, then f/g is continuous at x.

3. If f is continuous at x, f (x) ∈ D(g)⊆ Fp, and g is continuous at f (x) ,then g◦ f is
continuous at x.

4. The function f : Fp→ R, given by f (x) = ∥x∥ is continuous.

Proof: All of these follow immediately from the theorem about limits of sequences,
Theorem 4.4.8, and the equivalent definition of continuity given above, Theorem 6.0.2. For
example, consider the third claim about the composition of continuous functions. Suppose
xn → x. Then by continuity of f , f (xn)→ f (x) and now, by continuity of g,g( f (xn))→
g( f (x)). The other claims are similar. ■

6.1 Continuity at Every Point of D( f )
Next is a useful property of continuous functions which has to do with preserving order.

Theorem 6.1.1 Suppose f : D( f ) → R is continuous at x ∈ D( f ) and suppose
f (xn) ≤ l (≥ l) for all n sufficiently large, where {xn} is a sequence of points of D( f )
which converges to x. Then f (x)≤ l (≥ l) .
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Proof: Since f (xn) ≤ l and f is continuous at x, it follows from Theorem 4.4.13 and
Theorem 6.0.2, f (x) = limn→∞ f (xn)≤ l. The other case is entirely similar. ■

Now here is the main result about inverse images and continuity at every point.

Theorem 6.1.2 A function f is continuous at every point of its domain D( f ) if and
only if either of the two equivalent conditions hold. For

f−1 (S)≡ {x ∈ D( f ) : f (x) ∈ S} ,

1. f−1 (V ) =U ∩D( f ) for some U open whenever V is open.

2. f−1 (H) =C∩D( f ) for some C closed whenever H is closed.

Proof: Continuous⇒ 1. Let x ∈ f−1 (V ) so f (x) ∈ B( f (x) ,εx)⊆V for some εx > 0.
Then by continuity, there is δ x > 0 such that f (B(x,δ x)∩D( f )) ⊆ B( f (x) ,εx) ⊆ V and
so, letting U ≡ ∪x∈ f−1(V )B(x,δ x) , it follows that f−1 (V ) =U ∩D( f ) .

1. ⇒ Continuous. You could pick a particular open set B( f (x) ,ε) ≡ V and then
f−1 (V ) =U ∩D( f ) for open U and so if x∈ f−1 (V ) , then there is δ x such that B(x,δ x)⊆
U and so if y ∈ B(x,δ x)∩D( f ) , then f (y) ∈ B( f (x) ,ε) which is the standard definition
of continuity at x.

1.⇒ 2. Let H be closed. Then HC is open and so f−1
(
HC
)
= U ∩D( f ) for U open.

But then f−1 (H) =UC ∩D( f ) where UC is closed. (D( f ) = f−1 (H)∪ f−1
(
HC
)
)

2.⇒ 1. Let U be open. Then UC is closed and so f−1
(
UC
)
= C∩D( f ) for a closed

set C. But then CC ∩D( f ) = f−1 (U) where CC is open. ■
This suggests the following definition.

Definition 6.1.3 Let S be a nonempty set. Then one can define relatively open and
relatively closed subsets of S as follows. A set O⊆ S is relatively open if O =U ∩S where
U is open. A set K ⊆ S is relatively closed if there is a closed set C such that K = S∩C.

In words, the above theorem says that a function is continuous at every point of its
domain if and only if inverse images of open sets are relatively open if and only if inverse
images of closed sets are relatively closed.

6.2 Exercises
1. Let f (x) = 2x+ 7. Show f is continuous at every point x. Hint: You need to let

ε > 0 be given. In this case, you should try δ ≤ ε/2. Note that if one δ works in the
definition, then so does any smaller δ .

2. Suppose D( f ) = [0,1]∪{9} and f (x) = x on [0,1] while f (9) = 5. Is f continuous
at the point, 9? Use whichever definition of continuity you like.

3. Let f (x) = x2 + 1. Show f is continuous at x = 3. Hint: Consider the follow-
ing which comes from algebra. | f (x)− f (3)| =

∣∣x2 +1− (9+1)
∣∣ = |x+3| |x−3| .

Thus if |x−3| < 1, it follows from the triangle inequality, |x| < 1+ 3 = 4 and so
| f (x)− f (3)| < 4 |x−3| . Complete the argument by letting δ ≤ min(1,ε/4) . The
symbol, min means to take the minimum of the two numbers in the parenthesis.

4. Let f (x) = 2x2 +1. Show f is continuous at x = 1.
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5. Let f (x) = x2 + 2x. Show f is continuous at x = 2. Then show it is continuous at
every point.

6. Let f (x) = |2x+3|. Show f is continuous at every point. Hint: Review the two
versions of the triangle inequality for absolute values.

7. Let f (x) = 1
x2+1 . Show f is continuous at every value of x.

8. If x∈R, show there exists a sequence of rational numbers, {xn} such that xn→ x and
a sequence of irrational numbers, {x′n} such that x′n→ x. Now consider the following
function.

f (x) =
{

1 if x is rational
0 if x is irrational .

Show using the sequential version of continuity in Theorem 6.0.2 that f is discontin-
uous at every point.

9. If x∈R, show there exists a sequence of rational numbers, {xn} such that xn→ x and
a sequence of irrational numbers, {x′n} such that x′n→ x. Now consider the following
function.

f (x) =
{

x if x is rational
0 if x is irrational .

Show using the sequential version of continuity in Theorem 6.0.2 that f is continuous
at 0 and nowhere else.

10. Suppose y is irrational and yn→ y where yn is rational. Say yn = pn/qn. Show that
limn→∞ qn = ∞. Now consider the function

f (x)≡
{

0 if x is irrational
1
q if x = p

q where the fraction is in lowest terms

Show that f is continuous at each irrational number and discontinuous at every
nonzero rational number.

11. Suppose f is a function defined on R. Define

ωδ f (x)≡ sup{| f (y)− f (z)| : y,z ∈ B(x,δ )}

Note that these are decreasing in δ . Let ω f (x) ≡ infδ>0 ωδ f (x) . Explain why f is
continuous at x if and only if ω f (x) = 0. Next show that

{x : ω f (x) = 0}= ∩∞
m=1∪∞

n=1

{
x : ω(1/n) f (x)<

1
m

}
Now show that ∪∞

n=1
{

x : ω(1/n) f (x)< 1
m

}
is an open set. Explain why the set of

points where f is continuous must always be a Gδ set. Recall that a Gδ set is the
countable intersection of open sets.

12. Show that the set of rational numbers is not a Gδ set. That is, there is no sequence
of open sets whose intersection is the rational numbers. Extend to show that no
countable dense set can be Gδ . Using Problem 11, show that there is no function
which is continuous at a countable dense set of numbers but discontinuous at every
other number.
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13. Use the sequential definition of continuity described above to give an easy proof of
Theorem 6.0.8.

14. Let f (x) =
√

x show f is continuous at every value of x in its domain. For now,
assume

√
x exists for all positive x. Hint: You might want to make use of the identity,√

x−√y = x−y√
x+
√

y at some point in your argument.

15. Using Theorem 6.0.8, show all polynomials are continuous and that a rational func-
tion is continuous at every point of its domain. Hint: First show the function given as
f (x) = x is continuous and then use the Theorem 6.0.8. What about the case where
x can be in F? Does the same conclusion hold?

16. Let f (x) =
{

1 if x ∈Q
0 if x /∈Q and consider g(x) = f (x)

(
x− x3

)
. Determine where g is

continuous and explain your answer.

17. Suppose f is any function whose domain is the integers. Thus D( f ) = Z, the set of
whole numbers, · · · ,−3,−2,−1,0,1,2,3, · · · . Then f is continuous. Why? Hint: In
the definition of continuity, what if you let δ = 1

4 ? Would this δ work for a given
ε > 0? This shows that the idea that a continuous function is one for which you can
draw the graph without taking the pencil off the paper is a lot of nonsense.

18. Give an example of a function f which is not continuous at some point but | f | is
continuous at that point.

19. Find two functions which fail to be continuous but whose product is continuous.

20. Find two functions which fail to be continuous but whose sum is continuous.

21. Find two functions which fail to be continuous but whose quotient is continuous.

22. Suppose f is a function defined on R and f is continuous at 0. Suppose also that
f (x+ y) = f (x)+ f (y) . Show that if this is so, then f must be continuous at every
value of x ∈ R. Next show that for every rational number, r, f (r) = r f (1) . Finally
explain why f (r) = r f (1) for every r a real number. Hint: To do this last part, you
need to use the density of the rational numbers and continuity of f .

23. Show that if r is an irrational number and pn
qn
→ r where pn,qn are positive integers,

then it must be that pn → ∞ and qn → ∞. Hint: If not, extract a convergent subse-
quence for pn and qn argue that to which these converge must be integers. Hence r
would end up being rational.

6.3 The Extreme Values Theorem
The extreme values theorem says continuous functions achieve their maximum and mini-
mum provided they are defined on a sequentially compact set.

Example 6.3.1 Let f (x) = 1/x for x ∈ (0,1) .

Clearly, f is not bounded. Does this violate the conclusion of the above lemma? It does
not because the end points of the interval involved are not in the interval. The same function
defined on [.000001,1) would have been bounded although in this case the boundedness of
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the function would not follow from the above lemma because it fails to include the right
endpoint.

The next theorem is known as the max min theorem or extreme value theorem.

Theorem 6.3.2 Let K ⊆ Fp be sequentially compact and let f : K→ R be continu-
ous. Then f achieves its maximum and its minimum on K. This means there exist, x1,x2 ∈K
such that for all x ∈ K, f (x1)≤ f (x)≤ f (x2) .

Proof: Let λ ≡ sup{ f (x) : x ∈ K}. Then if l < λ , there exists x ∈ K such that f (x)> l
since otherwise, λ is not as defined since l would be a smaller upper bound. Thus there
exists a sequence {xn} ∈ K such that limn→∞ f (xn) = λ . This is called a maximizing se-
quence. Since K is sequentially compact, there exists a subsequence

{
xnk

}
which converges

to x ∈ K. Therefore, λ = limk→∞ f
(
xnk

)
= f (x) so f achieves its maximum value. A simi-

lar argument using a minimizing sequence and η ≡ inf{ f (x) : x ∈ K} shows f achieves its
minimum value on K. ■

In fact a continuous function takes compact sets to compact sets. This is another of
those big theorems which tends to hold whenever it makes sense. Therefore, I will be
vague about the domain and range of the function f .

Theorem 6.3.3 Let D( f ) ⊇ K where K is a compact set. Then f (K) is also com-
pact.

Proof: Suppose C is an open cover of f (K). Then by Theorem 6.1.2, since f is con-
tinuous, it satisfies the inverse image of open sets being open condition. For U ∈ C ,

f−1 (U) = OU ∩D( f ) , where OU is open

Thus {OU : U ∈ C } is an open cover of K. Hence there exist {OU1 , · · · ,OUn} each open
whose union contains K. It follows that {U1, · · · ,Un} is an open cover of f (K). ■

You could also do the following: If { f (xn)} is a sequence in f (K) , then there is a sub-
sequence

{
xnk

}
such that limk→∞ xnk = x ∈ K by compactness of K. Hence by continuity,

f
(
xnk

)
→ f (x) ∈ f (K) so f (K) is sequentially compact. By Theorem 4.8.17, f (K) is

compact.

6.4 The Intermediate Value Theorem
The next big theorem is called the intermediate value theorem and the following picture
illustrates its conclusion. It gives the existence of a certain point. This theorem is due to
Bolzano around 1817. He identified completeness of R as the reason for its validity.

x

y

c

za b

(b, f (b))

(a, f (a))
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You see in the picture there is a horizontal line, y = c and a continuous function which
starts off less than c at the point a and ends up greater than c at point b. The intermediate
value theorem says there is some point between a and b shown in the picture as z such that
the value of the function at this point equals c. It may seem this is obvious but without
completeness the conclusion of the theorem cannot be drawn. Nevertheless, the above
picture makes this theorem very easy to believe.

Proposition 6.4.1 Suppose f : [a,b]→ R is continuous and suppose

f (a) f (b)≤ 0.

Then there exists x ∈ [a,b] such that f (x) = 0.

Proof: When we have an interval [an,bn] in this argument, cn will be the midpoint
(an +bn)/2. Let a0 = a,b0 = b. If [an,bn] has been chosen such that f (an) f (bn)≤ 0, con-
sider [an,cn] and [cn,bn]. Either f (an) f (cn)≤ 0 or f (cn) f (bn)≤ 0 since if both products
are positive, then f (an) and f (bn) are either both positive or both negative contradicting
f (an) f (bn) ≤ 0. Pick one of the intervals for which the product is non-positive. Let the
left endpoint be an+1 and the right endpoint be bn+1 so f (an+1) f (bn+1) ≤ 0. Now these
nested intervals have exactly one point in their intersection because they have diameters
converging to 0. Call it x. Then ( f (x))2 = limn→∞ f (an) f (bn) ≤ 0. This is by Theorem
6.1.1. Thus f (x) = 0. ■

It is easy to generalize this Proposition.

Theorem 6.4.2 Suppose f : [a,b]→R is continuous and suppose either f (a)< c <
f (b) or f (a)> c > f (b) . Then there exists x ∈ (a,b) such that f (x) = 0.

Proof: Apply the above proposition to g(x)≡ f (x)−c obtaining a point x∈ (a,b) with
g(x) = f (x)− c = 0. ■

Lemma 6.4.3 Let φ : [a,b]→ R be a continuous function and suppose φ is one to one,
written as 1− 1 on (a,b). Then φ is either strictly increasing or strictly decreasing on
[a,b] .

Proof: First it is shown that φ is either strictly increasing or strictly decreasing on
(a,b) .

If φ is not strictly decreasing on (a,b), then there exists x1 < y1, x1,y1 ∈ (a,b) such that

(φ (y1)−φ (x1))(y1− x1)> 0.

If for some other pair of points, x2 < y2 with x2,y2 ∈ (a,b) , the above inequality does not
hold, then since φ is 1−1,

(φ (y2)−φ (x2))(y2− x2)< 0.

Let xt ≡ tx1 +(1− t)x2 and yt ≡ ty1 +(1− t)y2. Then xt < yt for all t ∈ [0,1] because

tx1 ≤ ty1 and (1− t)x2 ≤ (1− t)y2

with strict inequality holding for at least one of these inequalities since not both t and
(1− t) can equal zero. Now define

h(t)≡ (φ (yt)−φ (xt))(yt − xt) .
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Since h is continuous and h(0) < 0, while h(1) > 0, there exists t ∈ (0,1) such that
h(t) = 0. Therefore, both xt and yt are points of (a,b) and φ (yt)−φ (xt) = 0 contradicting
the assumption that φ is one to one. It follows φ is either strictly increasing or strictly
decreasing on (a,b) .

This property of being either strictly increasing or strictly decreasing on (a,b) carries
over to [a,b] by the continuity of φ . Suppose φ is strictly increasing on (a,b) . (A similar
argument holds for φ strictly decreasing on (a,b) .) If x > a, then let zn be a decreasing
sequence of points of (a,x) converging to a. Then by continuity of φ at a,

φ (a) = lim
n→∞

φ (zn)≤ φ (z1)< φ (x) .

Therefore, φ (a)< φ (x) whenever x ∈ (a,b) . Similarly φ (b)> φ (x) for all x ∈ (a,b). ■

Corollary 6.4.4 Let f : (a,b)→ R be one to one and continuous. Then f ((a,b)) is an
open interval, (c,d) and f−1 : (c,d)→ (a,b) is continuous.

Proof: Since f is either strictly increasing or strictly decreasing, it maps open intervals
to open intervals. Letting I be an open interval,

(
f−1
)−1

(I) = f (I) which is an open

interval. Therefore, if V is open,
(

f−1
)−1

(V ) =
(

f−1
)−1

(∪x∈V Ix) = ∪x∈V
(

f−1
)−1

(Ix)
which is an open set because it is the union of open sets. Here x ∈ Ix ⊆ V and the open
interval Ix exists because V is open. By Theorem 6.1.2, f−1 is continuous. ■

6.5 Connected Sets
Some sets are connected and some are not. The term means roughly that the set is in
one “one piece”. The concept is a little tricky because it is defined in terms of not being
something else. In some of the theorems below, I will be vague about where the sets
involved in the discussion are because it is often the case that it doesn’t matter. However,
you can think of the sets as being in Fp where F is either R or C. First recall the following
definition.

Definition 6.5.1 Let S be a set. Then S̄, called the closure of S consists of S∪ S′

where S′ denotes the set of limit points of S.

Recall Corollary 4.8.12 which says that S∪ S′, denoted as S is the intersection of all
closed sets which contain S and is a closed set.

Note that it is obvious from the above definition that if S⊆ T, then S̄⊆ T̄ .

Definition 6.5.2 A set S is said to be separated if it is of the form

S = A∪B, where Ā∩B = B̄∩A = /0

A set S is connected if it is not separated.

Example 6.5.3 Consider S = [0,1)∪ (1,2]. This is separated. Therefore, it is not con-
nected.

To see this, note that [0,1) = [0,1] which has empty intersection with (1,2]. Similarly
(1,2] = [1,2] and has empty intersection with [0,1).

One of the most important theorems about connected sets is the following.
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Theorem 6.5.4 Suppose U and V are connected sets having nonempty intersection.
Then U ∪V is also connected.

Proof: Suppose U ∪V = A∪B where A∩B = B∩A = /0. Consider the sets A∩U and
B∩U. Since

(A∩U)∩ (B∩U) = (A∩U)∩
(
B∩U

)
= /0,

It follows one of these sets must be empty since otherwise, U would be separated. It follows
that U is contained in either A or B. Similarly, V must be contained in either A or B. Since
U and V have nonempty intersection, it follows that both V and U are contained in one of
the sets A,B. Therefore, the other must be empty and this shows U ∪V cannot be separated
and is therefore, connected. ■

How do connected sets relate to continuous real valued functions?

Theorem 6.5.5 Let f : X → R be continuous where X is connected. Then f (X) is
also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary that
f (X) = A∪B where A and B separate f (X) . Then consider the sets f−1 (A) and f−1 (B) .
If z ∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of A. Therefore, there exists
an open ball U of radius ε for some ε > 0 containing f (z) such that U ∩A = /0. But then,
the continuity of f and the definition of continuity imply that there exists δ > 0 such that
f (B(z,δ )) ⊆U . Therefore z is not a limit point of f−1 (A) . Since z was arbitrary, it fol-
lows that f−1 (B) contains no limit points of f−1 (A) . Similar reasoning implies f−1 (A)
contains no limit points of f−1 (B). It follows that X is separated by f−1 (A) and f−1 (B) ,
contradicting the assumption that X was connected. ■

On R the connected sets are pretty easy to describe. A set, I is an interval in R if and
only if whenever x,y ∈ I then (x,y)⊆ I. The following theorem is about the connected sets
in R.

Theorem 6.5.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point p, there is nothing to prove.
The interval is just [p, p] . Suppose p < q and p,q ∈ C. You need to show (p,q) ⊆ C. If
x ∈ (p,q)\C, let C∩ (−∞,x)≡ A, and C∩ (x,∞)≡ B. Then C = A∪B and the sets A and
B separate C contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x∈A and y∈B.
Suppose without loss of generality that x < y. Now define the set, S≡{t ∈ [x,y] : [x, t]⊆ A}
and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But if l /∈ B,
then for some δ > 0,

(l, l +δ )∩B = /0

contradicting the definition of l as an upper bound for S. Therefore, l ∈ B which implies
l /∈ A after all, a contradiction. It follows I must be connected. ■

Another useful idea is that of connected components. An arbitrary set can be written
as a union of maximal connected sets called connected components. This is the concept of
the next definition.

Definition 6.5.7 Let S be a set and let p ∈ S. Denote by Cp the union of all con-
nected subsets of S which contain p. This is called the connected component determined by
p.
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Theorem 6.5.8 Let Cp be a connected component of a set S. Then Cp is a connected
set and if Cp∩Cq ̸= /0, then Cp =Cq.

Proof: Let C denote the connected subsets of S which contain p. If Cp = A∪B where
A∩B = B∩A = /0, then p is in one of A or B. Suppose without loss of generality p ∈ A.
Then every set of C must also be contained in A since otherwise, as in Theorem 6.5.4, the
set would be separated. But this implies B is empty. Therefore, Cp is connected. From this,
and Theorem 6.5.4, the second assertion of the theorem is proved. ■

This shows the connected components of a set are equivalence classes and partition the
set.

Probably the most useful application of this is to the case where you have an open set
and consider its connected components.

Theorem 6.5.9 Let U be an open set on R. Then each connected component is
open. Thus U is an at most countable union of disjoint open intervals.

Proof: Let C be a connected component of U . Let x ∈ C. Since U is open, there
exists δ > 0 such that (x−δ ,x+δ ) ⊆U. Hence this open interval is also contained in C
because it is connected and shares a point with C which equals the union of all connected
sets containing x. Thus each component is both open and connected and is therefore, an
open interval. Each of these disjoint open intervals contains a rational number. Therefore,
there are countably many of them because there are countably many rational numbers. ■

That the rational numbers are at most countable is easy to see. You know the integers are
countable because they are the union of two countable sets. Thus Z×(Z\{0}) is countable
because of Theorem 3.2.7. Now let θ : Z× (Z\{0})→Q be defined as θ (m,n)≡ m

n . This
is onto. Hence Q is at most countable. This is sufficient to conclude there are at most
countably many of these open intervals.

To emphasize what the above theorem shows, it states that every open set in R is the
countable union of open intervals. It is really nice to be able to say this.

6.6 Exercises
1. Give an example of a continuous function defined on (0,1) which does not achieve

its maximum on (0,1) .

2. Give an example of a continuous function defined on (0,1) which is bounded but
which does not achieve either its maximum or its minimum.

3. Give an example of a discontinuous function defined on [0,1] which is bounded but
does not achieve either its maximum or its minimum.

4. Give an example of a continuous function defined on [0,1)∪ (1,2] which is positive
at 2, negative at 0 but is not equal to zero for any value of x.

5. Let f (x) = x5 + ax4 + bx3 + cx2 + dx+ e where a,b,c,d, and e are numbers. Show
there exists real x such that f (x) = 0.

6. Give an example of a function which is one to one but neither strictly increasing nor
strictly decreasing.
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7. Show that the function f (x) = xn−a, where n is a positive integer and a is a number,
is continuous.

8. Use the intermediate value theorem on the function f (x) = x7−8 to show 7
√

8 must
exist. State and prove a general theorem about nth roots of positive numbers.

9. Prove
√

2 is irrational. Hint: Suppose
√

2 = p/q where p,q are positive integers and
the fraction is in lowest terms. Then 2q2 = p2 and so p2 is even. Explain why p = 2r
so p must be even. Next argue q must be even.

10. Let f (x) = x−
√

2 for x ∈ Q, the rational numbers. Show that even though f (0) <
0 and f (2) > 0, there is no point in Q where f (x) = 0. Does this contradict the
intermediate value theorem? Explain.

11. It has been known since the time of Pythagoras that
√

2 is irrational. If you throw out
all the irrational numbers, show that the conclusion of the intermediate value theorem
could no longer be obtained. That is, show there exists a function which starts off
less than zero and ends up larger than zero and yet there is no number where the
function equals zero. Hint: Try f (x) = x2−2. You supply the details.

12. A circular hula hoop lies partly in the shade and partly in the hot sun. Show there
exist two points on the hula hoop which are at opposite sides of the hoop which
have the same temperature. Hint: Imagine this is a circle and points are located by
specifying their angle, θ from a fixed diameter. Then letting T (θ) be the temperature
in the hoop, T (θ +2π) = T (θ) . You need to have T (θ) = T (θ +π) for some θ .
Assume T is a continuous function of θ .

13. A car starts off on a long trip with a full tank of gas. The driver intends to drive the
car till it runs out of gas. Show that at some time the number of miles the car has
gone exactly equals the number of gallons of gas in the tank.

14. Suppose f is a continuous function defined on [0,1] which maps [0,1] into [0,1] .
Show there exists x ∈ [0,1] such that x = f (x) . Hint: Consider h(x)≡ x− f (x) and
the intermediate value theorem. This is a one dimensional version of the Brouwer
fixed point theorem.

15. Let f be a continuous function on [0,1] such that f (0) = f (1) . Let n be a positive
integer larger than 2. Show there must exist c ∈

[
0,1− 1

n

]
such that f

(
c+ 1

n

)
=

f (c). Hint: Consider h(x) ≡ f
(
x+ 1

n

)
− f (x). Consider the subintervals

[ k−1
n , k

n

]
for k = 1, · · · ,n−1. You want to show that h equals zero on one of these intervals. If
h changes sign between two successive intervals, then you are done. Assume then,
that this does not happen. Say h remains positive. Argue that f (0)< f

( n−1
n

)
. Thus

f
( n−1

n

)
> f (1) = f

( n−1
n + 1

n

)
. It follows that h

(
1− 1

n

)
< 0 but h

(
1− 2

n

)
> 0.

16. Use Theorem 6.5.5 and the characterization of connected sets in R to give a quick
proof of the intermediate value theorem.

17. A set is said to be totally disconnected if each component consists of a single point.
Show that the Cantor set is totally disconnected but that every point is a limit point
of the set. Hint: Show it contains no intervals other than single points.
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18. A perfect set is a non empty closed set such that every point is a limit point. Show
that no perfect set in R can be countable. Hint: You might want to use the fact that
the set of infinite sequences of 0 and 1 is uncountable. Show that there is a one to
one mapping from this set of sequences onto a subset of the perfect set.

19. Suppose f : K → R where K is a compact set and f is continuous. Show that f
achieves its maximum and minimum by using Theorem 6.3.3 and the characteri-
zation of compact sets in R given earlier which said that such a set is closed and
bounded. Hint: You need to show that a closed and bounded set in R has a largest
value and a smallest value.

6.7 Uniform Continuity
There is a theorem about the integral of a continuous function which requires the notion of
uniform continuity. Uniform continuity is discussed in this section. Consider the function
f (x) = 1

x for x ∈ (0,1) . This is a continuous function because, by Theorem 6.0.8, it is
continuous at every point of (0,1) . However, for a given ε > 0, the δ needed in the ε,δ
definition of continuity becomes very small as x gets close to 0. The notion of uniform
continuity involves being able to choose a single δ which works on the whole domain of f .
Here is the definition.

Definition 6.7.1 Let f be a function. Then f is uniformly continuous if for every
ε > 0, there exists a δ depending only on ε such that if |x− y|< δ then | f (x)− f (y)|< ε.

It is an amazing fact that under certain conditions continuity implies uniform continuity.

Theorem 6.7.2 Let f : K→ Fq be continuous where K is a sequentially compact set
in Fp. Then f is uniformly continuous on K.

Proof: If this is not true, there exists ε > 0 such that for every δ > 0 there exists a pair
of points, xδ and yδ such that even though ∥xδ − yδ∥ < δ , ∥ f (xδ )− f (yδ )∥ ≥ ε. Taking
a succession of values for δ equal to 1,1/2,1/3, · · · , and letting the exceptional pair of
points for δ = 1/n be denoted by xn and yn,

∥xn− yn∥<
1
n
,∥ f (xn)− f (yn)∥ ≥ ε.

Now since K is sequentially compact, there exists a subsequence,
{

xnk

}
such that xnk →

z ∈ K. Now nk ≥ k and so
∥∥xnk − ynk

∥∥< 1
k . Consequently, ynk → z also. xnk is like a person

walking toward a certain point and ynk is like a dog on a leash which is constantly getting
shorter. Obviously ynk must also move toward the point also. Indeed,∥∥ynk − z

∥∥≤ ∥∥ynk − xnk

∥∥+∥∥xnk − z
∥∥≤ 1

k
+
∥∥xnk − z

∥∥
and the right side converges to 0 as k→ ∞.

By continuity of f and Theorem 6.1.1,

0 = ∥ f (z)− f (z)∥= lim
k→∞

∥∥ f
(
xnk

)
− f

(
ynk

)∥∥≥ ε,

an obvious contradiction. Therefore, the theorem must be true. ■
The following corollary follows from this theorem and Theorems 4.8.14, 4.8.13 which

give closed and bounded sets are sequentially compact.
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Corollary 6.7.3 Suppose K is any closed and bounded set in Fp. Then if f is continuous
on K, it follows that f is uniformly continuous on K.

6.8 Exercises
1. A function f : Fp→ Fq is Holder continuous if there exists a constant, K such that

∥ f (x)− f (y)∥ ≤ K ∥x− y∥α

for all x,y ∈ D. Show every Holder continuous function is uniformly continuous.
When α = 1, this is called a Lipschitz function or Lipschitz continuous function.

2. Let x→ dist(x,S) be defined in Proposition 6.0.7. Show it is uniformly continuous
on Fp.

3. If ∥xn− yn∥ → 0 and xn → z, show that yn → z also. This was used in the proof of
Theorem 6.7.2.

4. Consider f : (1,∞)→ R given by f (x) = 1
x . Show f is uniformly continuous even

though the set on which f is defined is not sequentially compact.

5. If f is uniformly continuous, does it follow that | f | is also uniformly continuous? If
| f | is uniformly continuous does it follow that f is uniformly continuous? Answer the
same questions with “uniformly continuous” replaced with “continuous”. Explain
why.

6. Let f : D→ R be a function. This function is said to be lower semicontinuous3 at
x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows

f (x)≤ lim inf
n→∞

f (xn) .

Suppose D is sequentially compact and f is lower semicontinuous at every point of
D. Show that then f achieves its minimum on D.

7. Let f : D→ R be a function. This function is said to be upper semicontinuous at
x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows

f (x)≥ lim sup
n→∞

f (xn) .

Suppose D is sequentially compact and f is upper semicontinuous at every point of
D. Show that then f achieves its maximum on D.

8. Show that a real valued function is continuous if and only if it is both upper and
lower semicontinuous.

9. Give an example of a lower semicontinuous function which is not continuous and an
example of an upper semicontinuous function which is not continuous.

3The notion of lower semicontinuity is very important for functions which are defined on infinite dimensional
sets. In more general settings, one formulates the concept differently.
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10. Suppose { fα : α ∈ Λ} is a collection of continuous functions. Let

F (x)≡ inf{ fα (x) : α ∈ Λ}

Show F is an upper semicontinuous function. Next let

G(x)≡ sup{ fα (x) : α ∈ Λ}

Show G is a lower semicontinuous function.

11. Let f be a function. epi( f ) is defined as

{(x,y) : y≥ f (x)} .

It is called the epigraph of f . We say epi( f ) is closed if whenever (xn,yn) ∈ epi( f )
and xn→ x and yn→ y, it follows (x,y) ∈ epi( f ) . Show f is lower semicontinuous
if and only if epi( f ) is closed. What would be the corresponding result equivalent to
upper semicontinuous?

12. Suppose K ⊆ Fp is a compact set and f : K→ Fq is continuous and one to one. Show
that f−1 : f (K)→ K is continuous.

6.9 Sequences and Series of Functions
When you understand sequences and series of numbers it is easy to consider sequences and
series of functions.

Definition 6.9.1 A sequence of functions is a map defined on N or some set of inte-
gers larger than or equal to a given integer, m which has values which are functions. It is
written in the form { fn}∞

n=m where fn is a function. It is assumed also that the domain of
all these functions is the same.

In the above, where do the functions have values? Are they real valued functions? Are
they complex valued functions? Are they functions which have values in Rn? It turns out
it does not matter very much and the same definition holds. However, if you like, you can
think of them as having values in F. This is the main case of interest here.

Example 6.9.2 Suppose fn (x) = xn for x ∈ [0,1] . Here is a graph of the functions f (x) =
x,x2,x3,x4,x5.

x

y

Definition 6.9.3 Let { fn} be a sequence of functions. Then the sequence converges
pointwise to a function f if for all x ∈ D, the domain of the functions in the sequence,

f (x) = lim
n→∞

fn (x)

This is always the definition regardless of where the fn have their values.
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Thus you consider for each x ∈ D the sequence { fn (x)} and if this sequence converges
for each x ∈ D, the thing it converges to is called f (x).

Example 6.9.4 In Example 6.9.2 find limn→∞ fn.

For x∈ [0,1), limn→∞ xn = fn (x) = 0. At x = 1, fn (1) = 1 for all n so limn→∞ fn (1) = 1.
Therefore, this sequence of functions converges pointwise to the function f (x) given by
f (x) = 0 if 0 ≤ x < 1 and f (1) = 1. However, given small ε > 0, and n, there is always
some x such that | f (x)− fn (x)|> ε . Just pick x less than 1 but close to 1. Then f (x) = 0
but fn (x) will be close to 1.

Pointwise convergence is a very inferior thing but sometimes it is all you can get. It’s
undesirability is illustrated by Example 6.9.4. The limit function is not continuous although
each fn is continuous. Now here is another example of a sequence of functions.

Example 6.9.5 Let fn (x) = 1
n sin

(
n2x
)
.

In this example, | fn (x)| ≤ 1
n so this function is close to 0 for all x at once provided n is

large enough. There is a difference between the two examples just given. They both involve
pointwise convergence, but in the second example, the pointwise convergence happens for
all x at once. In this example, you have uniform convergence.

Definition 6.9.6 Let { fn} be a sequence of functions defined on D. Then { fn} is
said to converge uniformly to f if it converges pointwise to f and for every ε > 0 there
exists N such that for all n≥ N, supx∈D | f (x)− fn (x)|< ε

The following picture illustrates the above definition.

The dashed lines define a small tube centered about the graph of f and the graph of the
function fn fits in this tube for all n sufficiently large. In the picture, the function f is being
approximated by fn which is very wriggly.

The reason uniform convergence is desirable is that it drags continuity along with it and
imparts this property to the limit function.

Theorem 6.9.7 Let { fn} be a sequence of functions defined on D which are contin-
uous at z and suppose this sequence converges uniformly to f . Then f is also continuous at
z. If each fn is uniformly continuous on D, then f is also uniformly continuous on D.

Proof: Let ε > 0 be given and pick z∈D. By uniform convergence, there exists N such
that if n > N, then for all x ∈ D,

| f (x)− fn (x)|< ε/3. (6.1)

Pick such an n. By assumption, fn is continuous at z. Therefore, there exists δ > 0 such
that if |z− x|< δ then | fn (x)− fn (z)|< ε/3. It follows that for |x− z|< δ ,

| f (x)− f (z)| ≤ | f (x)− fn (x)|+ | fn (x)− fn (z)|+ | fn (z)− f (z)|
< ε/3+ ε/3+ ε/3 = ε
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which shows that since ε was arbitrary, f is continuous at z.
In the case where each fn is uniformly continuous, and using the same fn for which 6.1

holds, there exists a δ > 0 such that if |y− z| < δ , then | fn (z)− fn (y)| < ε/3. Then for
|y− z|< δ ,

| f (y)− f (z)| ≤ | f (y)− fn (y)|+ | fn (y)− fn (z)|+ | fn (z)− f (z)|
< ε/3+ ε/3+ ε/3 = ε

This shows uniform continuity of f . ■

Definition 6.9.8 Let { fn} be a sequence of functions defined on D. Then the se-
quence is said to be uniformly Cauchy if for every ε > 0 there exists N such that whenever
m,n≥ N, supx∈D | fm (x)− fn (x)|< ε .

Then the following theorem follows easily.

Theorem 6.9.9 Let { fn} be a uniformly Cauchy sequence of F valued functions
defined on D. Then there exists f defined on D such that { fn} converges uniformly to f .

Proof: For each x ∈ D,{ fn (x)} is a Cauchy sequence. Therefore, it converges to some
number because of completeness of F. (Recall that completeness is the same as saying
every Cauchy sequence converges.) Denote by f (x) this number. Let ε > 0 be given and
let N be such that if n,m≥N, | fm (x)− fn (x)|< ε/2 for all x ∈D. Then for any x ∈D, pick
n≥ N and it follows from Theorem 4.4.13

| f (x)− fn (x)|= lim
m→∞
| fm (x)− fn (x)| ≤ ε/2 < ε.■

Corollary 6.9.10 Let { fn} be a uniformly Cauchy sequence of functions continuous
on D. Then there exists f defined on D such that { fn} converges uniformly to f and f is
continuous. Also, if each fn is uniformly continuous, then so is f .

Proof: This follows from Theorem 6.9.9 and Theorem 6.9.7. ■
Here is one more fairly obvious theorem.

Theorem 6.9.11 Let { fn} be a sequence of functions defined on D. Then it con-
verges pointwise if and only if the sequence { fn (x)} is a Cauchy sequence for every x ∈D.
It converges uniformly if and only if { fn} is a uniformly Cauchy sequence.

Proof: If the sequence converges pointwise, then by Theorem 4.5.3 the sequence
{ fn (x)} is a Cauchy sequence for each x ∈D. Conversely, if { fn (x)} is a Cauchy sequence
for each x ∈ D, then since fn has values in F, and F is complete, it follows the sequence
{ fn (x)} converges for each x ∈ D. (Recall that completeness is the same as saying every
Cauchy sequence converges.)

Now suppose { fn} is uniformly Cauchy. Then from Theorem 6.9.9 there exists f such
that { fn} converges uniformly on D to f . Conversely, if { fn} converges uniformly to f on
D, then if ε > 0 is given, there exists N such that if n≥ N,

| f (x)− fn (x)|< ε/2

for every x ∈ D. Then if m,n≥ N and x ∈ D,

| fn (x)− fm (x)| ≤ | fn (x)− f (x)|+ | f (x)− fm (x)|< ε/2+ ε/2 = ε.
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Thus { fn} is uniformly Cauchy. ■
Note that the above theorem would hold just as well if the functions had values in any

complete space meaning that Cauchy sequences converge. As before, once you understand
sequences, it is no problem to consider series.

Definition 6.9.12 Let { fn} be a sequence of functions defined on D. Then(
∞

∑
k=1

fk

)
(x)≡ lim

n→∞

n

∑
k=1

fk (x) (6.2)

whenever the limit exists. Thus there is a new function denoted by

f (x)≡
∞

∑
k=1

fk (x) (6.3)

If for all x ∈ D, the limit in 6.2 exists, then 6.3 is said to converge pointwise. ∑
∞
k=1 fk

is said to converge uniformly on D if the sequence of partial sums, {∑n
k=1 fk} converges

uniformly. If the indices for the functions start at some other value than 1, you make the
obvious modification to the above definition as was done earlier with series of numbers.

Theorem 6.9.13 Let { fn} be a sequence of functions defined on D. The series
∑

∞
k=1 fk converges pointwise if and only if for each ε > 0 and x ∈ D, there exists Nε,x

which may depend on x as well as ε such that when q > p≥ Nε,x,∣∣∣∣∣ q

∑
k=p

fk (x)

∣∣∣∣∣< ε

The series ∑
∞
k=1 fk converges uniformly on D if for every ε > 0 there exists Nε such that if

q > p≥ Nε then

sup
x∈D

∣∣∣∣∣ q

∑
k=p

fk (x)

∣∣∣∣∣< ε (6.4)

Proof: The first part follows from Theorem 5.1.7. The second part follows from ob-
serving the condition is equivalent to the sequence of partial sums forming a uniformly
Cauchy sequence and then by Theorem 6.9.11, these partial sums converge uniformly to a
function which is the definition of ∑

∞
k=1 fk. ■

Is there an easy way to recognize when 6.4 happens? Yes, there is. It is called the
Weierstrass M test.

Theorem 6.9.14 Let { fn} be a sequence of functions defined on D. Suppose there
exists Mn such that sup{| fn (x)| : x ∈ D}< Mn and ∑

∞
n=1 Mn converges. Then ∑

∞
n=1 fn con-

verges uniformly on D.

Proof: Let z ∈ D. Then letting m < n,∣∣∣∣∣ n

∑
k=1

fk (z)−
m

∑
k=1

fk (z)

∣∣∣∣∣≤ n

∑
k=m+1

| fk (z)| ≤
∞

∑
k=m+1

Mk < ε

whenever m is large enough because of the assumption that ∑
∞
n=1 Mn converges. Therefore,

the sequence of partial sums is uniformly Cauchy on D and therefore, converges uniformly
to ∑

∞
k=1 fk on D. ■
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Theorem 6.9.15 If { fn} is a sequence of functions defined on D which are continu-
ous at z and ∑

∞
k=1 fk converges uniformly, then the function ∑

∞
k=1 fk must also be continuous

at z.

Proof: This follows from Theorem 6.9.7 applied to the sequence of partial sums of the
above series which is assumed to converge uniformly to the function ∑

∞
k=1 fk. ■

6.10 Weierstrass Approximation
It turns out that if f is a continuous real valued function defined on an interval, [a,b] then
there exists a sequence of polynomials, {pn} such that the sequence converges uniformly
to f on [a,b]. I will first show this is true for the interval [0,1] and then verify it is true on
any closed and bounded interval. First here is a little lemma which is interesting for its own
sake in probability. It is actually an estimate for the variance of a binomial distribution.

Lemma 6.10.1 The following estimate holds for x ∈ [0,1] and m≥ 2.
m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ 1

4
m

Proof: Here are some observations. ∑
m
k=0
(m

k

)
kxk (1− x)m−k =

mx
m

∑
k=1

(m−1)!
(k−1)!((m−1)− (k−1))!

xk−1 (1− x)(m−1)−(k−1)

= mx
m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k = mx

m

∑
k=0

(
m
k

)
k (k−1)xk (1− x)m−k

= m(m−1)x2
m

∑
k=2

(m−2)!
(k−2)!(m−2− (k−2))!

xk−2 (1− x)(m−2)−(k−2)

= m(m−1)x2
m−2

∑
k=0

(
m−2

k

)
xk (1− x)(m−2)−k = m(m−1)x2

Now (k−mx)2 = k2−2kmx+m2x2 = k (k−1)+ k (1−2mx)+m2x2. From the above and
the binomial theorem, ∑

m
k=0
(m

k

)
(k−mx)2 xk (1− x)m−k =

m

∑
k=0

(
m
k

)
k (k−1)xk (1− x)m−k +(1−2mx)

m

∑
k=0

(
m
k

)
kxk (1− x)m−k

+m2x2
m

∑
k=0

(
m
k

)
xk (1− x)m−k = m(m−1)x2 +(1−2mx)mx+m2x2

= mx(1− x)≤ m
1
4

■

Now let f be a continuous function defined on [0,1] . Let pn be the polynomial defined
by

pn (x)≡
n

∑
k=0

(
n
k

)
f
(

k
n

)
xk (1− x)n−k . (6.5)
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Theorem 6.10.2 The sequence of polynomials in 6.5 converges uniformly to f on
[0,1]. These polynomials are called the Bernstein polynomials.

Proof: By the binomial theorem,

f (x) = f (x)
n

∑
k=0

(
n
k

)
xk (1− x)n−k =

n

∑
k=0

(
n
k

)
f (x)xk (1− x)n−k

and so by the triangle inequality

| f (x)− pn (x)| ≤
n

∑
k=0

(
n
k

)∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣xk (1− x)n−k

At this point you break the sum into two pieces, those values of k such that k/n is close to
x and those values for k such that k/n is not so close to x. Thus

| f (x)− pn (x)| ≤ ∑
|x−(k/n)|<δ

(
n
k

)∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣xk (1− x)n−k

+ ∑
|x−(k/n)|≥δ

(
n
k

)∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣xk (1− x)n−k (6.6)

where δ is a positive number chosen in an auspicious manner about to be described. Since
f is continuous on [0,1] , it follows from Theorems 4.8.2 and 6.7.2 that f is uniformly
continuous. Therefore, letting ε > 0, there exists δ > 0 such that if |x− y| < δ , then
| f (x)− f (y)| < ε/2. This is the auspicious choice for δ . Also, by Lemma 6.3.2 | f (x)|
for x ∈ [0,1] is bounded by some number M. Thus 6.6 implies that for x ∈ [0,1] ,

| f (x)− pn (x)| ≤ ∑
|x−(k/n)|<δ

(
n
k

)
ε

2
xk (1− x)n−k

+2M ∑
|nx−k|≥nδ

(
n
k

)
xk (1− x)n−k

≤ ε

2
+2M ∑

|nx−k|≥nδ

(
n
k

)
(k−nx)2

n2δ
2 xk (1− x)n−k

≤ ε

2
+

2M

n2δ
2

n

∑
k=0

(
n
k

)
(k−nx)2 xk (1− x)n−k

Now by Lemma 6.10.1 there is an estimate for the last sum. Using this estimate yields for
all x ∈ [0,1] ,

| f (x)− pn (x)| ≤
ε

2
+

2M

n2δ
2

n
4
=

ε

2
+

M

2nδ
2 .

Therefore, whenever n is sufficiently large that M
2nδ

2 < ε

2 ,it follows that for all n this large
and x ∈ [0,1] ,

| f (x)− pn (x)|<
ε

2
+

ε

2
= ε. ■

Now this theorem has been done, it is easy to extend to continuous functions defined
on [a,b]. This yields the celebrated Weierstrass approximation theorem. Also note that this
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would hold just as well if the functions had values inC or evenCn provided you had a norm
defined on Cn. In fact, it would hold if the functions have values in any normed space, a
vector space which has a norm. These Bernstein polynomials are very remarkable.

Theorem 6.10.3 Suppose f is a continuous function defined on [a,b]. Then there
exists a sequence of polynomials, {pn} which converges uniformly to f on [a,b].

Proof: For t ∈ [0,1] , let h(t) = a+(b−a) t. Thus h maps [0,1] one to one and onto
[a,b] . Thus f ◦h is a continuous function defined on [0,1] . It follows there exists a sequence
of polynomials {pn} defined on [0,1] which converges uniformly to f ◦h on [0,1]. Thus for
every ε > 0 there exists Nε such that if n≥ Nε , then for all t ∈ [0,1] , | f ◦h(t)− pn (t)|< ε.
However, h is onto and one to one and so for all x ∈ [a,b],

∣∣ f (x)− pn
(
h−1 (x)

)∣∣ < ε.

Now note that the function x→ pn
(
h−1 (x)

)
is a polynomial because h−1 (x) = x−a

b−a . More
specifically, if pn (t) = ∑

m
k=0 aktk it follows

pn
(
h−1 (x)

)
=

m

∑
k=0

ak

(
x−a
b−a

)k

which is clearly another polynomial. ■

6.11 Ascoli Arzela Theorem
This is a major result which plays the role of the Heine Borel theorem for the set of con-
tinuous functions. I will give the version which holds on an interval, although this theorem
holds in much more general settings. First is a definition of what it means for a collec-
tion of functions to be equicontinuous. In words, this happens when they are all uniformly
continuous simultaneously.

Definition 6.11.1 Let S ⊆ C ([0,T ]) where C ([0,T ]) denotes the set of functions
which are continuous on the interval [0,T ] . Thus S is a set of functions. Then S is said to
be equicontinuous if whenever ε > 0 there exists a δ > 0 such that whenever f ∈ S and
|x− y|< δ , it follows

| f (x)− f (y)|< ε

The set of functions is said to be uniformly bounded if there is a positive number M such
that for all f ∈ S,

sup{| f (x)| : x ∈ [0,T ]} ≤M

Then the Ascoli Arzela theorem says the following in which it is assumed the functions
have values in F although this could be generalized.

Theorem 6.11.2 Let { fn}∞

n=1 ⊆ C ([0,T ]) be uniformly bounded and equicontinu-
ous. Then there exists a uniformly Cauchy subsequence.

Proof: Let ε > 0 be given and let δ correspond to ε/4 in the definition of equicontinu-
ity. Let 0= x0 < x1 < · · ·< xn = T where these points are uniformly spaced and the distance
between successive points is T/n < δ . Then the points { fn (x0)}∞

n=1 is a bounded set in F.
By the Heine Borel theorem, there is a convergent subsequence

{
fk(0) (x0)

}∞

k(0)=1. Thus
{k (0)} denotes a strictly increasing sequence of integers. Then the same theorem implies
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there is a convergent subsequence of this one, denoted as k (1) such that limk(1)→∞ fk(1) (x0)

and limk(1)→∞ fk(1) (x1) both exist. Then take a subsequence of
{

fk(1)
}

called k (2) such
that for xi = x0,x1,x2, limk(2)→∞ fk(2) (xi) exists. This can be done because if a sequence
converges then every subsequence converges also. Continue this way. Denote by {k} the
last of these subsequences. Thus for each xi of these equally spaced points of the interval,
limk→∞ fk (xi) converges. Thus there exists m such that if k, l ≥ m, then for each of these
xi, i = 1, ...,n,

| fk (xi)− fl (xi)|<
ε

4
Let x ∈ [0,T ] be arbitrary. Then there is xi such that xi ≤ x < xi+1. Hence, for k, l ≥ m,

| fk (x)− fl (x)| ≤ | fk (x)− fk (xi)|+ | fk (xi)− fl (xi)|+ | fl (xi)− fl (x)|

By the assumption of equicontinuity, this implies

| fk (x)− fl (x)| ≤ | fk (x)− fk (xi)|+ | fk (xi)− fl (xi)|+ | fl (xi)− fl (x)|

<
ε

4
+

ε

4
+

ε

4
< ε

This has shown that for every ε > 0 there exists a subsequence { fk} with the property that
supx∈[0,T ] | fk (x)− fl (x)|< ε provided k, l are large enough. The argument also applies with
no change to a given subsequence in place of the original sequence of functions. That is,
for any subsequence of the original one, there is a further subsequence which satisfies the
above condition. In what follows { fik}∞

k=1 will denote a subsequence of
{

f(i−1)k
}∞

k=1 . Let
ε i = 1/2i so that limi→∞ ε i = 0. Then let { fik}∞

k=1 denote a subsequence which corresponds
to ε i in the above construction. Consider the following diagram.

f11, f12, f13, f14, · · ·
f21, f22, f23, f24, · · ·
f31, f32, f33, f34, · · ·

...

The Cantor diagonal sequence is fk = fkk in the above. That is, it is the sequence

f11, f22, f33, f44, · · ·

Then from the construction, f j, f j+1, f j+2, · · · is a subsequence of
{

f jk
}∞

k=1 . Therefore,
there exists m such that k, l > m,

sup
x∈[0,T ]

| fk (x)− fl (x)|< ε j

However, these ε j converge to 0 and this shows that the diagonal sequence
{

f j
}∞

j=1 just
described is a uniformly Cauchy sequence. ■

The process of obtaining this subsequence is called the Cantor diagonal process and
occurs in other situations.

From this follows an easy corollary.

Corollary 6.11.3 Let { fn}∞

n=1 ⊆C ([0,T ]) be uniformly bounded and equicontinuous.
Then there exists a subsequence which converges uniformly to a continuous function f
defined on [0,T ].
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Proof: From Theorem 6.9.11 the uniformly Cauchy subsequence from the Ascoli
Arzela theorem above converges uniformly to a function f . Now by Theorem 6.9.7, this
function f is also continuous because, by this theorem, uniform convergence takes conti-
nuity with it and imparts it to the limit function. ■

This theorem and corollary are major results in the theory of differential equations.
There are also infinite dimensional generalizations which have had great usefulness in the
theory of nonlinear partial differential equations.

6.12 Space Filling Continuous Curves
When you have a function θ : [a,b]→ Rp, which is continuous, then the set of points
obtained θ ([a,b]) is called a continuous curve. One of the horrifying examples which came
out in the late nineteenth and early twentieth centuries was a space filling curve. Peano was
the first to find one of these but there are many related results, all counter intuitive. Here is
a simple example of how these things can occur.

Consider the following picture of a square Q having sides equal to 1 subdivided into
four equal squares and an interval divided into four equal sub-intervals as shown.

I1
1 I1

2 I1
3 I1

4

Q1
1 Q1

2

Q1
3Q1

4

Let θ 1
(
I1
i
)
= Q1

i as shown. Now the important thing about this is that if two of the
intervals I1

k , I
1
l are adjacent, then so are are the squares Q1

k and Q1
l . Subdivide I1

i into
four equal intervals and Q1

i into four equal squares in exactly the same way. Denote the
resulting intervals by I2

i and Q2
i so there are now 16 of these intervals and squares, still with

the property that if I2
k , and I2

l are adjacent, then so are Q2
k and Q2

l . Continue this way such
that each In+1

l is contained in some In
k and then θ n

(
In
k

)
⊇ θ n+1

(
In+1
l

)
and adjacent adjacent

intervals are mapped to adjacent squares. The diameter of the union of two adjacent squares
in the nth stage of the construction is 2(2−n).

Now if x ∈ I, the original interval, x = ∩∞
n=1In

kn
for a sequence of nested intervals In+1

kn
.

Define θ (x) ≡ ∩∞
n=1θ n

(
In
kn

)
. This is well defined because if you have two sequences

of intervals having x equal to their intersection, then since the adjacent intervals go to
adjacent squares, the diameter of θ n

(
In
l

)
∪θ n

(
In
k

)
for x in both In

k and In
l is no more than

2(2−n) showing that the definitions of θ (x) do not differ by more than this for each n.
This is also why θ is continuous. If xr → x, and n ∈ N, eventually, for r large enough,
|xr− x|< 5−n. It follows that both x,xr are in a single In

k or else there are adjacent intervals
In
k , I

n
l such that x is in one and xr is in the other. Hence θ (x) is in some θ n

(
In
k

)
and θ (xr)

is in either θ n
(
In
l

)
an adjacent square or in θ n

(
In
k

)
. Either way, the construction implies

that ∥θ (x)−θ (xr)∥ < 2(2−n). Thus θ is continuous. It is clear that θ is onto because

if y ∈ Q, then there is a nested sequence of squares
{

Qn
kn

}∞

n=1
with y = ∩nQn

kn
and then

θ

(
∩nIn

kn

)
≡ θ (x) = y. However, θ is not one to one.

The last assertion about θ not being one to one relates to the fact that if θ were one
to one, then its inverse would also be continuous and the interval and the square would
be what is called homeomorphic. However, if you remove a point from the middle of the
interval, the result is not connected but if you remove a point from the square, the result is
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connected. This could not happen because, as discussed earlier, the continuous image of a
connected set is connected.

Proposition 6.12.1 Let Q be a square. Then there exists a continuous mapping θ which
maps the unit interval [0,1] onto Q.

Note that Q could have been an n dimensional cube. You would just need to subdivide
intervals into more equal pieces. This shows that there are space filling continuous curves
where θ ([0,1]) = Q where Q is some sort of square or box, etc. Not surprisingly, there are
generalizations. One generalization is to something called chainable continua.

6.13 Tietze Extension Theorem
This is about taking a real valued continuous function defined on a closed set in Fp and
extending it to a continuous function which is defined on all of Fp. First, review Lemma
6.0.7.

Lemma 6.13.1 Let H,K be two nonempty disjoint closed subsets of Fp. Then there
exists a continuous function, g : Fp→ [−1/3,1/3] such that

g(H) =−1/3, g(K) = 1/3,g(Fp)⊆ [−1/3,1/3] .

Proof: Let f (x)≡ dist(x,H)
dist(x,H)+dist(x,K) . The denominator is never equal to zero because if

dist(x,H) = 0, then x ∈H because H is closed. (To see this, pick hk ∈ B(x,1/k)∩H. Then
hk → x and since H is closed, x ∈ H.) Similarly, if dist(x,K) = 0, then x ∈ K and so the
denominator is never zero as claimed. Hence f is continuous and from its definition, f = 0
on H and f = 1 on K. Now let g(x)≡ 2

3

(
f (x)− 1

2

)
. Then g has the desired properties. ■

Definition 6.13.2 For f : M ⊆ Fp→ R, define ∥ f∥M as sup{| f (x)| : x ∈M} .

Lemma 6.13.3 Suppose M is a closed set in Fp and suppose f : M→ [−1,1] is contin-
uous at every point of M. Then there exists a function, g which is defined and continuous
on all of Fp such that ∥ f −g∥M < 2

3 , g(Fp)⊆ [−1/3,1/3] .

Proof: Let H = f−1 ([−1,−1/3]) ,K = f−1 ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H,K are both nonempty. Then by Lemma 6.13.1 there exists g
such that g is a continuous function defined on all of Fp and g(H) = −1/3, g(K) = 1/3,
and g(Fp)⊆ [−1/3,1/3] . It follows ∥ f −g∥M < 2/3. If H = /0, then f has all its values in
[−1/3,1] and so letting g≡ 1/3, the desired condition is obtained. If K = /0, let g≡−1/3.
■

Lemma 6.13.4 Suppose M is a closed set in Fp and suppose f : M→ [−1,1] is contin-
uous at every point of M. Then there exists a function g which is defined and continuous on
all of Fp such that g = f on M and g has its values in [−1,1] .

Proof: Using Lemma 6.13.3, let g1 (Fp) ⊆ [−1/3,1/3] and ∥ f −g1∥M ≤ 2
3 . Suppose

g1, · · · ,gm have been chosen such that g j (Fp)⊆ [−1/3,1/3] and∥∥∥∥∥ f −
m

∑
i=1

(
2
3

)i−1

gi

∥∥∥∥∥
M

<

(
2
3

)m

. (6.7)
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This has been done for m = 1. Then∥∥∥∥∥
(

3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)∥∥∥∥∥
M

≤ 1

and so
( 3

2

)m
(

f −∑
m
i=1
( 2

3

)i−1
gi

)
can play the role of f in the first step of the proof.

Therefore, there exists gm+1 defined and continuous on all of Fp such that its values are
in [−1/3,1/3] and ∥∥∥∥∥

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−gm+1

∥∥∥∥∥
M

≤ 2
3
.

Hence ∥∥∥∥∥
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−
(

2
3

)m

gm+1

∥∥∥∥∥
M

≤
(

2
3

)m+1

.

It follows there exists a sequence, {gi} such that each has its values in [−1/3,1/3] and for
every m 6.7 holds. Then let g(x)≡ ∑

∞
i=1
( 2

3

)i−1
gi (x) . It follows

|g(x)| ≤

∣∣∣∣∣ ∞

∑
i=1

(
2
3

)i−1

gi (x)

∣∣∣∣∣≤ m

∑
i=1

(
2
3

)i−1 1
3
≤ 1

and
∣∣∣( 2

3

)i−1
gi (x)

∣∣∣ ≤ ( 2
3

)i−1 1
3 so the Weierstrass M test applies and shows convergence

is uniform. Therefore g must be continuous by Theorem 6.9.7. The estimate 6.7 implies
f = g on M. ■

The following is the Tietze extension theorem.

Theorem 6.13.5 Let M be a closed nonempty subset of Fp and let f : M→ [a,b]
be continuous at every point of M. Then there exists a function, g continuous on all of Fp

which coincides with f on M such that g(Fp)⊆ [a,b] .

Proof: Let f1 (x) = 1 + 2
b−a ( f (x)−b) . Then f1 satisfies the conditions of Lemma

6.13.4 and so there exists g1 : Fp→ [−1,1] such that g is continuous on Fp and equals f1
on M. Let g(x) = (g1 (x)−1)

( b−a
2

)
+b. This works. ■

6.14 Exercises
1. Suppose { fn} is a sequence of decreasing positive functions defined on [0,∞) which

converges pointwise to 0 for every x ∈ [0,∞). Can it be concluded that this sequence
converges uniformly to 0 on [0,∞)? Now replace [0,∞) with (0,∞) . What can be said
in this case assuming pointwise convergence still holds?

2. If { fn} and {gn} are sequences of functions defined on D which converge uniformly,
show that if a,b are constants, then a fn+bgn also converges uniformly. If there exists
a constant, M such that | fn (x)| , |gn (x)|< M for all n and for all x ∈ D, show { fngn}
converges uniformly. Let fn (x)≡ 1/x for x∈ (0,1) and let gn (x)≡ (n−1)/n. Show
{ fn} converges uniformly on (0,1) and {gn} converges uniformly but { fngn} fails to
converge uniformly.



6.14. EXERCISES 127

3. Show that if x > 0,∑∞
k=0

xk

k! converges uniformly on any interval of finite length.

4. Let x≥ 0 and consider the sequence
{(

1+ x
n

)n}
. Show this is an increasing sequence

and is bounded above by ∑
∞
k=0

xk

k! .

5. Show for every x,y real, ∑
∞
k=0

(x+y)k

k! converges and is
(

∑
∞
k=0

yk

k!

)(
∑

∞
k=0

xk

k!

)
.

6. Consider the series ∑
∞
n=0 (−1)n x2n+1

(2n+1)! . Show this series converges uniformly on any
interval of the form [−M,M] .

7. Formulate a theorem for a series of functions which will allow you to conclude the
infinite series is uniformly continuous based on reasonable assumptions about the
functions in the sum.

8. Find an example of a sequence of continuous functions such that each function is
nonnegative and each function has a maximum value equal to 1 but the sequence of
functions converges to 0 pointwise on (0,∞) .

9. Suppose { fn} is a sequence of real valued functions which converges uniformly to a
continuous function f . Can it be concluded the functions fn are continuous? Explain.

10. Let h(x) be a bounded continuous function. Show the function f (x) = ∑
∞
n=1

h(nx)
n2 is

continuous.

11. Let S be a any countable subset of R. Show there exists a function f defined on R
which is discontinuous at every point of S but continuous everywhere else. Hint:
This is real easy if you do the right thing. It involves Theorem 6.9.15 and the Weier-
strass M test.

12. By Theorem 6.10.3 there exists a sequence of polynomials converging uniformly to
f (x) = |x| on the interval [−1,1] . Show there exists a sequence of polynomials, {pn}
converging uniformly to f on [−1,1] which has the additional property that for all
n, pn (0) = 0.

13. If f is any continuous function defined on [a,b] , show there exists a series of the form
∑

∞
k=1 pk, where each pk is a polynomial, which converges uniformly to f on [a,b].

Hint: You should use the Weierstrass approximation theorem to obtain a sequence
of polynomials. Then arrange it so the limit of this sequence is an infinite sum.

14. Sometimes a series may converge uniformly without the Weierstrass M test being
applicable. Show ∑

∞
n=1 (−1)n x2+n

n2 converges uniformly on [0,1] but does not con-
verge absolutely for any x ∈R. To do this, it might help to use the partial summation
formula, 5.7.

15. Suppose you have a collection of functions S⊆C ([0,T ]) which satisfy

max
x∈[0,T ]

| f (x)|< M, sup
0≤x<y≤T

| f (x)− f (y)|
|x− y|γ

< K

where γ ≤ 1. Show there is a uniformly convergent subsequence of S which con-
verges uniformly to some continuous function. The second condition on f is called
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a Holder condition and such functions are said to be Holder continuous. These func-
tions are denoted as C0,γ ([0,T ]) and this little problem shows that the embedding of
C0,γ ([0,T ]) into C ([0,T ]) is compact.

16. Suppose f ∈C ([a,b]) and
∫ b

a f (x)xndx = 0 for every n≥ 0, such that n is an integer.
Show that then f (x) = 0 for all x. I am assuming you know about the integral from
beginning calculus. This will be developed later in more generality. Hint: Use
Weierstrass approximation theorem.

17. Suppose f :R→ R is continuous and T periodic. Thus f (x+ kT ) = f (x) for k ∈ Z.
Show that there exists a sequence of polynomials {pn} converging uniformly to f on
[−T/2,T/2] such that pn (T/2) = pn (−T/2). Hint: Say { p̂n} converges uniformly
to f on [−T/2,T/2]. Consider

pn (x)≡ f (T/2)+ p̂n (x)−
[(

p̂n (T/2)− p̂n (−T/2)
T

)
(x+T/2)+ p̂n (−T/2)

]
If p̃n denotes the T periodic extension of pn, explain why p̃n converges uniformly to
f on R.

18. Is it possible to get a continuous onto function f : [0,1]→ P where P is the Cantor
set?

19. Show there exists a continuous function θ : P→ [0,1] such that θ is onto where P
is the Cantor set. Show there exists a continuous function which maps the Cantor
set onto [0,1]× [0,1]. You might recall that the Cantor set does not even contain any
intervals so this is very surprising.

20. For P the Cantor set, show there is a continuous, onto function f : P→ [0,1]× [0,1] .
This may be a little easier than what is in the chapter. Can you extend f to all of
[0,1] with f (x) ∈ [0,1]× [0,1]? Hint: You might use Tietze extension theorem on
the components of f .

21. Let K be a nonempty compact subset in Fp. For P the Cantor set, there is a continuous
function f : P→ K which is onto. Try and show this. Will it be possible to extend
f to all of [0,1] if K is not connected? Hint: Try and show that for every n, there
are finitely many closed balls having radius 1/n whose union contains K. Then for
B one of these closed balls, you could consider K∩B as another compact set.

22. If f : K→Rq is continuous and one to one and K is compact, show that f−1 : f (K)→
K must be continuous.



Chapter 7

The Derivative
Some functions have them and some don’t. Some have them at some points and not at
others. This chapter is on the derivative. Functions which have derivatives are somehow
better than those which don’t. To begin with it is necessary to discuss the concept of a limit
of a function. This is a harder concept than continuity and it is also harder than the concept
of the limit of a sequence or series although that is similar. One cannot make any rational
sense of the concept of derivative without an understanding of limits of a function. This is
the main reason for considering the notion of limit.

7.1 Limit of a Function
For now, I will continue considering functions defined on a subset D( f ) of Fp having values
in Fq.

Definition 7.1.1 Let x be a limit point of D( f ) . Then limy→x f (y) = L means that
for every ε > 0 there is δ > 0 such that whenever 0 < ∥y− x∥ < δ , with y ∈ D( f ) , then
∥ f (y)−L∥< ε .

Definition 7.1.2 Let x be a limit point of D( f ) and let f have values in R. Then
limy→x f (y)=∞ means that for l, there is δ > 0 such that if 0< ∥y− x∥< δ , with y∈D( f ) ,
then f (y)> l. A similar definition holds to define limy→x f (y) =−∞. If D( f ) contains an
interval (a,∞) , then limx→∞ f (x) = L ∈ Fp means that for every ε > 0 there exists l such
that if x > l, then ∥ f (x)−L∥< ε . limx→−∞ f (x) = L is defined similarly.

I will leave for the reader the appropriate definition in the case that x→∞ and f (x)→∞

and other such cases.

Theorem 7.1.3 If limy→x f (y) = L and limy→x f (y) = L1, then L = L1. Uniqueness
also holds for one sided limits and for limits as x→ ∞ or x→−∞.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y− x| < δ , then
| f (y)−L| < ε, | f (y)−L1| < ε. Therefore, for such y,(It exists because x is a limit point)
|L−L1| ≤ |L− f (y)|+ | f (y)−L1| < ε + ε = 2ε. Since ε > 0 was arbitrary, this shows
L = L1. The argument is exactly the same in the case of one sided limits. You simply need
to have some y close enough to x on one side and in the case of limits at ±∞, you use y
such that |y| is sufficiently large. ■

In the special case that f is defined near a point x, we sometimes speak of left and right
limits by restricting the domain to be either those y < x or those y > x. When this is done,
one writes limy→x+ f (y) or limy→x− f (y).

The first thing to do is to give an easier to use description in terms of sequences.

Proposition 7.1.4 Let x be a limit point of D( f ) . Then limy→x f (y) = L ∈ Fq if and
only if whenever xn→ x for each xn ̸= x, the xn distinct points, it follows that f (xn)→ L.

Proof: ⇒ Let xn → x where no xn equals x. Let ε > 0 be given. By assumption,
| f (y)−L| < ε whenever 0 < |y− x| < δ for some δ . However, for all n large enough,
0 < |xn− x|< δ and so | f (xn)−L|< ε. Hence f (xn)→ L.
⇐ Suppose the condition on the sequences holds. If the condition for the limit does

not hold, then there exists ε > 0 such that no matter how small δ , there will be 0 <

129



130 CHAPTER 7. THE DERIVATIVE

|y− x| < δ ,y ∈ D( f ) , and yet | f (y)−L| ≥ ε . Now let δ 1 = 1. There exists x1 ̸= x with
x1 ∈ B(x,δ 1)∩D( f ) and | f (x1)−L| ≥ ε. Let δ 2 ≡ min

( 1
2 ,

1
2 |x− x1|

)
. Now pick x2 ∈

B(x,δ 2) ,x2 ̸= x such that | f (x2)−L| ≥ ε. Let δ 3 ≡ min
(

1
23 ,

1
2 |x− x1| , 1

2 |x− x2|
)

and
pick x3 ∈ B(x,δ 3) with | f (x3)−L| ≥ ε,x3 ̸= x. Continue this way to generate a sequence
of distinct points {xn} , none equal to x which converges to x. Then L = limn→∞ f (xn) be-
cause of the condition on limits of the sequence so eventually |L− f (xn)|< ε, contrary to
the construction of the xn. ■

The value of a function at x is irrelevant to the value of the limit at x! This must
always be kept in mind. In fact, it is not necessary for f to even be defined at the limit point.
All interesting limits are this way. You do not evaluate interesting limits by computing
f (x)! It may be the case that f (x) is right but this is merely a happy coincidence when it
occurs and as explained below in Theorem 7.1.8, this is sometimes equivalent to f being
continuous at x.

Theorem 7.1.5 In this theorem, x is always a limit point of D( f ). Suppose that both
limy→x f (y) = L and limy→x g(y) = K where K and L are numbers, not ±∞. Then if a, b
are numbers,

lim
y→x

(a f (y)+bg(y)) = aL+bK, (7.1)

lim
y→x

f g(y) = LK (7.2)

and if K ̸= 0,

lim
y→x

f (y)
g(y)

=
L
K
. (7.3)

Also, if h is a continuous function defined in some interval containing L, then

lim
y→x

h◦ f (y) = h(L) . (7.4)

Suppose f is real valued and limy→x f (y) = L. If f (y) ≤ a all y near x either to the right
or to the left of x, then L≤ a and if f (y)≥ a then L≥ a.

Proof: All of these claims follow from Proposition 7.1.4 and the theorems on limits of
sequences Theorem 4.4.8. For example, consider 7.4. Letting x be a limit point and xn→ x,
then by assumption f (xn)→ L and so, by continuity of h, it follows that h( f (xn))→ h(L).
If f (y) ≤ a for all y less than a and near to x, then if xn → x from the left, eventually
f (xn)≤ a and so L≤ a also. The other case is similar.

A very useful theorem for finding limits is called the squeezing theorem.

Theorem 7.1.6 Suppose f ,g,h are real valued functions and that

lim
x→a

f (x) = L = lim
x→a

g(x)

and for all x near a, f (x)≤ h(x)≤ g(x) .Then limx→a h(x) = L.

Proof: If L ≥ h(x) , then |h(x)−L| ≤ | f (x)−L| . If L < h(x) , then |h(x)−L| ≤
|g(x)−L| . Therefore,

|h(x)−L| ≤ | f (x)−L|+ |g(x)−L| .
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Now let ε > 0 be given. There exists δ 1 such that if 0 < |x−a| < δ 1, | f (x)−L| < ε/2
and there exists δ 2 such that if 0 < |x−a| < δ 2, then |g(x)−L| < ε/2. Letting 0 < δ ≤
min(δ 1,δ 2), if 0 < |x−a|< δ , then

|h(x)−L| ≤ | f (x)−L|+ |g(x)−L|< ε/2+ ε/2 = ε. ■

Proposition 7.1.7 If x ∈ D( f ) and x is a limit point of D( f ) , then f is continuous at x
if and only if limy→x f (y) = f (x).

Proof:⇒Let yn→ x where yn ∈ D( f ) and the yn are distinct. Then by continuity of f
at x, it follows that limn→∞ f (yn) = f (x).
⇐ Let ε > 0 be given. Then there is δ > 0 such that whenever 0 < ∥y− x∥< δ , it will

follow that ∥ f (y)− f (x)∥< ε . However, if y = x, then ∥ f (y)− f (x)∥= 0 < ε and so the
conditions for continuity are satisfied. ■

The case of this proposition which is of the most interest here in this chapter is the
following theorem. Intervals are of the form (a,b) , [a,b),(a,b], or [a,b], Endpoints of an
interval are clearly limit points of the interval.

Theorem 7.1.8 For f : I→ R, and I is an interval. then f is continuous at x ∈ I if
and only if limy→x f (y) = f (x) .

Example 7.1.9 Find limx→3
x2−9
x−3 .

Note that x2−9
x−3 = x+3 whenever x ̸= 3. Therefore, if 0 < |x−3|< ε,∣∣∣∣x2−9

x−3
−6
∣∣∣∣= |x+3−6|= |x−3|< ε.

It follows from the definition that this limit equals 6.
You should be careful to note that in the definition of limit, the variable never equals

the thing it is getting close to. In this example, x is never equal to 3. This is very significant
because, in interesting limits, the function whose limit is being taken will not be defined at
the point of interest. The habit students acquire of plugging in the point to take the limit is
only good on useless and uninteresting limits which are not good for anything other than to
give a busy work exercise, deceiving people into thinking they know what is going on.

Example 7.1.10 Let

f (x) =
x2−9
x−3

if x ̸= 3.

How should f be defined at x = 3 so that the resulting function will be continuous there?

The limit of this function equals 6 because for x ̸= 3, x2−9
x−3 = (x−3)(x+3)

x−3 = x+3. There-
fore, by Theorem 7.1.8 it is necessary to define f (3)≡ 6.

Example 7.1.11 Find limx→∞
x

1+x .

Write x
1+x = 1

1+(1/x) . Now it seems clear that limx→∞ 1+(1/x) = 1 ̸= 0. Therefore,

Theorem 7.1.5 implies limx→∞
x

1+x = limx→∞
1

1+(1/x) =
1
1 = 1.
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Example 7.1.12 Show limx→a
√

x =
√

a whenever a ≥ 0. In the case that a = 0, take the
limit from the right.

There are two cases. First consider the case when a > 0. Let ε > 0 be given. Multiply
and divide by

√
x+
√

a. This yields

∣∣√x−
√

a
∣∣= ∣∣∣∣ x−a√

x+
√

a

∣∣∣∣ .
Now let 0 < δ 1 < a/2. Then if |x−a|< δ 1,x > a/2 and so

∣∣√x−
√

a
∣∣= ∣∣∣∣ x−a√

x+
√

a

∣∣∣∣≤ |x−a|(√
a/
√

2
)
+
√

a
≤ 2
√

2√
a
|x−a| .

Now let 0 < δ ≤min
(

δ 1,
ε
√

a
2
√

2

)
. Then for 0 < |x−a|< δ ,

∣∣√x−
√

a
∣∣≤ 2

√
2√
a
|x−a|< 2

√
2√
a

ε
√

a
2
√

2
= ε.

Next consider the case where a = 0. In this case, let ε > 0 and let δ = ε2. Then if
0 < x−0 < δ = ε2, it follows that 0≤

√
x <

(
ε2
)1/2

= ε.

7.2 Exercises
1. Find the following limits if possible

(a) limx→0+
|x|
x

(b) limx→0+
x
|x|

(c) limx→0−
|x|
x

(d) limx→4
x2−16
x+4

(e) limx→3
x2−9
x+3

(f) limx→−2
x2−4
x−2

(g) limx→∞
x

1+x2

(h) limx→∞−2 x
1+x2

2. Find limh→0

1
(x+h)3

− 1
x3

h .

3. Find limx→4
4√x−
√

2√
x−2 .

4. Find limx→∞

5√3x+ 4√x+7
√

x√
3x+1

.

5. Find limx→∞
(x−3)20(2x+1)30

(2x2+7)
25 .

6. Find limx→2
x2−4

x3+3x2−9x−2 .

7. Find limx→∞

(√
1−7x+ x2−

√
1+7x+ x2

)
.

8. Prove Theorem 7.1.3 for right, left and limits as y→ ∞.

9. Prove from the definition that limx→a
3
√

x = 3
√

a for all a ∈ R. Hint: You might want
to use the formula for the difference of two cubes,

a3−b3 = (a−b)
(
a2 +ab+b2) .

10. Prove Theorem 7.1.8 from the definitions of limit and continuity.
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11. Find limh→0
(x+h)3−x3

h

12. Find limh→0
1

x+h−
1
x

h

13. Find limx→−3
x3+27
x+3

14. Find limh→0

√
(3+h)2−3

h if it exists.

15. Find the values of x for which limh→0

√
(x+h)2−x

h exists and find the limit.

16. Find limh→0
3
√

(x+h)− 3√x
h if it exists. Here x ̸= 0.

17. Suppose limy→x+ f (y) = L1 ̸= L2 = limy→x− f (y) . Show limy→x f (x) does not ex-
ist. Hint: Roughly, the argument goes as follows: For |y1− x| small and y1 > x,
| f (y1)−L1| is small. Also, for |y2− x| small and y2 < x, | f (y2)−L2| is small. How-
ever, if a limit existed, then f (y2) and f (y1) would both need to be close to some
number and so both L1 and L2 would need to be close to some number. However,
this is impossible because they are different.

18. Suppose f is an increasing function defined on [a,b] . Show f must be continuous
at all but a countable set of points. Hint: Explain why every discontinuity of f is a
jump discontinuity and

f (x−)≡ lim
y→x−

f (y)≤ f (x)≤ f (x+)≡ lim
y→x+

f (y)

with f (x+) > f (x−) . Now each of these intervals ( f (x−) , f (x+)) at a point, x
where a discontinuity happens has positive length and they are disjoint. Furthermore,
they have to all fit in [ f (a) , f (b)] . How many of them can there be which have length
at least 1/n?

19. Let f (x,y) = x2−y2

x2+y2 . Find limx→0 (limy→0 f (x,y)), limy→0 (limx→0 f (x,y)) . If you
did it right you got −1 for one answer and 1 for the other. What does this tell you
about interchanging limits?

20. The whole presentation of limits above is too specialized. Let D be the domain of a
function f . A point x not necessarily in D, is said to be a limit point of D if B(x,r)
contains a point of D not equal to x for every r > 0. Now define the concept of limit
in the same way as above and show that the limit is well defined if it exists. That is,
if x is a limit point of D and limy→x f (x) = L1 and limy→x f (x) = L2, then L1 = L2. Is
it possible to take a limit of a function at a point not a limit point of D? What would
happen to the above property of the limit being well defined? Is it reasonable to
define continuity at isolated points, those points which are not limit points, in terms
of a limit as is often done in calculus books?

21. If f is an increasing function which is bounded above by a constant M, show that
limx→∞ f (x) exists. Give a similar theorem for decreasing functions.
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7.3 The Definition of the Derivative
The following picture of a function y = o(x) is an example of one which appears to be
tangent to the line y = 0 at the point (0,0) .

y = o(x) y = ε|x|

δ(0,0)

You see in this picture, the graph of the function y = ε |x| also where ε > 0 is just a
positive number. Note there exists δ > 0 such that if |x|< δ , then |o(x)|< ε |x| or in other
words, |o(x)||x| < ε. You might draw a few other pictures of functions which would have the
appearance of being tangent to the line y = 0 at the point (0,0) and observe that in every
case, it will follow that for all ε > 0 there exists δ > 0 such that if 0 < |x|< δ , then

|o(x)|
|x|

< ε. (7.5)

In other words, a reasonable way to say a function is tangent to the line y = 0 at (0,0) is to
say for all ε > 0 there exists δ > 0 such that 7.5 holds. In other words, the function y= o(x)
is tangent at (0,0) if and only if limx→0

|o(x)|
|x| = 0. More generally, even if the function has

values in F or something even more general where it is not possible to draw pictures, the
following is the definition of o(x).

Definition 7.3.1 A function y = k (x) is said to be o(x) if

lim
x→0

|k (x)|
|x|

= 0 (7.6)

As was just discussed, in the case where x ∈ R and k is a function having values in
R this is geometrically the same as saying the function is tangent to the line y = 0 at the
point (0,0). This terminology is used like an adjective. k (x) is o(x) means 7.6 holds. Thus
o(x) = 5o(x) , o(x)+o(x) = o(x) , etc. The usage is very imprecise and sloppy, leaving out
exactly the details which are of absolutely no significance in what is about to be discussed.
It is this sloppiness which makes the notation so useful. It prevents you from fussing with
things which do not matter. This takes some getting used to.

Now consider the case of the function y = g(x) tangent to y = b+mx at the point (c,d) .

(c,d)

y = g(x)y = mx+b

Thus, in particular, g(c) = b+mc = d. Then letting x = c+h, it follows x is close to c
if and only if h is close to 0. Consider then the two functions

y = g(c+h) , y = b+m(c+h) .



7.3. THE DEFINITION OF THE DERIVATIVE 135

If they are tangent as shown in the above picture, you should have the function

k (h) ≡ g(c+h)− (b+m(c+h)) = g(c+h)− (b+mc)−mh

= g(c+h)−g(c)−mh

tangent to y= 0 at the point (0,0). As explained above, the precise meaning of this function
being tangent as described is to have k (h) = o(h) . This motivates (I hope) the following
definition of the derivative which is the precise definition free of pictures and heuristics.

Definition 7.3.2 Let g be a F (either C or R) valued function defined on an open
set in F containing c. Then g′ (c) is the number, if it exists, which satisfies

(g(c+h)−g(c))−g′ (c)h = o(h)

where o(h) is defined in Definition 7.3.1.

The above definition is more general than what will be extensively discussed here. I
will usually consider the case where the function is defined on some interval contained in
R. In this context, where the function is defined on a subset ofR, the definition of derivative
can also be extended to include right and left derivatives.

Definition 7.3.3 Let g be a function defined on an interval, [c,b). Then g′+ (c) is the
number, if it exists, which satisfies

(g+ (c+h)−g+ (c))−g′+ (c)h = o(h)

where o(h) is defined in Definition 7.3.1 except you only consider positive h. Thus

lim
h→0+

|o(h)|
|h|

= 0.

This is the derivative from the right. Let g be a function defined on an interval, (a,c]. Then
g′− (c) is the number, if it exists, which satisfies

(g− (c+h)−g− (c))−g′− (c)h = o(h)

where o(h) is defined in Definition 7.3.1 except you only consider negative h. Thus

lim
h→0−

|o(h)|
|h|

= 0.

This is the derivative from the left.

I will not pay any attention to these distinctions from now on. In particular I will not
write g′− and g′+ unless it is necessary. If the domain of a function defined on a subset of
R is not open, it will be understood that at an endpoint, the derivative meant will be the
appropriate derivative from the right or the left. First I need to show this is well defined
because there cannot be two values for g′ (c) .

Theorem 7.3.4 The derivative is well defined because if

(g(c+h)−g(c))−m1h = o(h)

(g(c+h)−g(c))−m2h = o(h) (7.7)

then m1 = m2.
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Proof: Suppose 7.7. Then subtracting these, (m2−m1)h = o(h)−o(h) = o(h) and so
dividing by h ̸= 0 and then taking a limit as h→ 0 gives m2−m1 = limh→0

o(h)
h = 0. Note

the same argument holds for derivatives from the right or the left also. ■

Observation 7.3.5 The familiar formula from calculus applies.

g′ (x) = lim
h→0

g(x+h)−g(x)
h

This is because the right side is

lim
h→0

g′ (x)h+o(h)
h

= g′ (x) .

So why am I fussing with little o notation? It is because functions of variables not
in R must also be considered, although not so much in this book, but in this setting, you
must do something like what I have just been discussing in this special case and in fact,
the above definition continues to apply with no change in all situations while geometric
notions involving “slope” don’t.

Now the derivative has been defined, here are some properties.

Lemma 7.3.6 Suppose g′ (c) exists. Then there exists δ > 0 such that if |h|< δ ,

|g(c+h)−g(c)|<
(∣∣g′ (c)∣∣+1

)
|h| (7.8)

o(|g(c+h)−g(c)|) = o(h) (7.9)

g is continuous at c.

Proof: This follows from the definition of g′ (c) .

(g(c+h)−g(c))−g′ (c)h = o(h)

and so there exists δ > 0 such that if 0 < |h|< δ ,

|(g(c+h)−g(c))−g′ (c)h|
|h|

< 1

By the triangle inequality,

|g(c+h)−g(c)|−
∣∣g′ (c)h

∣∣≤ ∣∣(g(c+h)−g(c))−g′ (c)h
∣∣< |h|

and so
|g(c+h)−g(c)|<

(∣∣g′ (c)∣∣+1
)
|h|

Next consider the second claim. By definition of the little o notation, there exists a
δ 1 > 0 such that if

|g(c+h)−g(c)|< δ 1,

then
o(|g(c+h)−g(c)|)< ε

|g′ (c)|+1
|g(c+h)−g(c)| . (7.10)
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But from the first inequality, if |h|< δ , then |g(c+h)−g(c)|< (|g′ (c)|+1) |h| and so for
|h|< min

(
δ , δ 1

(|g′(c)|+1)

)
, it follows |g(c+h)−g(c)| < (|g′ (c)|+1) |h| < δ 1 and so from

7.10,

o(|g(c+h)−g(c)|) <
ε

|g′ (c)|+1
|g(c+h)−g(c)|

<
ε

|g′ (c)|+1
(∣∣g′ (c)∣∣+1

)
|h|= ε |h|

and this shows limh→0
o(|g(c+h)−g(c)|)

|h| = 0 because for nonzero h small enough,

o(|g(c+h)−g(c)|)
|h|

< ε.

This proves 7.9.
The assertion about continuity follows from 7.8. Just let h= x−c and the formula gives

the following for |x− c| small enough.

|g(x)−g(c)|<
(∣∣g′ (c)∣∣+1

)
|x− c| ■

Of course some functions do not have derivatives at some points.

Example 7.3.7 Let f (x) = |x| . Show f ′ (0) does not exist.

If f ′ (0) did exist, then whenever hn→ 0 where hn are distinct, then limn→∞
|0+hn|−|hn|

hn
=

L for some L. However, if hn→ 0 with each hn > 0, you get 1 for the limit and if hn→ 0
with each hn < 0, then you get −1 for the limit. Thus the limit does not exist.

The following diagram shows how continuity at a point and differentiability there are
related.

f ′(x)exists

f is continuous at x

7.4 Continuous and Nowhere Differentiable
How bad can it get in terms of a continuous function not having a derivative at some points?
It turns out it can be the case the function is nowhere differentiable but everywhere con-
tinuous. An example of such a pathological function different than the one I am about to
present was discovered by Weierstrass in 1872. However, Bolzano was the first to produce
a function in the 1830’s which was continuous and nowhere differentiable although he did
not show this completely.

Lemma 7.4.1 Suppose f ′ (x) exists and let c be a number. Then letting g(x)≡ f (cx) ,

g′ (x) = c f ′ (cx) .
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Here the derivative refers to either the derivative, the left derivative, or the right derivative.
Also, if f (x) = a+ bx, then f ′ (x) = b where again, f ′ refers to either the left derivative,
right derivative or derivative. Furthermore, in the case where f (x) = a+ bx, f (x+h)−
f (x) = bh.

Proof: It is known from the definition that f (x+h)− f (x)− f ′ (x)h= o(h) . Therefore,

g(x+h)−g(x) = f (c(x+h))− f (cx) = f ′ (cx)ch+o(ch)

and so g(x+h)− g(x)− c f ′ (cx)h = o(ch) = o(h) and so this proves the first part of the
lemma. Now consider the last claim.

f (x+h)− f (x) = a+b(x+h)− (a+bx) = bh

= bh+0 = bh+o(h) .

Thus f ′ (x) = b. ■
Now consider the following description of a function. The following is the graph of the

function on [0,1] .

1
The height of the function is 1/2 and the slope of the rising line is 1 while the slope of

the falling line is−1. Now extend this function to the whole real line to make it periodic of
period 1. This means f (x+n) = f (x) for all x ∈ R and n ∈ Z, the integers. In other words
to find the graph of f on [1,2] you simply slide the graph of f on [0,1] a distance of 1 to get
the same tent shaped thing on [1,2] . Continue this way. The following picture illustrates
what a piece of the graph of this function looks like. Some might call it an infinite sawtooth.

Now define

g(x)≡
∞

∑
k=0

(
3
4

)k

f
(

4kx
)
.

Letting Mk = (3/4)−k , an application of the Weierstrass M test shows g is everywhere
continuous. This is because each function in the sum is continuous and the series converges
uniformly on R.

Let δ m =± 1
4 (4

−m) where we assume m > 2. That of interest will be m→ ∞.

g(x+δ m)−g(x)
δ m

=
∑

∞
k=0
( 3

4

)k (
f
(
4k (x+δ m)

)
− f

(
4kx
))

δ m

If you take k > m,

f
(

4k (x+δ m)
)
− f

(
4kx
)

= f
(

4k
(

x± 1
4
(
4−m)))− f

(
4kx
)

= f

4kx±

integer︷ ︸︸ ︷
1
4

4k−m

− f
(

4kx
)
= 0
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Therefore,

g(x+δ m)−g(x)
δ m

=
1

δ m

m

∑
k=0

(
3
4

)k(
f
(

4k (x+δ m)
)
− f

(
4kx
))

The absolute value of the last term in the sum is∣∣∣∣(3
4

)m

( f (4m (x+δ m))− f (4mx))
∣∣∣∣

and we choose the sign of δ m such that both 4m (x+δ m) and 4mx are in some interval
[k/2,(k+1)/2) which is certainly possible because the distance between these two points
is 1/4 and such half open intervals include all of R. Thus, since f has slope ±1 on the
interval just mentioned,∣∣∣∣(3

4

)m

( f (4m (x+δ m))− f (4mx))
∣∣∣∣= (3

4

)m

4m |δ m|= 3m |δ m|

As to the other terms, 0≤ f (x)≤ 1/2 and so∣∣∣∣∣m−1

∑
k=0

(
3
4

)k(
f
(

4k (x+δ m)
)
− f

(
4kx
))∣∣∣∣∣≤ m−1

∑
k=0

(
3
4

)k

=
1− (3/4)m

1/4
= 4−4

(
3
4

)m

Thus ∣∣∣∣g(x+δ m)−g(x)
δ m

∣∣∣∣≥ 3m−
(

4−4
(

3
4

)m)
≥ 3m−4

Since δ m → 0 as m→ ∞, g′ (x) does not exist because the difference quotients are not
bounded. ■

This proves the following theorem.

Theorem 7.4.2 There exists a function defined on R which is continuous and boun-
ded but fails to have a derivative at any point.

7.5 Finding the Derivative
Obviously there need to be simple ways of finding the derivative when it exists. There are
rules of derivatives which make finding the derivative very easy. In the following theorem,
the derivative could refer to right or left derivatives as well as regular derivatives.

Theorem 7.5.1 Let a,b be numbers and suppose f ′ (t) and g′ (t) exist. Then the
following formulas are obtained.

(a f +bg)′ (t) = a f ′ (t)+bg′ (t) . (7.11)

( f g)′ (t) = f ′ (t)g(t)+ f (t)g′ (t) . (7.12)

The formula, 7.12 is referred to as the product rule.
If f ′ (g(t)) exists and g′ (t) exists, then ( f ◦g)′ (t) also exists and

( f ◦g)′ (t) = f ′ (g(t))g′ (t) .
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This is called the chain rule. In this rule, for the sake of simiplicity, assume the derivatives
are real derivatives, not derivatives from the right or the left. If f (t) = tn where n is any
integer, then

f ′ (t) = ntn−1. (7.13)

Also, whenever f ′ (t) exists, f ′ (t) = limh→0
f (t+h)− f (t)

h where this definition can be adjusted
in the case where the derivative is a right or left derivative by letting h > 0 or h < 0 only
and considering a one sided limit. This is equivalent to f ′ (t) = lims→t

f (s)− f (t)
t−s with the

limit being one sided in the case of a left or right derivative.

Proof: 7.11 is left for you. Consider 7.12

f g(t +h)− f g(t) = f (t +h)g(t +h)− f (t)g(t +h)+ f (t)g(t +h)− f (t)g(t)

= g(t +h)( f (t +h)− f (t))+ f (t)(g(t +h)−g(t))

= g(t +h)
(

f ′ (t)h+o(h)
)
+ f (t)

(
g′ (t)h+o(h)

)
= g(t) f ′ (t)h+ f (t)g′ (t)h+ f (t)o(h)

+(g(t +h)−g(t)) f ′ (t)h+g(t +h)o(h)

= g(t) f ′ (t)h+ f (t)g′ (t)h+o(h)

because by Lemma 7.3.6, g is continuous at t and so (g(t +h)−g(t)) f ′ (t)h= o(h) . While
f (t)o(h) and g(t +h)o(h) are both o(h) . This proves 7.12.

Next consider the chain rule. By Lemma 7.3.6 again,

f ◦g(t +h)− f ◦g(t) = f (g(t +h))− f (g(t))

= f (g(t)+(g(t +h)−g(t)))− f (g(t))

= f ′ (g(t))(g(t +h)−g(t))+o((g(t +h)−g(t)))

= f ′ (g(t))(g(t +h)−g(t))+o(h)

= f ′ (g(t))
(
g′ (t)h+o(h)

)
+o(h)

= f ′ (g(t))g′ (t)h+o(h) .

This proves the chain rule.
Now consider the claim about f (t) = tn for n an integer. If n = 0,1 the desired

conclusion follows from Lemma 7.4.1. Suppose the claim is true for n ≥ 1. Then let
fn+1 (t) = tn+1 = fn (t) t where fn (t) ≡ tn. Then by the product rule, induction and the
validity of the assertion for n = 1,

f ′n+1 (t) = f ′n (t) t + fn (t) = tntn−1 + tn = ntn+1

and so the assertion is proved for all n≥ 0. Consider now n =−1.

(t +h)−1− t−1 =
−1

t (t +h)
h =
−1
t2 h+

(
−1

t (t +h)
+

1
t2

)
h

=
−1
t2 h+

h2

t2 (t +h)
=− 1

t2 h+o(h) = (−1) t−2h+o(h)
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Therefore, the assertion is true for n =−1. Now consider f (t) = t−n where n is a positive
integer. Then f (t) = (tn)−1 and so by the chain rule,

f ′ (t) = (−1)(tn)−2 ntn−1 =−nt−n−1.

This proves 7.13.
Finally, if f ′ (t) exists,

f ′ (t)h+o(h) = f (t +h)− f (t) .

Divide by h and take the limit as h→ 0, either a regular limit or a limit from one side or
the other in the case of a right or left derivative.

f ′ (t) = lim
h→0

(
f (t +h)− f (t)

h
+

o(h)
h

)
= lim

h→0

f (t +h)− f (t)
h

.■

Note the last part is the usual definition of the derivative given in beginning calculus
courses. There is nothing wrong with doing it this way from the beginning for a function of
only one variable but it is not the right way to think of the derivative and does not generalize
to the case of functions of many variables where the definition given in terms of o(h) does.

Corollary 7.5.2 Let f ′ (t) ,g′ (t) both exist and g(t) ̸= 0, then the quotient rule holds.(
f
g

)′
=

f ′ (t)g(t)− f (t)g′ (t)

g(t)2

Proof: This is left to you. Use the chain rule and the product rule. ■
Higher order derivatives are defined in the usual way. f ′′ ≡ ( f ′)′ etc. Also the Leibniz

notation is defined by
dy
dx

= f ′ (x) where y = f (x)

and the second derivative is denoted as d2y
dx2 with various other higher order derivatives

defined in the usual way.
The chain rule has a particularly attractive form in Leibniz’s notation. Suppose y= g(u)

and u = f (x) . Thus y = g◦ f (x) . Then from the above theorem

(g◦ f )′ (x) = g′ ( f (x)) f ′ (x) = g′ (u) f ′ (x)

or in other words, dy
dx = dy

du
du
dx . Notice how the du cancels. This particular form is a very

useful crutch and is used extensively in applications. Of course the problem is that we
really don’t know what du is. Nevertheless, it is great notation and in fact this can be made
precise, but this book is on classical analysis.

7.6 Local Extreme Points
When you are on top of a hill, you are at a local maximum although there may be other
hills higher than the one on which you are standing. Similarly, when you are at the bottom
of a valley, you are at a local minimum even though there may be other valleys deeper than
the one you are in. The word, “local” is applied to the situation because if you confine
your attention only to points close to your location, you are indeed at either the top or the
bottom.
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Definition 7.6.1 Let f : D( f )→ R where here D( f ) is only assumed to be some
subset of F. Then x ∈ D( f ) is a local minimum (maximum) if there exists δ > 0 such that
whenever y∈B(x,δ )∩D( f ), it follows f (y)≥ (≤) f (x) . The plural of minimum is minima
and the plural of maximum is maxima.

Derivatives can be used to locate local maxima and local minima. The following picture
suggests how to do this. This picture is of the graph of a function having a local maximum
and the tangent line to it.

Note how the tangent line is horizontal. If you were not at a local maximum or local
minimum, the function would be falling or climbing and the tangent line would not be
horizontal.

Theorem 7.6.2 Suppose f : U → R where U is an open subset of F and suppose
x ∈U is a local maximum or minimum. Then f ′ (x) = 0.

Proof: Suppose x is a local maximum and let δ > 0 is so small that B(x,δ )⊆U. Then
for |h| < δ , both x and x+ h are contained in B(x,δ ) ⊆ U . Then letting h be real and
positive,

f ′ (x)h+o(h) = f (x+h)− f (x)≤ 0.

Then dividing by h it follows from Theorem 7.1.5 on Page 130,

f ′ (x) = lim
h→0

(
f ′ (x)+

o(h)
h

)
= lim

h→0

(
1
h
( f (x+h)− f (x))

)
≤ 0

Next let |h|< δ and h is real and negative. Then

f ′ (x)h+o(h) = f (x+h)− f (x)≤ 0.

Then dividing by h,

f ′ (x) = lim
h→0

f ′ (x)+
o(h)

h
= lim

h→0

(
1
h
( f (x+h)− f (x))

)
≥ 0

Thus f ′ (x) = 0. The case where x is a local minimum is handled similarly. Alternatively,
you could apply what was just shown to − f (x). ■1

Points at which the derivative of a function equals 0 are sometimes called critical points.
Included in the set of critical points are those points where f ′ fails to exist.

7.7 Exercises
1. If f ′ (x) = 0, is it necessary that x is either a local minimum or local maximum?

Hint: Consider f (x) = x3.

1Actually, the case where the function is defined on an open subset of C and yet has real values is not too
interesting. However, this is information which depends on the theory of functions of a complex variable which
is not considered yet.
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2. A continuous function f defined on [a,b] is to be maximized. It was shown above
in Theorem 7.6.2 that if the maximum value of f occurs at x ∈ (a,b) , and if f is
differentiable there, then f ′ (x) = 0. However, this theorem does not say anything
about the case where the maximum of f occurs at either a or b. Describe how to find
the point of [a,b] where f achieves its maximum. Does f have a maximum? Explain.

3. Show that if the maximum value of a function f differentiable on [a,b] occurs at the
right endpoint, then for all h > 0, f ′ (b)h ≥ 0. This is an example of a variational
inequality. Describe what happens if the maximum occurs at the left end point and
give a similar variational inequality. What is the situation for minima?

4. Find the maximum and minimum values and the values of x where these are achieved
for the function f (x) = x+

√
25− x2.

5. A piece of wire of length L is to be cut in two pieces. One piece is bent into the shape
of an equilateral triangle and the other piece is bent to form a square. How should
the wire be cut to maximize the sum of the areas of the two shapes? How should the
wire be bent to minimize the sum of the areas of the two shapes? Hint: Be sure to
consider the case where all the wire is devoted to one of the shapes separately. This
is a possible solution even though the derivative is not zero there.

6. Lets find the point on the graph of y = x2

4 which is closest to (0,1) . One way to

do it is to observe that a typical point on the graph is of the form
(

x, x2

4

)
and then

to minimize the function f (x) = x2 +
(

x2

4 −1
)2

. Taking the derivative of f yields

x+ 1
4 x3 and setting this equal to 0 leads to the solution, x = 0. Therefore, the point

closest to (0,1) is (0,0) . Now lets do it another way. Lets use y= x2

4 to write x2 = 4y.
Now for (x,y) on the graph, it follows it is of the form

(√
4y,y

)
. Therefore, minimize

f (y) = 4y+(y−1)2 . Take the derivative to obtain 2+ 2y which requires y = −1.
However, on this graph, y is never negative. What on earth is the problem?

7. Find the dimensions of the largest rectangle that can be inscribed in the ellipse, x2

9 +
y2

4 = 1.

8. A function f , is said to be odd if f (−x) =− f (x) and a function is said to be even if
f (−x) = f (x) . Show that if f is even, then f ′ is odd and if f is odd, then f ′ is even.
Sketch the graph of a typical odd function and a typical even function.

9. Find the point on the curve, y =
√

25−2x which is closest to (0,0) .

10. A street is 200 feet long and there are two lights located at the ends of the street.
One of the lights is 1

8 times as bright as the other. Assuming the brightness of light
from one of these street lights is proportional to the brightness of the light and the
reciprocal of the square of the distance from the light, locate the darkest point on the
street.

11. Find the volume of the smallest right circular cone which can be circumscribed about
a sphere of radius 4 inches.
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12. Show that for r a rational number and y = xr, it must be the case that if this function
is differentiable, then y′ = rxr−1.

13. Let f be a continuous function defined on [a,b] . Let ε > 0 be given. Show there
exists a polynomial p such that for all x ∈ [a,b] ,

| f (x)− p(x)|< ε.

This follows from the Weierstrass approximation theorem, Theorem 6.10.3. Now
here is the interesting part. Show there exists a function g which is also continuous
on [a,b] and for all x ∈ [a,b] ,

| f (x)−g(x)|< ε

but g has no derivative at any point. Thus there are enough nowhere differentiable
functions that any continuous function is uniformly close to one. Explain why every
continuous function is the uniform limit of nowhere differentiable functions. Also
explain why every nowhere differentiable continuous function is the uniform limit of
polynomials. Hint: You should look at the construction of the nowhere differentiable
function which is everywhere continuous and bounded, given above.

14. Consider the following nested sequence of compact sets, {Pn}. Let P1 = [0,1], P2 =[
0, 1

3

]
∪
[ 2

3 ,1
]
, etc. To go from Pn to Pn+1, delete the open interval which is the

middle third of each closed interval in Pn. Let P = ∩∞
n=1Pn. By Problem 16 on Page

74, P ̸= /0. If you have not worked this exercise, now is the time to do it. Show the
total length of intervals removed from [0,1] is equal to 1. If you feel ambitious also
show there is a one to one onto mapping of [0,1] to P. The set P is called the Cantor
set. Thus P has the same number of points in it as [0,1] in the sense that there is
a one to one and onto mapping from one to the other even though the length of the
intervals removed equals 1. Hint: There are various ways of doing this last part but
the most enlightenment is obtained by exploiting the construction of the Cantor set
rather than some silly representation in terms of sums of powers of two and three.
All you need to do is use the theorems in the chapter on set theory related to the
Schroder Bernstein theorem and show there is an onto map from the Cantor set to
[0,1]. If you do this right it will provide a construction which is very useful to prove
some even more surprising theorems which you may encounter later if you study
compact metric spaces. The Cantor set is just a simple version of what is seen in
some vegetables. Note in the following picture of Romanesco broccoli, the spirals of
points each of which is a spiral of points each of which is a spiral of points...

15. ↑ Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0,1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a,b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
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linear and equal to 1
2 ( fn(a)+ fn(b)) on the middle third of [a,b]. Sketch a few of

these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

Show { fn} converges uniformly on [0,1]. If f (x) = limn→∞ fn(x), show that f (0) =
0, f (1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is the Cantor set
of Problem 14. This function is called the Cantor function.It is a very important
example to remember especially for those who like mathematical pathology. Note
it has derivative equal to zero on all those intervals which were removed and whose
total length was equal to 1 and yet it succeeds in climbing from 0 to 1. Isn’t this
amazing? Hint: This isn’t too hard if you focus on getting a careful estimate on
the difference between two successive functions in the list considering only a typical
small interval in which the change takes place. The above picture should be helpful.

16. Let

f (x) =
{

1 if x ∈Q
0 if x /∈Q

Now let g(x) = x2 f (x) . Find where g is continuous and differentiable if anywhere.

7.8 Mean Value Theorem
The mean value theorem is possibly the most important theorem about the derivative of a
function of one variable. It pertains only to a real valued function of a real variable. The
best versions of many other theorems depend on this fundamental result. The mean value
theorem is based on the following special case known as Rolle’s theorem2. It is an existence

2Rolle is remembered for Rolle’s theorem and not for anything else he did. Ironically, he did not like calculus.
This may be because, until Bolzano and Cauchy and later Weierstrass, there were aspects of calculus which were
fairly fuzzy. In particular, the notion of differential was not precise and yet it was being used.
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theorem and like the other existence theorems in analysis, it depends on the completeness
axiom.

Theorem 7.8.1 Suppose f : [a,b]→R is continuous, f (a) = f (b) , and f : (a,b)→
R has a derivative at every point of (a,b) . Then there exists x ∈ (a,b) such that f ′ (x) = 0.

Proof: Suppose first that f (x) = f (a) for all x ∈ [a,b] . Then any x ∈ (a,b) is a point
such that f ′ (x) = 0. If f is not constant, either there exists y ∈ (a,b) such that f (y)> f (a)
or there exists y ∈ (a,b) such that f (y) < f (b) . In the first case, the maximum of f is
achieved at some x ∈ (a,b) and in the second case, the minimum of f is achieved at some
x ∈ (a,b). Either way, Theorem 7.6.2 implies f ′ (x) = 0. ■

The next theorem is known as the Cauchy mean value theorem. It is the best version of
this important theorem.

Theorem 7.8.2 Suppose f ,g are continuous on [a,b] and differentiable on (a,b) .
Then there exists x ∈ (a,b) such that f ′ (x)(g(b)−g(a)) = g′ (x)( f (b)− f (a)) .

Proof: Let h(x) ≡ f (x)(g(b)−g(a))− g(x)( f (b)− f (a)) .Then letting x = a and
then letting x = b, a short computation shows h(a) = h(b) . Also, h is continuous on [a,b]
and differentiable on (a,b) . Therefore Rolle’s theorem applies and there exists x ∈ (a,b)
such that

h′ (x) = f ′ (x)(g(b)−g(a))−g′ (x)( f (b)− f (a)) = 0.■

Letting g(x) = x, the usual version of the mean value theorem is obtained. Here is the
usual picture which describes the theorem.

a b

Corollary 7.8.3 Let f be a continuous real valued function defined on [a,b] and differ-
entiable on (a,b) . Then there exists x ∈ (a,b) such that f (b)− f (a) = f ′ (x)(b−a) .

Corollary 7.8.4 Suppose f ′ (x) = 0 for all x ∈ (a,b) where a ≥ −∞ and b ≤ ∞. Then
f (x) = f (y) for all x,y ∈ (a,b) . Thus f is a constant.

Proof: If this is not true, there exists x1 and x2 such that f (x1) ̸= f (x2) . Then by the
mean value theorem,

0 ̸= f (x1)− f (x2)

x1− x2
= f ′ (z)

for some z between x1 and x2. This contradicts the hypothesis that f ′ (x) = 0 for all x. This
proves the theorem in the case that f has real values. In the general case,

f (x+h)− f (x)−0h = o(h) .
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Then taking the real part of both sides,

Re f (x+h)−Re f (x) = Reo(h) = o(h)

and so Re f ′ (x) = 0 and by the first part, Re f must be a constant. The same reasoning
applies to Im f and this proves the corollary. ■

Corollary 7.8.5 Suppose f : C→ C and f ′ (x) = 0 for all x. Then f is a constant.

Proof: Let t ∈ R and consider h(t) = f (x+ t (y− x))− f (x) . Then by the chain rule,

h′ (t) = f ′ (x+ t (y− x))(y− x) = 0

and so by Corollary 7.8.4, h is a constant. In particular,

h(1) = f (y)− f (x) = h(0) = 0

which shows f is constant since x,y are arbitrary. ■

Corollary 7.8.6 Suppose f has real values and f ′ (x) > 0 for all x ∈ (a,b) where a ≥
−∞ and b≤∞. Then f is strictly increasing on (a,b) . That is, if x < y, then f (x)< f (y) . If
f ′ (x)≥ 0, then f is increasing in the sense that whenever x < y it follows that f (x)≤ f (y) .

Proof: Let x < y. Then by the mean value theorem, there exists z ∈ (x,y) such that

0 < f ′ (z) =
f (y)− f (x)

y− x
.

Since y > x, it follows f (y) > f (x) as claimed. Replacing < by ≤ in the above equation
and repeating the argument gives the second claim. ■

Corollary 7.8.7 Suppose f ′ (x)< 0 for all x ∈ (a,b) where a≥−∞ and b≤ ∞. Then f
is strictly decreasing on (a,b) . That is, if x < y, then f (x) > f (y) . If f ′ (x) ≤ 0, then f is
decreasing in the sense that for x < y, it follows that f (x)≥ f (y)

Proof: Let x < y. Then by the mean value theorem, there exists z ∈ (x,y) such that

0 > f ′ (z) =
f (y)− f (x)

y− x
.

Since y > x, it follows f (y)< f (x) as claimed. The second claim is similar except instead
of a strict inequality in the above formula, you put ≥ . ■

7.9 Exercises
1. Sally drives her Saturn over the 110 mile toll road in exactly 1.3 hours. The speed

limit on this toll road is 70 miles per hour and the fine for speeding is 10 dollars per
mile per hour over the speed limit. How much should Sally pay?

2. Two cars are careening down a freeway in Utah weaving in and out of traffic. Car A
passes car B and then car B passes car A as the driver makes obscene gestures. This
infuriates the driver of car A who passes car B while firing his handgun at the driver
of car B. Show there are at least two times when both cars have the same speed.
Then show there exists at least one time when they have the same acceleration. The
acceleration is the derivative of the velocity.
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3. Show the cubic function f (x) = 5x3 +7x−18 has only one real zero.

4. Suppose f (x) = x7 + |x|+ x− 12. How many solutions are there to the equation,
f (x) = 0?

5. Let f (x)= |x−7|+(x−7)2−2 on the interval [6,8] . Then f (6)= 0= f (8) . Does it
follow from Rolle’s theorem that there exists c ∈ (6,8) such that f ′ (c) = 0? Explain
your answer.

6. Suppose f and g are differentiable functions defined on R. Suppose also that it is
known that | f ′ (x)|> |g′ (x)| for all x and that | f ′ (t)|> 0 for all t. Show that whenever
x ̸= y, it follows | f (x)− f (y)| > |g(x)−g(y)| . Hint: Use the Cauchy mean value
theorem, Theorem 7.8.2.

7. Show that, like continuous functions, functions which are derivatives have the in-
termediate value property. This means that if f ′ (a) < 0 < f ′ (b) then there exists
x ∈ (a,b) such that f ′ (x) = 0. Hint: Argue the minimum value of f occurs at an
interior point of [a,b] .

8. Find an example of a function which has a derivative at every point but such that the
derivative is not everywhere continuous.

9. Consider the function

f (x)≡
{

1 if x≥ 0
−1 if x < 0 .

Is it possible that this function could be the derivative of some function? Why?

10. Suppose c ∈ I, an open interval and that a function f , defined on I has n+1 deriva-
tives. Then for each m≤ n the following formula holds for x ∈ I.

f (x) =
m

∑
k=0

f (k) (c)
(x− c)k

k!
+ f (m+1) (y)

(x− c)m+1

(m+1)!
(7.14)

where y is some point between x and c. Fix c,x in I. Let K be a number, depending
on c,x such that

f (x)−

(
f (c)+

n

∑
k=1

f (k) (c)
k!

(x− c)k +K (x− c)n+1

)
= 0

Now the idea is to find K. To do this, let

F (t) = f (x)−

(
f (t)+

n

∑
k=1

f (k) (t)
k!

(x− t)k +K (x− t)n+1

)

Then F (x) = F (c) = 0. Therefore, by Rolle’s theorem there exists y between c and
x such that F ′ (y) = 0. Do the differentiation and solve for K. This is the main result

on Taylor polynomials approximating a function f . The term f (m+1) (y) (x−c)m+1

(m+1)! is
called the Lagrange form of the remainder.
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11. Let f be a real continuous function defined on the interval [0,1] . Also suppose
f (0) = 0 and f (1) = 1 and f ′ (t) exists for all t ∈ (0,1) . Show there exists n distinct
points {si}n

i=1 of the interval such that
n

∑
i=1

f ′ (si) = n.

Hint: Consider the mean value theorem applied to successive pairs in the following
sum.

f
(

1
3

)
− f (0)+ f

(
2
3

)
− f

(
1
3

)
+ f (1)− f

(
2
3

)
12. Now suppose f : [0,1]→ R is continuous and differentiable on (0,1) and f (0) = 0

while f (1) = 1. Show there are distinct points {si}n
i=1 ⊆ (0,1) such that

n

∑
i=1

(
f ′ (si)

)−1
= n.

Hint: Let 0 = t0 < t1 < · · · < tn = 1 and pick xi ∈ f−1 (ti) such that these xi are
increasing and xn = 1,x0 = 0. Explain why you can do this. Then argue

ti+1− ti = f (xi+1)− f (xi) = f ′ (si)(xi+1− xi)

and so
xi+1− xi

ti+1− ti
=

1
f ′ (si)

Now choose the ti to be equally spaced.

13. Show that (x+1)3/2− x3/2 > 2 for all x ≥ 2. Explain why for n a natural number
larger than or equal to 1, there exists a natural number m such that (n+1)3 >m2 > n3.
Hint: Verify directly for n = 1 and use the above inequality to take care of the case
where n≥ 2. This shows that between the cubes of any two natural numbers there is
the square of a natural number.

7.10 Derivatives of Inverse Functions
It happens that if f is a differentiable one to one function defined on an interval, [a,b] , and
f ′ (x) exists and is non zero then the inverse function f−1 has a derivative at the point f (x) .
Recall that f−1 is defined according to the formula

f−1 ( f (x)) = x.

Let f : [a,b]→ R be a continuous function. Recall from Theorem 7.5.1

f ′ (a)≡ lim
x→a+

f (x)− f (a)
x−a

, f ′ (b)≡ lim
x→b−

f (x)− f (b)
x−b

.

Recall the notation x→ a+ means that only x > a are considered in the definition of
limit, the notation x→ b− defined similarly. Thus, this definition includes the derivative of
f at the endpoints of the interval and to save notation,

f ′ (x1)≡ lim
x→x1

f (x)− f (x1)

x− x1

where it is understood that x is always in [a,b] .
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Theorem 7.10.1 Let f : [a,b]→ R be continuous and one to one. Suppose f ′ (x1)

exists for some x1 ∈ [a,b] and f ′ (x1) ̸= 0. Then
(

f−1
)′
( f (x1)) exists and is given by the

formula,
(

f−1
)′
( f (x1)) =

1
f ′(x1)

.

Proof: As above, Lemma 6.4.3, f is either strictly increasing or strictly decreasing on
[a,b] and f−1 is continuous. Always y will be in the interval f ([a,b]) if x1 is at an end
point. Then, from assumption that f ′ (x1) exists,

|y− f (x1)|=
∣∣ f ( f−1 (y)

)
− f (x1)

∣∣= ∣∣ f ′ (x1)
(

f−1 (y)− x1
)
+o
(

f−1 (y)− x1
)∣∣

by continuity, if |y− f (x1)| is small enough, then
∣∣ f−1 (y)− x1

∣∣ is small enough that

∣∣o( f−1 (y)− x1
)∣∣< | f ′ (x1)|

2

∣∣ f−1 (y)− x1
∣∣ .

Hence, if |y− f (x1)| is sufficiently small, then from the triangle inequality of the form
|p−q| ≥ ||p|− |q|| ,

|y− f (x1)| ≥
∣∣ f ′ (x1)

∣∣ ∣∣ f−1 (y)− x1
∣∣− | f ′ (x1)|

2

∣∣ f−1 (y)− x1
∣∣

=
| f ′ (x1)|

2

∣∣ f−1 (y)− x1
∣∣

It follows that for |y− f (x1)| small enough,∣∣∣∣∣o
(

f−1 (y)− x1
)

y− f (x1)

∣∣∣∣∣≤
∣∣∣∣∣o
(

f−1 (y)− x1
)

f−1 (y)− x1

∣∣∣∣∣ 2
| f ′ (x1)|

Then, using continuity of the inverse function again, it follows that if |y− f (x1)| is possibly
still smaller, then f−1 (y)−x1 is sufficiently small that the right side of the above inequality
is no larger than ε . Since ε is arbitrary, it follows

o
(

f−1 (y)− x1
)
= o(y− f (x1))

Now from differentiability of f at x1,

y− f (x1) = f
(

f−1 (y)
)
− f (x1) = f ′ (x1)

(
f−1 (y)− x1

)
+o
(

f−1 (y)− x1
)

= f ′ (x1)
(

f−1 (y)− x1
)
+o(y− f (x1))

= f ′ (x1)
(

f−1 (y)− f−1 ( f (x1))
)
+o(y− f (x1))

Therefore,

f−1 (y)− f−1 ( f (x1)) =
1

f ′ (x1)
(y− f (x1))+o(y− f (x1))

From the definition of the derivative, this shows that
(

f−1
)′
( f (x1)) =

1
f ′(x1)

. ■
The following obvious corollary comes from the above by not bothering with end

points. In this case, we can also consider the case where f is defined on an open set in
F and has values in F where F is either R or C. The new feature is that it might not make
sense to consider one sided derivatives if F= C.
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Corollary 7.10.2 Let U be an open set in F and let f : U → F be one to one and
continuous such that f ′ (x1) ̸= 0 for x1 ∈U. Then, assuming f (U) is an open set and f−1

is also continuous at f (x1),3 it follows that
(

f−1
)′
( f (x1)) =

1
f ′(x1)

.

Proof: The proof is exactly the same as the one given above except you don’t consider
the case of an endpoint and |·| refers to the absolute value in either C or R.

Incidentally, the above argument works with virtually no change for n dimensional
situations.

This is one of those theorems which is very easy to remember if you neglect the difficult
questions and simply focus on formal manipulations. Consider the following.

f−1 ( f (x)) = x.

Now use the chain rule on both sides to write(
f−1)′ ( f (x)) f ′ (x) = 1,

and then divide both sides by f ′ (x) to obtain(
f−1)′ ( f (x)) =

1
f ′ (x)

.

Of course this gives the conclusion of the above theorem rather effortlessly and it is formal
manipulations like this which aid in remembering formulas such as the one given in the
theorem.

Example 7.10.3 Let f (x)= 1+x2+x3+7. Show that f has an inverse and find
(

f−1
)′
(8) .

I am not able to find a formula for the inverse function. This is typical in useful ap-
plications so you need to get used to this idea. The methods of algebra are insufficient to
solve hard problems in analysis. You need something more. The question is to determine
whether f has an inverse. To do this,

f ′ (x) = 2x+3x2 +7 > 0

By Corollary 7.8.6 on Page 147, this function is strictly increasing on R and so it has an
inverse function although I have no idea how to find an explicit formula for this inverse
function. However, I can see that f (0) = 8 and so by the formula for the derivative of an
inverse function, (

f−1)′ (8) = ( f−1)′ ( f (0)) =
1

f ′ (0)
=

1
7
.

7.11 Derivatives and Limits of Sequences
When you have a function which is a limit of a sequence of functions, when can you say
the derivative of the limit function is the limit of the derivatives of the functions in the
sequence? The following theorem seems to be one of the best results available. It is based
on the mean value theorem. Thus it is understood that the functions are real valued and
defined on an interval of R. First of all, recall Definition 6.9.6 on Page 117 listed here for
convenience.

3In fact, this last assumption on the continuity of the inverse function is redundant but this is not a topic for
this book. In case that U is an open interval this was proved earlier, but it also is true even if U is an open subset
of C or Rp for p > 1.
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Definition 7.11.1 Let { fn} be a sequence of functions defined on D. Then { fn} is
said to converge uniformly to f if it converges pointwise to f and for every ε > 0 there
exists N such that for all n≥ N, | f (x)− fn (x)|< ε for all x ∈ D.

To save on notation, denote by ∥k∥ ≡ sup{|k (ξ )| : ξ ∈ D} . Then

∥k+ l∥ ≤ ∥k∥+∥l∥ (7.15)

because for each ξ ∈ D, |k (ξ )+ l (ξ )| ≤ ∥k∥+ ∥l∥and taking sup yields 7.15. From the
definition of uniform convergence, you see that fn converges uniformly to f is the same as
saying limn→∞ ∥ fn− f∥ = 0. Now here is the theorem. Note how the mean value theorem
is one of the principal parts of the argument.

Theorem 7.11.2 Let (a,b) be an open interval and let fk : (a,b)→ R be differen-
tiable and suppose there exists x0 ∈ (a,b) such that

{ fk (x0)} converges,{
f ′k
}

converges uniformly to g

Then there exists a function f defined on (a,b) such that

fk→ f uniformly,

and f ′ = g.

Proof: By the mean value theorem,

( fk (x)− fm (x))− ( fk (x0)− fm (x0)) =
(

f ′k (tkm)− f ′m (tkm)
)
(x− x0)

and so, if k,m is large enough,

| fk (x)− fm (x)| ≤ | fk (x0)− fm (x0)|+
∥∥ f ′k− f ′m

∥∥< ε

2

provided m,k are large enough. Therefore, ∥ fk− fm∥< ε if k,m are large enough showing
that { fk} converges uniformly to a continuous function f by Theorem 6.9.7. That is

∥ fk− f∥→ 0

I want to show that f ′ exists and equals g.
Let c ∈ (a,b) and define

gn (x,c)≡
{ fn(x)− fn(c)

x−c if x ̸= c
f ′n (c) if x = c

.

Thus x→ gn (x,c) is continuous.
Claim : For each c, x→ gn (x,c) converges uniformly to a continuous function hc, on

(a,b) and hc (c) = g(c).
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Proof: Let x ̸= c. Then by the mean value theorem applied to the function x→ fn (x)−
fm (x),

|gn (x,c)−gm (x,c)|

=

∣∣∣∣ fn (x)− fm (x)− ( fn (c)− fm (c))
x− c

∣∣∣∣
=

∣∣ f ′n (ξ )− f ′m (ξ )
∣∣≤ ∣∣ f ′n (ξ )−g(ξ )

∣∣+ ∣∣g(ξ )− f ′m (ξ )
∣∣

≤
∥∥ f ′n−g

∥∥+∥∥ f ′m−g
∥∥

By the assumption that { f ′n} converges uniformly to g, it follows each of the last two terms
converges to 0 as n, m→ ∞. If x = c, then

|gn (c,c)−gm (c,c)|=
∣∣ f ′n (c)− f ′m (c)

∣∣≤ ∥∥ f ′n−g
∥∥+∥∥ f ′m−g

∥∥
Thus x→ gn (x,c) is uniformly Cauchy and must converge uniformly to a continuous func-
tion hc by Theorem 6.9.7 and Corollary 6.9.10. Also hc (c) = g(c) by the assumption that
f ′k converges uniformly to g. This proves the claim.

Now to complete the proof of the theorem, for c given and x ̸= c,

f (x)− f (c)
x− c

= lim
n→∞

fn (x)− fn (c)
x− c

= lim
n→∞

gn (x,c) = hc (x) .

Since hc is continuous,

f ′ (c) = lim
x→c

f (x)− f (c)
x− c

= lim
x→c

hc (x) = hc (c) = g(c) . ■

7.12 Exercises
1. It was shown earlier that the nth root of a positive number exists whenever n is a

positive integer. Let y = x1/n. Prove y′ (x) = 1
n x(1/n)−1.

2. Now for positive x and p,q positive integers, y = xp/q is defined by y = q
√

xp. Find
and prove a formula for dy/dx.

3. For 1≥ x≥ 0, and p≥ 1, show that (1− x)p ≥ 1− px. Hint: This can be done using
the mean value theorem. Define f (x) ≡ (1− x)p− 1+ px and show that f (0) = 0
while f ′ (x)≥ 0 for all x ∈ (0,1) .

4. Using the result of Problem 3 establish Raabe’s Test, an interesting variation on the
ratio test. This test says the following. Suppose there exists a constant, C and a
number p such that ∣∣∣∣ak+1

ak

∣∣∣∣≤ 1− p
k+C

=
1

C+ k
(C+ k− p)

for all k large enough. Then if p > 1, it follows that ∑
∞
k=1 ak converges absolutely.

Hint: Let bk ≡ k−1+C and note that for all k large enough, bk > 1. Now conclude
that there exists an integer, k0 such that bk0 > 1 and for all k≥ k0 the given inequality
above holds. Use Problem 3 to conclude that∣∣∣∣ak+1

ak

∣∣∣∣≤ 1− p
k+C

≤
(

1− 1
k+C

)p

=

(
bk

bk+1

)p
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showing |ak|bp
k is decreasing for k≥ k0. Thus |ak| ≤M/bp

k = M/(k−1+C)p . Now
use comparison theorems and the p series to obtain the conclusion of the theorem.

5. The graph of a function y = f (x) is said to be concave up or more simply “convex” if
whenever (x1,y1) and (x2,y2) are two points such that yi ≥ f (xi) , it follows that for
each point, (x,y) on the straight line segment joining (x1,y1) and (x2,y2) ,y≥ f (x) .
Show that if f is twice differentiable on an open interval, (a,b) and f ′′ (x)> 0, then
the graph of f is convex.

6. Show that if the graph of a function f defined on an interval (a,b) is convex, then if
f ′ exists on (a,b) , it must be the case that f ′ is a non decreasing function. Note you
do not know the second derivative exists.

7. Convex functions defined in Problem 5 have a very interesting property. Suppose
{ai}n

i=1 are all nonnegative, sum to 1, and suppose φ is a convex function defined on
R. Then

φ

(
n

∑
k=1

akxk

)
≤

n

∑
k=1

akφ (xk) .

Verify this interesting inequality.

8. If φ is a convex function defined on R, show that φ must be continuous at every
point.

9. Prove the second derivative test. If f ′ (x) = 0 at x ∈ (a,b) , an interval on which f is
defined and both f ′, f ′′ exist and are continuous on this interval, then if f ′′ (x)> 0, it
follows f has a local minimum at x and if f ′′ (x)< 0, then f has a local maximum at
x. Show that if f ′′ (x) = 0 no conclusion about the nature of the critical point can be
drawn. It might be a local minimum, local maximum or neither.

10. Recall the Bernstein polynomials which were used to prove the Weierstrass approxi-
mation theorem. For f a continuous function on [0,1] ,

pn (x) =
n

∑
k=0

(
n
k

)
f
(

k
n

)
xk (1− x)n−k

It was shown these converge uniformly to f on [0,1] . Now suppose f ′ exists and is
continuous on [0,1] . Show p′n converges uniformly to f ′ on [0,1] . Hint: Differentiate
the above formula and massage to finally get

p′n (x) =
n−1

∑
k=0

(
n−1

k

)(
f
( k+1

n

)
− f

( k
n

)
1/n

)
xk (1− x)n−1−k .

Then form the (n−1) Bernstein polynomial for f ′ and show the two are uniformly
close. You will need to estimate an expression of the form

f ′
(

k
n−1

)
−

f
( k+1

n

)
− f

( k
n

)
1/n

which will be easy to do because of the mean value theorem and uniform continuity
of f ′.
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11. In contrast to Problem 10, consider the sequence of functions

{ fn (x)}∞

n=1 =

{
x

1+nx2

}∞

n=1
.

Show it converges uniformly to f (x)≡ 0. However, f ′n (0) converges to 1, not f ′ (0).
Hint: To show the first part, find the value of x which maximizes the function∣∣∣ x

1+nx2

∣∣∣ . You know how to do this. Then plug it in and you will have an estimate
sufficient to verify uniform convergence.

12. This next sequence of problems will give an independent treatment of the Riemann
integral of piecewise continuous functions without the use of Riemann sums, being
based instead on the mean value theorem and the Weierstrass theorem. For p(x)
a polynomial on [a,b] , let P′ (x) = p(x) . Define

∫ b
a p(x)dx ≡ P(b)−P(a). Show,

using the mean value theorem that this definition is well defined for polynomials
and satisfies

∫ b
a (α p+βq)dx = α

∫ b
a pdx+β

∫ b
a qdx. Also show

∫ b
a pdx+

∫ c
b pdx =∫ c

a pdx.

13. For f continuous on [a,b] , using the Weierstrass theorem, let ∥pn− f∥ → 0 where
pn is a polynomial and ∥g∥ ≡ max{|g(x)| : x ∈ [a,b]} . Then define

∫ b
a f (x)dx ≡

limn→∞

∫ b
a pn (x)dx. Show this is well defined. Hint: If ∥pn∥ ,∥p̂n∥ → 0, then show

∥pn− p̂m∥ is small whenever n,m are large. Use the mean value theorem to verify
that

∣∣∣∫ b
a (pn− p̂m)dx

∣∣∣ is small. Thus
{∫ b

a pn

}
is a Cauchy sequence and if another

{ p̂n} is chosen,
{∫ b

a p̂n

}
is a Cauchy sequence which converges to the same thing.

14. For f continuous, show that if F (x) ≡
∫ x

a f dt, Then F ′ (x) = f (x) so any con-
tinuous function has an antiderivative, and for any a ̸= b,

∫ b
a f dx = G(b)−G(a)

whenever G′ = f on the open interval determined by a,b and G continuous on the
closed interval determined by a,b. Also verify that

∫ b
a (α f +βg)dx = α

∫ b
a f dx+

β
∫ b

a gdx,
∫ b

a f dx+
∫ c

b f dx =
∫ c

a f dx, and
∫ b

a 1dx = b− a, and
∫ b

a f dx = f (z)(b−a)
for some z ∈ (a,b). Also explain the change of variables formula from calculus,∫ b

a f (g(x))g′ (x)dx = F (g(b))−F (g(a)) and integration by parts.

15. If f (x+)≡ limy→x+ f (y) and f (x−)≡ limy→x− f (y) both exist for all x ∈ [a,b] and
if f is continuous on [αk−1,αk] where a = α0 < α1 < · · ·< αn = b, then define∫ b

a
f dx≡

n

∑
k=1

∫
αk

αk−1

f dx≡
n

∑
k=1

Gk ( f (αk−))−Gk ( f (αk−1+))

where G′k = f on (αk−1,αk) with Gk continuous on [αk−1,αk] . Show this coincides
with the above definition on each sub interval and is a well defined way to define the
integral of a function which is piecewise continuous, meaning: continuous on each
sub interval and possessing right and left limits at every point.

16. Generalize differentiability to the case where f has values in Fp. Simply replace |·|
with ∥·∥ in the definition. Thus o(u) means lim∥u∥→0

o(u)
∥u∥ = 0. Verify that if f (t) =

( f1 (t) , · · · , fp (t)) for t ∈ [a,b] , then f is differentiable (right or left differentiable at
the end points) if and only if this is true for each of the component functions and that
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f ′ (t) =
(

f ′1 (t) , · · · , f ′p (t)
)
. Also show that it makes absolutely no difference whether

we use the Euclidean norm |·| or the maximum norm ∥·∥ in defining o(u).



Chapter 8

Power Series
8.1 Functions Defined in Terms of Series

It is time to consider functions other than polynomials. In particular it is time to give a
mathematically acceptable definition of functions like ex,sin(x) and cos(x) . It has been
assumed these functions are known from beginning calculus but this is a pretence. Most
students who take calculus come through it without a complete understanding of the circu-
lar functions. This is because of the reliance on plane geometry in defining them. Fortu-
nately, these functions can be completely understood in terms of power series rather than
wretched plane geometry. The exponential function can also be defined in a simple manner
using power series. It is tacitly assumed in this presentation that x ∈ F, either R or C.

Definition 8.1.1 Let {ak}∞

k=0 be a sequence of numbers. The expression,
∞

∑
k=0

ak (x−a)k (8.1)

is called a Taylor series centered at a. This is also called a power series centered at a. It is
understood that x and a ∈ F, that is, either C or R.

In the above definition, x is a variable. Thus you can put in various values of x and ask
whether the resulting series of numbers converges. Defining D to be the set of all values of
x such that the resulting series does converge, define a new function f defined on D having
values in F as f (x)≡∑

∞
k=0 ak (x−a)k . This might be a totally new function, one which has

no name. Nevertheless, much can be said about such functions. The following lemma is
fundamental in considering the form of D which always turns out to be of the form B(a,r)
along with possibly some points z such that |z−a|= r. First here is a simple lemma which
will be useful.

Lemma 8.1.2 limn→∞ n1/n = 1.

Proof: It is clear n1/n ≥ 1. Let n1/n = 1+ en where 0 ≤ en. Then raising both sides to
the nth power for n > 1 and using the binomial theorem,

n = (1+ en)
n =

n

∑
k=0

(
n
k

)
ek

n ≥ 1+nen +(n(n−1)/2)e2
n ≥ (n(n−1)/2)e2

n

Thus 0≤ e2
n ≤ n

n(n−1) =
1

n−1 . From this the desired result follows because
∣∣n1/n−1

∣∣= en ≤
1√
n−1

.■

Theorem 8.1.3 Let ∑
∞
k=0 ak (x−a)k be a Taylor series. Then there exists r≤∞ such

that the Taylor series converges absolutely if |x−a| < r. Furthermore, if |x−a| > r, the
Taylor series diverges. If λ < r then the Taylor series converges uniformly on the closed
disk |x−a| ≤ λ .

Proof: Note limsupk→∞

∣∣∣ak (x−a)k
∣∣∣1/k

= limsupk→∞ |ak|1/k |x−a| .Then by the root
test, the series

converges absolutely if |x−a| limsupk→∞ |ak|1/k < 1
diverges spectacularly if |x−a| limsupk→∞ |ak|1/k > 1.

157
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Thus define

r ≡


1/ limsupk→∞ |ak|1/k if ∞ > limsupk→∞ |ak|1/k > 0
∞ if limsupk→∞ |ak|1/k = 0
0 if limsupk→∞ |ak|1/k = ∞

Next let λ be as described. Then if |x−a| ≤ λ , then

lim sup
k→∞

∣∣∣ak (x−a)k
∣∣∣1/k

= lim sup
k→∞

|ak|1/k |x−a| ≤ λ lim sup
k→∞

|ak|1/k ≤ λ

r
< α < 1

It follows that for all k large enough and such x,
∣∣∣ak (x−a)k

∣∣∣< αk. Then by the Weierstrass
M test, convergence is uniform. ■

Note that the radius of convergence r is given by limsupk→∞ |ak|1/k r = 1

Definition 8.1.4 The number in the above theorem is called the radius of conver-
gence and the set on which convergence takes place is called the disc of convergence.

Now the theorem was proved using the root test but often you use the ratio test to find
the radius of convergence. This kind of thing is typical in math and one must adjust to this
fact. The proof of a theorem does not always yield a way to find the thing the theorem
speaks about. The above is an existence theorem. There exists a disk of convergence from
the above theorem. You find it in specific cases any way that is most convenient.

Example 8.1.5 Find the disc of convergence of the Taylor series ∑
∞
n=1

xn

n .

Use Corollary 5.4.10. limn→∞

(
|x|n
n

)1/n
= limn→∞

|x|
n√n = |x| because, as shown earlier,

limn→∞
n
√

n = 1 and so if |x|< 1 the series converges. The points satisfying |z|= 1 require
special attention. When x = 1 the series diverges because it reduces to ∑

∞
n=1

1
n . At x =−1

the series converges because it reduces to ∑
∞
n=1

(−1)n

n and the alternating series test applies
and gives convergence. What of the other numbers z satisfying |z| = 1? It turns out this
series will converge at all these numbers by the Dirichlet test.

Example 8.1.6 Find the radius of convergence of ∑
∞
n=1

nn

n! xn.

Apply the ratio test. Taking the ratio of the absolute values of the (n+1)th and the nth

terms
(n+1)(n+1)

(n+1)n! |x|
n+1

nn

n! |x|
n = (n+1)n |x|n−n = |x|

(
1+

1
n

)n

→ |x|e

Therefore the series converges absolutely if |x|e< 1 and diverges if |x|e> 1. Consequently,
r = 1/e. This problem assumes that you remember from calculus the last limit. If not, this
will be discussed later.
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8.2 Operations on Power Series
It is desirable to be able to differentiate and multiply power series. Recall

f ′ (x)≡ lim
h→0

f (x+h)− f (x)
h

Here h,x, f all can have values in C. The definition is the same. The following theorem
says you can differentiate power series in the most natural way on the disk of convergence,
just as you would differentiate a polynomial. This theorem may seem obvious, but it is a
serious mistake to think this. You usually cannot differentiate an infinite series whose terms
are functions even if the functions are themselves polynomials. The following is special
and pertains to power series. It is another example of the interchange of two limits, in this
case, the limit involved in taking the derivative and the limit of the sequence of finite sums.

When you formally differentiate a series term by term, the result is called the derived
series.

Theorem 8.2.1 Let ∑
∞
n=0 an (x−a)n be a Taylor series having radius of convergence

R > 0 and let

f (x)≡
∞

∑
n=0

an (x−a)n (8.2)

for |x−a|< R. Then

f ′ (x) =
∞

∑
n=0

ann(x−a)n−1 =
∞

∑
n=1

ann(x−a)n−1 (8.3)

and this new differentiated power series, the derived series, has radius of convergence
equal to R. Also, f (x) given by the Taylor series is infinitely differentiable on the interior
of its disk of convergence.

Proof: First consider the claim that the derived series has radius of convergence equal
to R. Let R̂ be the radius of convergence of the derived series. Then from Proposition
4.10.13 and Lemma 8.1.2,

1
R̂
≡ lim sup

n→∞

|an|1/n n1/n = lim sup
n→∞

|an|1/n ≡ 1
R
,

and so R̂ = R. If limsupn→∞ |an|1/n = 0, then limsupn→∞ |an|1/n n1/n and in this case, the
series and derived series both have radius of convergence equal to ∞.

Now let r < R, the radius of convergence of both series, and suppose |x−a|< r. Let δ

be small enough that if |h|< δ , then

|x+h−a| ≤ |x−a|+ |h|< r

also. Thus, limsupk→∞ |ak|1/k r < 1.
Then for |h|< δ , consider the difference quotient.

f (x+h)− f (x)
h

=
1
h

∞

∑
k=0

ak

(
(x+h−a)k− (x−a)k

)
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Using the binomial theorem,

f (x+h)− f (x)
h

=
1
h

∞

∑
k=0

ak

(
(x+h−a)k− (x−a)k

)
=

1
h

∞

∑
k=1

ak

(
k

∑
j=0

(
k
j

)
(x−a) j hk− j− (x−a)k

)

=
∞

∑
k=1

ak

(
k−1

∑
j=0

(
k
j

)
(x−a) j h(k−1)− j

)
Then ∣∣∣∣∣ f (x+h)− f (x)

h
−

∞

∑
k=1

akk (x−a)k−1

∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
k=1

ak

(
k−1

∑
j=0

(
k
j

)
(x−a) j h(k−1)− j− k (x−a)k−1

)∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
k=2

ak

(
k−1

∑
j=0

(
k
j

)
(x−a) j h(k−1)− j− k (x−a)k−1

)∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
k=2

ak

(
k−2

∑
j=0

(
k
j

)
(x−a) j h(k−1)− j

)∣∣∣∣∣
Therefore,∣∣∣∣∣ f (x+h)− f (x)

h
−

∞

∑
k=1

akk (x−a)k−1

∣∣∣∣∣≤ ∞

∑
k=2
|ak|
(

k−2

∑
j=0

(
k
j

)
|x−a| j |h|(k−1)− j

)

Now it is clear that k (k−1)
(

k−2
j

)
≥
(

k
j

)
and so

= |h|
∞

∑
k=2
|ak|
(

k−2

∑
j=0

(
k
j

)
|x−a| j |h|(k−2)− j

)

≤ |h|
∞

∑
k=2
|ak|k (k−1)

k−2

∑
j=0

(
k−2

j

)
|x−a| j |h|(k−2)− j

= |h|
∞

∑
k=2
|ak|k (k−1)(|x−a|+ |h|)k−2 < |h|

∞

∑
k=2
|ak|k (k−1)rk−2 (8.4)

By assumption and what was just observed about limk→∞ k1/k,

lim sup
k→∞

(
|ak|k (k−1)rk−2

)1/k
< 1

and so the series on the right in 8.4 converges. Therefore, assuming |h| is small enough,∣∣∣∣∣ f (x+h)− f (x)
h

−
∞

∑
k=1

akk (x−a)k−1

∣∣∣∣∣<C |h|
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which shows that

lim
h→0

∣∣∣∣∣ f (x+h)− f (x)
h

−
∞

∑
k=1

akk (x−a)k−1

∣∣∣∣∣= 0

Obviously, you can differentiate a power series infinitely often on the interior of the disk of
convergence by simply repeating this theorem. ■

As an immediate corollary, it is possible to characterize the coefficients of a Taylor
series.

Corollary 8.2.2 Let ∑
∞
n=0 an (x−a)n be a Taylor series with radius of convergence r >

0 and let

f (x)≡
∞

∑
n=0

an (x−a)n for |x−a|< r (8.5)

Then

an =
f (n) (a)

n!
. (8.6)

Also a Taylor series is infinitely differentiable on the interior of its disk of convergence.

Proof: From 8.5, f (a) = a0 ≡ f (0) (a)/0!. From Theorem 8.2.1,

f ′ (x) =
∞

∑
n=1

ann(x−a)n−1 = a1 +
∞

∑
n=2

ann(x−a)n−1 .

Now let x = a and obtain that f ′ (a) = a1 = f ′ (a)/1!. Next use Theorem 8.2.1 again to
take the second derivative and obtain

f ′′ (x) = 2a2 +
∞

∑
n=3

ann(n−1)(x−a)n−2

let x = a in this equation and obtain a2 = f ′′ (a)/2= f ′′ (a)/2!. Continuing this way proves
the corollary. ■

This also shows the coefficients of a Taylor series are unique. If

∞

∑
k=0

ak (x−a)k =
∞

∑
k=0

bk (x−a)k

for all x in some open set containing a, then ak = bk for all k.
It is possible to begin the study of complex analysis by defining the analytic functions

to be those which are correctly given by a power series and this is sometimes done. For
now, this will be the meaning of the word “analytic”. The above theorem and corollary are
the fundamental ideas in doing this.

Example 8.2.3 Find the sum ∑
∞
k=1 k2−k.

It may not be obvious what this sum equals but with the above theorem it is easy to
find. From the formula for the sum of a geometric series, 1

1−t = ∑
∞
k=0 tk if |t| < 1. Dif-

ferentiate both sides to obtain (1− t)−2 = ∑
∞
k=1 ktk−1 whenever |t|< 1. Let t = 1/2. Then

4 = 1
(1−(1/2))2 = ∑

∞
k=1 k2−(k−1) and so if you multiply both sides by 2−1, 2 = ∑

∞
k=1 k2−k.
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The above theorem shows that a power series is infinitely differentiable. Does it go
the other way? That is, if the function has infinitely many continuous derivatives, is it
correctly represented as a power series? The answer is no. See Problem 6 on Page 178
for an example. In fact, this is an important example and distinction. The modern theory
of partial differential equations is built on just such functions which have many derivatives
but no correct power series.

8.3 The Special Functions of Elementary Calculus
With this material on power series, it becomes possible to give an understandable treatment
of the exponential function exp and the circular functions, sin and cos. A definition could
be given directly for x ∈ C but in this section, it is assumed x ∈ R.

8.3.1 Sines and Cosines
To begin with here is a definition of sin,cos, and exp.

Definition 8.3.1 Define for all x ∈ R

sin(x)≡
∞

∑
k=0

(−1)k x2k+1

(2k+1)!
, cos(x)≡

∞

∑
k=0

(−1)k x2k

(2k)!
,exp(x)≡

∞

∑
k=0

xk

k!
.

Observation 8.3.2 The above series converge for all x ∈ F. This is most easily seen
using the ratio test. Consider the series for sin(x) first. By the ratio test the series converges
whenever

lim
k→∞

|x|2k+3

(2k+3)!

|x|2k+1

(2k+1)!

= lim
k→∞

1
(2k+3)(2k+1)

|x|2

is less than 1. However, this limit equals 0 for any x and so the series converges for all
x. The verification of convergence for the other two series is left for you to do and is no
harder. In what follows, I will emphasize x real. To do it for arbitrary x ∈ C is really a
topic for complex analysis but you use the same series to define these functions.

Now that sin(x) and cos(x) have been defined, the properties of these functions must
be considered. First, here is a fundamental lemma.

Lemma 8.3.3 Suppose y is an R valued differentiable function and it solves the initial
value problem,y′′+ y = 0, y(0) = 0,y′ (0) = 0. Then y(x) = 0.

Proof: Multiply the equation by y′ and use the chain rule to write

d
dt

(
1
2
(
y′
)2

+
1
2

y2
)
= 0.

Then by Corollary 7.8.5 1
2 (y
′)2+ 1

2 y2 equals a constant. From the initial conditions, y(0) =
y′ (0) = 0, the constant can only be 0. ■

Theorem 8.3.4 sin′ (x) = cos(x) and cos′ (x) =−sin(x) . Also cos(0) = 1, sin(0) =
0 and

cos2 (x)+ sin2 (x) = 1 (8.7)
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for all x. Also sin(−x) = −sin(x) while cos(−x) = cos(x) and the usual trig. identities
hold,

sin(x+ y) = sin(x)cos(y)+ sin(y)cos(x) (8.8)
cos(x+ y) = cos(x)cos(y)− sin(x)sin(y) (8.9)

Proof: That sin′ (x) = cos(x) and cos′ (x) =−sin(x) follows right away from differen-
tiating the power series term by term using Theorem 8.2.1. It follows from the series that
cos(0) = 1 and sin(0) = 0 and sin(−x) = −sin(x) while cos(−x) = cos(x) because the
series for sin(x) only involves odd powers of x while the series for cos(x) only involves
even powers.

For x ∈ R, let f (x) = cos2 (x)+ sin2 (x) , it follows from what was just discussed that
f (0) = 1. Also from the chain rule, f ′ (x) = 2cos(x)(−sin(x))+2sin(x)cos(x) = 0 and
so by Corollary 7.8.5, f (x) is constant for all x ∈R. But f (0) = 1 so the constant can only
be 1. Thus

cos2 (x)+ sin2 (x) = 1 (8.10)

as claimed.
It only remains to verify the identities. Consider 8.8 first. Fixing y and considering both

sides as a function of x, it follows from the above that both sides of the identity satisfy the
initial value problem

y′′+ y = 0, y(0) = sin(y) ,y′ (0) = cos(y)

Therefore, the difference satisfies the initial value problem of Lemma 8.3.3. Therefore, by
this lemma, the difference equals 0. The next identity is handled similarly. ■

Note that 8.10 shows that the ordered pair (cosx,sinx) lies on the unit circle with center
at (0,0).

Proposition 8.3.5 The following important limits hold for a,b ̸= 0.

lim
x→0

sin(ax)
bx

=
a
b
, lim

x→0

1− cos(x)
x

= 0.

Proof: From the definition of sin(x) given above, sin(ax)
bx =

∑
∞
k=0 (−1)k (ax)2k+1

(2k+1)!

bx
=

ax+∑
∞
k=1 (−1)k (ax)2k+1

(2k+1)!

bx
=

a+∑
∞
k=1 (−1)k (ax)2k

(2k+1)!

b

Now
∣∣∣∑∞

k=1 (−1)k (ax)2k

(2k+1)!

∣∣∣ ≤ ∑
∞
k=1 |ax|2k = ∑

∞
k=1

(
|ax|2

)k
=
(
|ax|2

1−|ax|

)
whenever |ax| < 1.

Thus limx→0 ∑
∞
k=1 (−1)k (ax)2k

(2k+1)! = 0 and so limx→0
sin(ax)

bx = a
b .The other limit can be han-

dled similarly. ■
It is possible to verify the functions are periodic.

Lemma 8.3.6 There exists a positive number a, such that cos(a) = 0.

Proof: To prove this, note that cos(0) = 1 and so if it is false, it must be the case that
cos(x) > 0 for all positive x since otherwise, it would follow from the intermediate value
theorem there would exist a point, x where cosx = 0. Assume cos(x) > 0 for all x. Then
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by Corollary 7.8.6 it would follow that t→ sin t is a strictly increasing function on (0,∞) .
Also note that sin(0) = 0 and so sin(x) > 0 for all x > 0. This is because, by the mean
value theorem there exists t ∈ (0,x) such that

sin(x) = sin(x)− sin(0) = (cos(t))(x−0)> 0.

By 8.7, | f (x)| ≤ 1 for f = cos and sin . Let 0 < x < y. Then from the mean value
theorem, −cos(y)− (−cos(x)) = sin(t)(y− x) for some t ∈ (x,y) . Since t → sin(t) is
increasing, it follows

−cos(y)− (−cos(x)) = sin(t)(y− x)≥ sin(x)(y− x) .

This contradicts the inequality |cos(y)| ≤ 1 for all y because the right side is unbounded as
y→ ∞. ■

Theorem 8.3.7 Both cos and sin are periodic.

Proof: Define a number π such that π

2 ≡ inf{x : x > 0 and cos(x) = 0} . Then π

2 > 0
because cos(0) = 1 and cos is continuous. On

[
0, π

2

]
cos is positive and so it follows sin is

increasing on this interval. Therefore, from 8.7, sin
(

π

2

)
= 1. Now from Theorem 8.3.4,

cos(π) = cos
(

π

2
+

π

2

)
=−sin2

(
π

2

)
=−1, sin(π) = 0

Using Theorem 8.3.4 again,

cos(2π) = cos2 (π) = 1 = cos(0) ,

and so sin(2π) = 0. From Theorem 8.3.4,

cos(x+2π) = cos(x)cos(2π)− sin(x)sin(2π) = cos(x)

Thus cos is periodic of period 2π. By Theorem 8.3.4,

sin(x+2π) = sin(x)cos(2π)+ cos(x)sin(2π) = sin(x)

Using 8.7, it follows sin is also periodic of period 2π. ■
Note that 2π is the smallest period for these functions. This can be seen by observing

that the above theorem and proof imply that cos is positive on
(
0, π

2

)
,
( 3π

2 ,2π
)

and negative
on
(

π

2 ,
3π

2

)
and that similar observations on sin are valid. Also, by considering where these

functions are equal to 0, 1, and -1 along with where they are positive and negative, it
follows that whenever a2 + b2 = 1, there exists a unique t ∈ [0,2π) such that cos(t) = a
and sin(t) = b. For example, if a and b are both positive, then since cos is continuous and
strictly decreases from 1 to 0 on

[
0, π

2

]
, it follows there exists a unique t ∈ (0,π/2) such

that cos(t) = a. Since b > 0 and sin is positive on (0,π/2) , it follows sin(t) = b. No other
value of t in [0,2π) will work since only on (0,π/2) are both cos and sin positive. If a > 0
and b < 0 similar reasoning will show there exists a unique t ∈ [0,2π) with cos(t) = a and
sin(t) = b and in this case, t ∈ (3π/2,2π) . Other cases are similar and are left to the reader.
Thus, every point on the unit circle is of the form (cos t,sin t) for a unique t ∈ [0,2π).

This shows the unit circle is a smooth curve, however this notion will not be considered
here.
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Corollary 8.3.8 For all x ∈ R,sin(x+2π) = sin(x) , cos(x+2π) = cos(x)

Proof: Let y(x) ≡ sin(x+2π)− sin(x) . Then from the above, y′ (0) = y(0) = 0. It is
also clear from the above that y′′+ y = 0. Therefore, from Lemma 8.3.3 y = 0. Differenti-
ating the identity just obtained yields the second identity. ■

Are these the same as the circular functions you studied very sloppily in calculus and
trigonometry? They are.

If sin(x) defined above and sin(x) studied in a beginning calculus class both satisfy the
initial value problem y′′+y = 0, y(0) = 0,y′ (0) = 1 then they must be the same. However,
if you remember anything from calculus you will realize sin(x) used there does satisfy the
above initial value problem. If you don’t remember anything from calculus, then it does
not matter about harmonizing the functions. Just use the definition given above in terms of
a power series. Similar considerations apply to cos .

Of course all the other trig. functions are defined as earlier. Thus

tanx =
sinx
cosx

,cotx≡ cosx
sinx

,secx≡ 1
cosx

,cscx≡ 1
sinx

.

Using the techniques of differentiation, you can find the derivatives of all these.

8.3.2 The Exponential Function
Now it is time to consider the exponential function exp(x) defined above. To do this, it is
convenient to have the following uniqueness theorem.

Lemma 8.3.9 Suppose
y′− y = 0, y(0) = 0

Then y = 0. Also for all x ∈ R, exp(−x)(exp(x)) = 1

Proof: The function exp has been defined above in terms of a power series. From this
power series and Theorem 8.2.1 it follows that exp solves the above initial value problem.
Thus exp′ = exp . Multiply both sides of the differential equation by exp(−x) . Then using
the chain rule and product rule,

d
dx

(exp(−x)y(x)) = 0

and so exp(−x)y(x) = C, a constant. The constant can only be 0 because of the initial
condition. Therefore,

exp(−x)y(x) = 0 (∗)

for all x.
Now I claim exp(−x) and exp(x) are never equal to 0. This is because by the chain

rule, abusing notation slightly,

(exp(−x)exp(x))′ =−exp(−x)exp(x)+ exp(−x)exp(x) = 0

and so exp(−x)exp(x) =C a constant. However, this constant can only be 1 because this
is what it is when x = 0, a fact which follows right away from the definition in terms of
power series. Thus from ∗,y(x) = 0. ■
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Theorem 8.3.10 The function exp satisfies the following properties.

1. exp(x)> 0 for all x ∈ R, limx→∞ exp(x) = ∞, limx→−∞ exp(x) = 0.

2. exp is the unique solution to the initial value problem

y′− y = 0, y(0) = 1 (8.11)

3. For all x,y ∈ F
exp(x+ y) = exp(x)exp(y) (8.12)

4. exp is one to one mapping R onto (0,∞) .

Proof: To begin with consider 8.12. Fixing y it follows from the chain rule and the
definition using power series that

x→ exp(x+ y)− exp(x)exp(y)

satisfies the initial value problem of Lemma 8.3.9 and so it is 0. This shows 8.12.
8.11 has already been noted. It comes directly from the definition and was proved in

Lemma 8.3.9. The claim that exp(x)> 0 was also established in the proof of this lemma.
Now from the power series, it is obvious that exp(x)> 0 if x > 0 and by Lemma 8.3.9,

exp(x)−1 = exp(−x) , so it follows exp(−x) is also positive. Since exp(x)> ∑
2
k=0

xk

k! , it is
clear limx→∞ exp(x) = ∞ and it follows from this that limx→−∞ exp(x) = 0.

It only remains to verify 4. Let y ∈ (0,∞) . From the earlier properties, there exist x1
such that exp(x1) < y and x2 such that exp(x2) > y. Then by the intermediate value
theorem, there exists x ∈ (x1,x2) such that exp(x) = y. Thus exp maps onto (0,∞). It only
remains to verify exp is one to one. Suppose then that x1 < x2. By the mean value theorem,
there exists x ∈ (x1,x2) such that

exp(x)(x2− x1) = exp′ (x)(x2− x1) = exp(x2)− exp(x1) .

Since exp(x)> 0, it follows exp(x2) ̸= exp(x1). ■

8.4 ln and logb
In this section, the inverse function of x→ exp(x) is considered.

Definition 8.4.1 ln is the inverse function of exp . It follows from the definition of
inverse functions that ln : (0,∞)→ R , ln(exp(x)) = x, and exp(ln(x)) = x. The number e
is that number such that ln(e) = 1.

By Corollary 7.10.2, it follows ln is differentiable. This makes possible the following
simple theorem.

Theorem 8.4.2 The following basic properties are available for ln .

ln′ (x) =
1
x
. (8.13)

Also for all x,y > 0,
ln(xy) = ln(x)+ ln(y) , (8.14)

ln(1) = 0, ln(xm) = m ln(x) (8.15)

for all m an integer.
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Proof: Since exp(ln(x)) = x and ln′ exists, it follows

x ln′ (x) = exp(ln(x)) ln′ (x) = exp′ (ln(x)) ln′ (x)
= exp(ln(x)) ln′ (x) = x ln′ (x) = 1

and this proves 8.13. Next consider 8.14.

xy = exp(ln(xy)) , exp(ln(x)+ ln(y)) = exp(ln(x))exp(ln(y)) = xy.

Since exp was shown to be 1-1, it follows ln(xy) = ln(x)+ ln(y) . Next exp(0) = 1 and
exp(ln(1)) = 1 so ln(1) = 0 again because exp is 1-1. Let f (x) = ln(xm)−m ln(x) . Then
f (1) = ln(1)−m ln(1) = 0. Also, by the chain rule, f ′ (x) = 1

xm mxm−1−m 1
x = 0 and so

f (x) equals a constant. The constant can only be 0 because f (1) = 0. This proves the last
formula of 8.15 and completes the proof of the theorem. ■

The last formula tells how to define xα for any x > 0 and α ∈ R. I want to stress that
this is something new. Students are often deceived into thinking they know what xα means
for α a real number because they have a meaning for α an integer and with a little stretch
for α a rational number. Such deception should never be tolerated in mathematics.

Definition 8.4.3 Define xα for x > 0 and α ∈ R by ln(xα) = α ln(x) . In other
words, xα ≡ exp(α ln(x)) .

From Theorem 8.4.2 this new definition does not contradict the usual definition in the
case where α is an integer.

From this definition, the following properties are obtained.

Proposition 8.4.4 For x > 0 let f (x) = xα where α ∈ R. Then f ′ (x) = αxα−1.
Also xα+β = xα xβ and (xα)β = xαβ .

Proof: First consider the claim about the sum of the exponents.

xα+β ≡ exp((α +β ) ln(x)) = exp(α ln(x)+β ln(x))

= exp(α ln(x))exp(β ln(x))≡ xα xβ .

ln
(
(xα)β

)
= β ln(xα) = αβ ln(x) , ln

(
xαβ

)
= αβ ln(x) .

The claim about the derivative follows from the chain rule. f (x) = exp(α ln(x)) and so

f ′ (x) = exp(α ln(x))
α

x
≡ α

x
xα = α

(
x−1)xα = αxα−1.■

Definition 8.4.5 Define logb for any b > 0,b ̸= 1 by logb (x)≡
ln(x)
ln(b) .

Proposition 8.4.6 The following hold for logb (x) .

1. blogb(x) = x, logb (b
x) = x.

2. logb (xy) = logb (x)+ logb (y)

3. logb (x
α) = α logb (x)
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Proof: blogb(x) ≡ exp(ln(b) logb (x)) = exp
(

ln(b) ln(x)
ln(b)

)
= exp(ln(x)) = x and also

logb (b
x) = ln(bx)

ln(b) = x ln(b)
ln(b) = x. This proves 1.

Now consider 2.

logb (xy) =
ln(xy)
ln(b)

=
ln(x)
ln(b)

+
ln(y)
ln(b)

= logb (x)+ logb (y) .

Finally, logb (x
α) = ln(xα )

ln(b) = α
ln(x)
ln(b) = α logb (x) . ■

8.5 The Complex Exponential
What does eix mean? Here i2 =−1. Recall the complex numbers are of the form a+ ib and
are identified as points in the plane. For f (x) = eix, you would want

f ′′ (x) = i2 f (x) =− f (x)

so f ′′ (x)+ f (x) = 0. Also, you would want f (0) = e0 = 1, f ′ (0) = ie0 = i. One solution
to these conditions is f (x) = cos(x)+ isin(x) . Is it the only solution? Suppose g(x) is
another solution. Consider u(x) = f (x)−g(x) . Then it follows

u′′ (x)+u(x) = 0, u(0) = 0 = u′ (0) .

Thus both Reu and Imu solve the differential equation and 0 initial condition. By Lemma
8.3.3 both Reu and Imu are equal to 0. Thus the above is the only solution. Recall by
De’Moivre’s theorem

(cosx+ isinx)n = cos(nx)+ isin(nx)

for any integer n and so
(
eix
)n

= einx.
If you have a complex number x+ iy, you can write it as

√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)

and then note that
(

x√
x2+y2

, y√
x2+y2

)
is a point on the unit circle. Thus there is θ such that

this ordered pair is (cosθ ,sinθ) and so if you let r =
√

x2 + y2, the distance to the origin,
the complex number can be written in the form r (cosθ + isinθ) . From the above, this is
of the form reiθ . This is called the polar form of a complex number. You should verify that
with this convention, reiθ r̂eiθ̂ = rr̂ei(θ+θ̂). This reduces to using the trig identities for the
cosine and sine of the sum of two angles.

In particular, this shows how to parametrize a circle in C centered at 0 which has radius
r. It is just γ (t) = reit where t ∈ [0,2π]. By this is meant that as t moves from 0 to 2π, the
point γ (t) is on the circle of radius r and moves in the counter clockwise direction over the
circle.

8.6 The Binomial Theorem
The following is a very important example known as the binomial series. It was discovered
by Newton.
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Example 8.6.1 Find a Taylor series for the function (1+ x)α centered at 0 valid for |x|< 1.

Use Theorem 8.2.1 to do this. First note that if y(x)≡ (1+ x)α , then y is a solution of
the following initial value problem.

y′− α

(1+ x)
y = 0, y(0) = 1. (8.16)

Next it is necessary to observe there is only one solution to this initial value problem. To
see this, multiply both sides of the differential equation in 8.16 by (1+ x)−α . When this is
done, one obtains

d
dx

(
(1+ x)−α y

)
= (1+ x)−α

(
y′− α

(1+ x)
y
)
= 0. (8.17)

Therefore, from 8.17, there must exist a constant, C, such that (1+ x)−α y = C. However,
y(0) = 1 and so it must be that C = 1. Therefore, there is exactly one solution to the initial
value problem in 8.16 and it is y(x) = (1+ x)α .

The strategy for finding the Taylor series of this function consists of finding a series
which solves the initial value problem above. Let y(x) ≡ ∑

∞
n=0 anxn be a solution to 8.16.

Of course it is not known at this time whether such a series exists. However, the process of
finding it will demonstrate its existence. From Theorem 8.2.1 and the initial value problem,
(1+ x)∑

∞
n=0 annxn−1−∑

∞
n=0 αanxn = 0 and so

∞

∑
n=1

annxn−1 +
∞

∑
n=0

an (n−α)xn = 0

Changing the variable of summation in the first sum,

∞

∑
n=0

an+1 (n+1)xn +
∞

∑
n=0

an (n−α)xn = 0

and from Corollary 8.2.2 and the initial condition for 8.16 this requires

an+1 =
an (α−n)

n+1
,a0 = 1. (8.18)

Therefore, from 8.18 and letting n = 0, a1 = α, then using 8.18 again along with this

information, a2 =
α(α−1)

2 . Using the same process, a3 =

(
α(α−1)

2

)
(α−2)

3 = α(α−1)(α−2)
3! . By

now you can spot the pattern. In general,

an =

n of these factors︷ ︸︸ ︷
α (α−1) · · ·(α−n+1)

n!
.

Therefore, the candidate for the Taylor series is

y(x) =
∞

∑
n=0

α (α−1) · · ·(α−n+1)
n!

xn.

Furthermore, the above discussion shows this series solves the initial value problem on its
interval of convergence. It only remains to show the radius of convergence of this series
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equals 1. It will then follow that this series equals (1+ x)α because of uniqueness of the
initial value problem. To find the radius of convergence, use the ratio test. Thus the ratio
of the absolute values of (n+1)st term to the absolute value of the nth term is∣∣∣α(α−1)···(α−n+1)(α−n)

(n+1)n!

∣∣∣ |x|n+1∣∣∣α(α−1)···(α−n+1)
n!

∣∣∣ |x|n = |x| |α−n|
n+1

→ |x|

showing that the radius of convergence is 1 since the series converges if |x|< 1 and diverges
if |x|> 1.

The expression, α(α−1)···(α−n+1)
n! is often denoted as

(
α

n

)
. With this notation, the follow-

ing theorem has been established.

Theorem 8.6.2 Let α be a real number and let |x|< 1. Then (1+ x)α =∑
∞
n=0
(

α

n

)
xn.

There is a very interesting issue related to the above theorem which illustrates the lim-
itation of power series. The function f (x) = (1+ x)α makes sense for all x > −1 but one
is only able to describe it with a power series on the interval (−1,1) . Think about this.
The above technique is a standard one for obtaining solutions of differential equations and
this example illustrates a deficiency in the method. An even more troubling example is

1
1+x2 which makes sense and is differentiable for all x ∈ R but its power series diverges for
|x|> 1. This is because the function fails to be differentiable at x = i in the complex plane
and so, if it had a valid power series, this could not happen thanks to the above theorems.
However, we may only care about real values of x and if so, this reliance on power series is
pretty useless.

To completely understand power series, it is necessary to take a course in complex
analysis because this is where they make sense. It turns out that the right way to con-
sider Taylor series is through the use of geometric series and something called the Cauchy
integral formula of complex analysis. An introduction is given later.

8.7 Exercises
1. In each of the following, assume the relation defines y as a function of x for values

of x and y of interest and find y′ (x) .

(a) xy2 + sin(y) = x3 +1

(b) y3 + xcos
(
y2
)
= x4

(c) ycos(x) = tan(y)cos
(
x2
)
+2

(d)
(
x2 + y2

)6
= x3y+3

(e) xy2+y
y5+x + cos(y) = 7

(f)
√

x2 + y4 sin(y) = 3x

(g) y3 sin(x)+ y2x2 = 2x2
y+ ln |y|

(h) y2 sin(y)x+ log3 (xy) = y2 +11

(i) sin
(
x2 + y2

)
+ sec(xy) = ex+y +

y2y +2

(j) sin
(
tan
(
xy2
))

+ y3 = 16

(k) cos(sec(tan(y)))
+ ln(5+ sin(xy)) = x2y+3

2. In each of the following, assume the relation defines y as a function of x for values
of x and y of interest. Use the chain rule to show y satisfies the given differential
equation.
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(a) x2y+ siny = 7,
(
x2 + cosy

)
y′+2xy = 0.

(b) x2y3 + sin
(
y2
)
= 5, 2xy3 +

(
3x2y2 +2

(
cos
(
y2
))

y
)

y′ = 0.

(c) y2 sin(y)+ xy = 6,
(
2y(sin(y))+ y2 (cos(y))+ x

)
y′+ y = 0.

3. Show that if D(g)⊆U ⊆D( f ) , and if f and g are both one to one, then f ◦g is also
one to one.

4. The number e is that number such that lne = 1. Prove ex = exp(x) .

5. Find a formula for dy
dx for y = bx. Prove your formula.

6. Let y = xx for x ∈ (0,∞). Find y′ (x) .

7. The logarithm test states the following. Suppose ak ̸= 0 for large k and that p =

limk→∞

ln
(

1
|ak|

)
lnk exists. If p > 1, then ∑

∞
k=1 ak converges absolutely. If p < 1, then

the series, ∑
∞
k=1 ak does not converge absolutely. Prove this theorem.

8. Suppose f (x+ y) = f (x)+ f (y) and f is continuous at 0. Find all solutions to this
functional equation which are continuous at x = 0. Now find all solutions which
are bounded near 0. Next if you want an even more interesting version of this,
find all solutions whose graphs are not dense in the plane. (A set S is dense in
the plane if for every (a,b) ∈ R×R and r > 0, there exists (x,y) ∈ S such that√
(x−a)2 +(y−b)2 < r. This is called the Cauchy equation.

9. Suppose f (x+ y) = f (x) f (y) and f is continuous and not identically zero. Find
all solutions to this functional equation. Hint: First show the functional equation
requires f > 0.

10. Suppose f (xy) = f (x)+ f (y) for x,y > 0. Suppose also f is continuous. Find all
solutions to this functional equation.

11. Using the Cauchy condensation test, determine the convergence of ∑
∞
k=2

1
k lnk . Now

determine the convergence of ∑
∞
k=2

1
k(lnk)1.001 .

12. Find the values of p for which the following series converges and the values of p for
which it diverges.∑∞

k=4
1

lnp(ln(k)) ln(k)k

13. For p a positive number, determine the convergence of ∑
∞
n=2

lnn
np for various values

of p.

14. Determine whether the following series converge absolutely, conditionally, or not at
all and give reasons for your answers.

(a) ∑
∞
n=1 (−1)n ln(k5)

k

(b) ∑
∞
n=1 (−1)n ln(k5)

k1.01

(c) ∑
∞
n=1 (−1)n 10n

(1.01)n

(d) ∑
∞
n=1 (−1)n sin

( 1
n

)

(e) ∑
∞
n=1 (−1)n tan

(
1
n2

)
(f) ∑

∞
n=1 (−1)n cos

(
1
n2

)
(g) ∑

∞
n=1 (−1)n sin

( √
n

n2+1

)
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15. De Moivre’s theorem says [r (cos t + isin t)]n = rn (cosnt + isinnt) for n a positive
integer. Prove this formula by induction. Does this formula continue to hold for all
integers n, even negative integers? Explain.

16. Using De Moivre’s theorem, show that if z ∈ C then z has n distinct nth roots. Hint:
Letting z = x+ iy, z = |z|

(
x
|z| + i y

|z|

)
and argue

(
x
|z| ,

y
|z|

)
is a point on the unit circle.

Hence z = |z|(cos(θ)+ isin(θ)) . Then w = |w|(cos(α)+ isin(α)) is an nth root if
and only if (|w|(cos(α)+ isin(α)))n = z. Show this happens exactly when |w| =
n
√
|z| and α = θ+2kπ

n for k = 0,1, · · · ,n.

17. Using De Moivre’s theorem from Problem 15, derive a formula for sin(5x) and one
for cos(5x).

18. Suppose ∑
∞
n=0 an (x− c)n is a power series with radius of convergence r. Show the

series converge uniformly on any interval [a,b] where [a,b]⊆ (c− r,c+ r) .

19. Find the disc of convergence of the series ∑
xn

np for various values of p. Hint: Use
Dirichlet’s test.

20. Show ex = ∑
∞
k=0

xk

k! for all x ∈ R where e is the number such that lne = 1. Thus e =
∑

∞
k=0

1
k! . Show e is irrational. Hint: If e = p/q for p,q positive integers, then argue

q!
(

p
q −∑

q
k=0

1
k!

)
is an integer. However, you can also show q!

(
∑

∞
k=0

1
k! −∑

q
k=0

1
k!

)
<

1

21. Let a≥ 1. Show that for all x > 0, you have the inequality ax > ln(1+ xa) .

8.8 L’Hôpital’s Rule
There is an interesting rule which is often useful for evaluating difficult limits. It is called
L’Hôpital’s 1 rule. The best versions of this rule are based on the Cauchy Mean value
theorem, Theorem 7.8.2 on Page 146.

Theorem 8.8.1 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→b−

f (x) = lim
x→b−

g(x) = 0, (8.19)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also that

lim
x→b−

f ′ (x)
g′ (x)

= L. (8.20)

Then

lim
x→b−

f (x)
g(x)

= L. (8.21)

1L’Hôpital published the first calculus book in 1696. This rule, named after him, appeared in this book. The
rule was actually due to Bernoulli who had been L’Hôpital’s teacher. L’Hôpital did not claim the rule as his own
but Bernoulli accused him of plagarism. Nevertheless, this rule has become known as L’Hôpital’s rule ever since.
The version of the rule presented here is superior to what was discovered by Bernoulli and depends on the Cauchy
mean value theorem which was found over 100 years after the time of L’Hôpital.
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Proof: By the definition of limit and 8.20 there exists c < b such that if t > c, then∣∣∣∣ f ′ (t)
g′ (t)

−L
∣∣∣∣< ε

2
.

Now pick x,y such that c < x < y < b. By the Cauchy mean value theorem, there exists
t ∈ (x,y) such that

g′ (t)( f (x)− f (y)) = f ′ (t)(g(x)−g(y)) .

Since g′ (s) ̸= 0 for all s ∈ (a,b) it follows from the mean value theorem g(x)−g(y) ̸= 0.
Therefore,

f ′ (t)
g′ (t)

=
f (x)− f (y)
g(x)−g(y)

and so, since t > c, ∣∣∣∣ f (x)− f (y)
g(x)−g(y)

−L
∣∣∣∣< ε

2
.

Now letting y→ b−, ∣∣∣∣ f (x)
g(x)

−L
∣∣∣∣≤ ε

2
< ε.

Since ε > 0 is arbitrary, this shows 8.21. ■
The following corollary is proved in the same way.

Corollary 8.8.2 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→a+

f (x) = lim
x→a+

g(x) = 0, (8.22)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also that

lim
x→a+

f ′ (x)
g′ (x)

= L. (8.23)

Then

lim
x→a+

f (x)
g(x)

= L. (8.24)

Here is a simple example which illustrates the use of this rule.

Example 8.8.3 Find limx→0
5x+sin3x

tan7x .

The conditions of L’Hôpital’s rule are satisfied because the numerator and denomina-
tor both converge to 0 and the derivative of the denominator is nonzero for x close to 0.
Therefore, if the limit of the quotient of the derivatives exists, it will equal the limit of the
original function. Thus,

lim
x→0

5x+ sin3x
tan7x

= lim
x→0

5+3cos3x
7sec2 (7x)

=
8
7
.

Sometimes you have to use L’Hôpital’s rule more than once.

Example 8.8.4 Find limx→0
sinx−x

x3 .
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Note that limx→0 (sinx− x) = 0 and limx→0 x3 = 0. Also, the derivative of the de-
nominator is nonzero for x close to 0. Therefore, if limx→0

cosx−1
3x2 exists and equals L,

it will follow from L’Hôpital’s rule that the original limit exists and equals L. However,
limx→0 (cosx−1) = 0 and limx→0 3x2 = 0 so L’Hôpital’s rule can be applied again to con-
sider limx→0

−sinx
6x . From L’Hôpital’s rule, if this limit exists and equals L, it will follow

that limx→0
cosx−1

3x2 = L and consequently limx→0
sinx−x

x3 = L. But from Proposition 8.3.5,
limx→0

−sinx
6x = −1

6 . Therefore, by L’Hôpital’s rule, limx→0
sinx−x

x3 = −1
6 .

Warning 8.8.5 Be sure to check the assumptions of L’Hôpital’s rule before
using it.

Example 8.8.6 Find limx→0+
cos2x

x .

The numerator becomes close to 1 and the denominator gets close to 0. Therefore, the
assumptions of L’Hôpital’s rule do not hold and so it does not apply. In fact there is no limit
unless you define the limit to equal +∞. Now lets try to use the conclusion of L’Hôpital’s
rule even though the conditions for using this rule are not verified. Take the derivative
of the numerator and the denominator which yields −2sin2x

1 , an expression whose limit as
x→ 0+ equals 0. This is a good illustration of the above warning.

Some people get the unfortunate idea that one can find limits by doing experiments with
a calculator. If the limit is taken as x gets close to 0, these people think one can find the limit
by evaluating the function at values of x which are closer and closer to 0. Theoretically,
this should work although you have no way of knowing how small you need to take x to
get a good estimate of the limit. In practice, the procedure may fail miserably.

Example 8.8.7 Find limx→0
ln|1+x10|

x10 .

This limit equals limy→0
ln|1+y|

y = limy→0

(
1

1+y

)
1 = 1 where L’Hôpital’s rule has been

used. This is an amusing example. You should plug .001 in to the function
ln|1+x10|

x10 and see
what your calculator or computer gives you. If it is like mine, it will give 0 and will keep on
returning the answer of 0 for smaller numbers than .001. This illustrates the folly of trying
to compute limits through calculator or computer experiments. Indeed, you could say that
a calculator is as useful for understanding limits as a bicycle is for swimming. Those who
pretend otherwise are either guilty of ignorance or dishonesty.

There is another form of L’Hôpital’s rule in which limx→b− f (x) =±∞ and
limx→b− g(x) =±∞.

Theorem 8.8.8 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→b−

f (x) =±∞ and lim
x→b−

g(x) =±∞, (8.25)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also

lim
x→b−

f ′ (x)
g′ (x)

= L. (8.26)

Then

lim
x→b−

f (x)
g(x)

= L. (8.27)
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Proof: By the definition of limit and 8.26 there exists c < b such that if t > c, then∣∣∣∣ f ′ (t)
g′ (t)

−L
∣∣∣∣< ε

2
.

Now pick x,y such that c < x < y < b. By the Cauchy mean value theorem, there exists
t ∈ (x,y) such that

g′ (t)( f (x)− f (y)) = f ′ (t)(g(x)−g(y)) .

Since g′ (s) ̸= 0 on (a,b) , it follows from mean value theorem g(x)−g(y) ̸= 0. Therefore,

f ′ (t)
g′ (t)

=
f (x)− f (y)
g(x)−g(y)

and so, since t > c, ∣∣∣∣ f (x)− f (y)
g(x)−g(y)

−L
∣∣∣∣< ε

2
.

Now this implies ∣∣∣∣∣∣ f (y)
g(y)

(
f (x)
f (y) −1

)
(

g(x)
g(y) −1

) −L

∣∣∣∣∣∣< ε

2

where for all y large enough, both f (x)
f (y) −1 and g(x)

g(y) −1 are not equal to zero. Continuing to
rewrite the above inequality yields∣∣∣∣∣∣ f (y)

g(y)
−L

(
g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣< ε

2

∣∣∣∣∣∣
(

g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣ .

Therefore, for y large enough,

∣∣∣∣ f (y)
g(y)

−L
∣∣∣∣≤
∣∣∣∣∣∣L−L

(
g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣+ ε

2

∣∣∣∣∣∣
(

g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣< ε

due to the assumption 8.25 which implies

lim
y→b−

(
g(x)
g(y) −1

)
(

f (x)
f (y) −1

) = 1.

Therefore, whenever y is large enough,
∣∣∣ f (y)

g(y) −L
∣∣∣< ε and this is what is meant by 8.27. ■

As before, there is no essential difference between the proof in the case where x→ b−
and the proof when x→ a+. This observation is stated as the next corollary.

Corollary 8.8.9 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→a+

f (x) =±∞ and lim
x→a+

g(x) =±∞, (8.28)
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and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also that

lim
x→a+

f ′ (x)
g′ (x)

= L. (8.29)

Then

lim
x→a+

f (x)
g(x)

= L. (8.30)

Theorems 8.8.1 8.8.8 and Corollaries 8.8.2 and 8.8.9 will be referred to as L’Hôpital’s
rule from now on. Theorem 8.8.1 and Corollary 8.8.2 involve the notion of indeterminate
forms of the form 0

0 . Please do not think any meaning is being assigned to the nonsense
expression 0

0 . It is just a symbol to help remember the sort of thing described by Theorem
8.8.1 and Corollary 8.8.2. Theorem 8.8.8 and Corollary 8.8.9 deal with indeterminate forms
which are of the form ±∞

∞
. Again, this is just a symbol which is helpful in remembering the

sort of thing being considered. There are other indeterminate forms which can be reduced
to these forms just discussed. Don’t ever try to assign meaning to such symbols.

Example 8.8.10 Find limy→∞

(
1+ x

y

)y
.

It is good to first see why this is called an indeterminate form. One might think that as
y→ ∞, it follows x/y→ 0 and so 1+ x

y → 1. Now 1 raised to anything is 1 and so it would
seem this limit should equal 1. On the other hand, if x > 0, 1+ x

y > 1 and a number raised
to higher and higher powers should approach ∞. It really isn’t clear what this limit should
be. It is an indeterminate form which can be described as 1∞. By definition,(

1+
x
y

)y

= exp
(

y ln
(

1+
x
y

))
.

Now using L’Hôpital’s rule,

lim
y→∞

y ln
(

1+
x
y

)
= lim

y→∞

ln
(

1+ x
y

)
1/y

= lim
y→∞

1
1+(x/y)

(
−x/y2

)
(−1/y2)

= lim
y→∞

x
1+(x/y)

= x

Therefore, limy→∞ y ln
(

1+ x
y

)
= x. Since exp is continuous, it follows

lim
y→∞

(
1+

x
y

)y

= lim
y→∞

exp
(

y ln
(

1+
x
y

))
= ex.

8.8.1 Interest Compounded Continuously
Suppose you put money in the bank and it accrues interest at the rate of r per payment
period. These terms need a little explanation. If the payment period is one month, and
you started with $100 then the amount at the end of one month would equal 100(1+ r) =
100+100r. In this the second term is the interest and the first is called the principal. Now
you have 100(1+ r) in the bank. This becomes the new principal. How much will you
have at the end of the second month? By analogy to what was just done it would equal

100(1+ r)+100(1+ r)r = 100(1+ r)2 .
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In general, the amount you would have at the end of n months is 100(1+ r)n .
When a bank says they offer 6% compounded monthly, this means r, the rate per pay-

ment period equals .06/12. Consider the problem of a rate of r per year and compounding
the interest n times a year and letting n increase without bound. This is what is meant by
compounding continuously. The interest rate per payment period is then r/n and the num-
ber of payment periods after time t years is approximately tn. From the above, the amount
in the account after t years is

P
(

1+
r
n

)nt
(8.31)

Recall from Example 8.8.10 that limy→∞

(
1+ x

y

)y
= ex. The expression in 8.31 can be

written as
P
[(

1+
r
n

)n]t

and so, taking the limit as n→ ∞, you get Pert = A. This shows how to compound interest
continuously.

Example 8.8.11 Suppose you have $100 and you put it in a savings account which pays
6% compounded continuously. How much will you have at the end of 4 years?

From the above discussion, this would be 100e(.06)4 = 127.12. Thus, in 4 years, you
would gain interest of about $27.

8.9 Exercises
1. Find the limits.

(a) limx→0
3x−4sin3x

tan3x

(b) limx→ π
2− (tanx)x−(π/2)

(c) limx→1
arctan(4x−4)
arcsin(4x−4)

(d) limx→0
arctan3x−3x

x3

(e) limx→0+
9secx−1−1
3secx−1−1

(f) limx→0
3x+sin4x

tan2x

(g) limx→π/2
ln(sinx)
x−(π/2)

(h) limx→0
cosh2x−1

x2

(i) limx→0
−arctanx+x

x3

(j) limx→0
x8 sin 1

x
sin3x

(k) limx→∞ (1+5x)
2
x

(l) limx→0
−2x+3sinx

x

(m) limx→1
ln(cos(x−1))

(x−1)2

(n) limx→0+ sin
1
x x

(o) limx→0 (csc5x− cot5x)

(p) limx→0+
3sinx−1
2sinx−1

(q) limx→0+ (4x)x2

(r) limx→∞
x10

(1.01)x

(s) limx→0 (cos4x)(1/x2)

2. Find the following limits.

(a) limx→0+
1−
√

cos2x
sin4(4

√
x)
.

(b) limx→0
2x2−25x

sin
(

x2
5

)
−sin(3x)

.

(c) limn→∞ n
( n
√

7−1
)
.

(d) limx→∞

( 3x+2
5x−9

)x2
.
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(e) limx→∞

( 3x+2
5x−9

)1/x
.

(f) limn→∞

(
cos 2x√

n

)n
.

(g) limn→∞

(
cos 2x√

5n

)n
.

(h) limx→3
xx−27
x−3 .

(i) limn→∞ cos
(

π

√
4n2+13n

n

)
.

(j) limx→∞

( 3√x3 +7x2

−
√

x2−11x

)
.

(k) limx→∞

( 5√x5 +7x4

− 3√x3−11x2

)
.

(l) limx→∞

(
5x2+7
2x2−11

) x
1−x

.

(m) limx→∞

(
5x2+7
2x2−11

) x lnx
1−x

.

(n) limx→0+
ln
(

e2x2
+7
√

x
)

sinh(
√

x) .

(o) limx→0+
7√x− 5√x
9√x− 11√x

.

3. Find the following limits.

(a) limx→0+ (1+3x)cot2x

(b) limx→0
sinx−x

x2 = 0

(c) limx→0
sinx−x

x3

(d) limx→0
tan(sinx)−sin(tanx)

x7

(e) limx→0
tan(sin2x)−sin(tan2x)

x7

(f) limx→0
sin(x2)−sin2(x)

x4

(g) limx→0
e−(1/x2)

x

(h) limx→0
( 1

x − cot(x)
)

(i) limx→0
cos(sinx)−1

x2

(j) limx→∞

(
x2
(
4x4 +7

)1/2−2x4
)

(k) limx→0
cos(x)−cos(4x)

tan(x2)

(l) limx→0
arctan(3x)

x

(m) limx→∞

[(
x9 +5x6

)1/3− x3
]

(n) limx→0
ln(sin(x)/x)

x2

4. Suppose you want to have $2000 saved at the end of 5 years. How much money
should you place into an account which pays 7% per year compounded continuously?

5. Using a good calculator, find e.06−
(
1+ .06

360

)360
. Explain why this gives a measure

of the difference between compounding continuously and compounding daily.

6. Consider the following function 2

f (x) =
{

e−1/x2
for x ̸= 0

0 for x = 0

Show that f (k) (0) = 0 for all k so the power series of this function is of the form
∑

∞
k=0 0xk but the function is not identically equal to 0 on any interval containing 0.

Thus this function has all derivatives at 0 and at every other point, yet fails to be
correctly represented by its power series. This is an example of a smooth function
which is not analytic. It is smooth because all derivatives exist and are continuous.

2Surprisingly, this function is very important to those who use modern techniques to study differential equa-
tions. One needs to consider test functions which have the property they have infinitely many derivatives but
vanish outside of some interval. The theory of complex variables can be used to show there are no examples of
such functions if they have a valid power series expansion. It even becomes a little questionable whether such
strange functions even exist at all. Nevertheless, they do, there are enough of them, and it is this very example
which is used to show this.
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It fails to be analytic because it is not correctly given by its power series in any open
set.

7. Euler seems to have done the following to find eix. He knew the power series for ex

and so substituted ix for x and this gave

1+ ix+
(
i2x2)/2!+(ix)3 /3!+ · · ·

= 1+ ix− x2/2!− ix3/3!+ · · ·

then he grouped the terms and got

1− x2

2!
+

x4

4!
+ · · ·+ i

(
x− x3

3!
+

x5

5!
+ · · ·

)
and then recognized this as cosx+ isinx. What is wrong with this kind of thing?
Why is it that in this case there is absolutely no problem and this is a legitimate
explanation of Euler’s formula.

8. Find limx→+∞
x

x+sin(3x) . Hint: It might be good to not use L’Hospital’s rule.

8.10 Multiplication of Power Series
Next consider the problem of multiplying two power series.

Theorem 8.10.1 Let ∑
∞
n=0 an (x−a)n, ∑

∞
n=0 bn (x−a)n be two power series which

have radius of convergence r1 and r2, both positive. Then(
∞

∑
n=0

an (x−a)n

)(
∞

∑
n=0

bn (x−a)n

)
=

∞

∑
n=0

(
n

∑
k=0

akbn−k

)
(x−a)n

whenever |x−a|< r ≡min(r1,r2) .

Proof: By Theorem 8.1.3 both series converge absolutely if |x−a| < r. Therefore, by
Theorem 5.5.6 (

∞

∑
n=0

an (x−a)n

)(
∞

∑
n=0

bn (x−a)n

)
=

∞

∑
n=0

n

∑
k=0

ak (x−a)k bn−k (x−a)n−k =
∞

∑
n=0

(
n

∑
k=0

akbn−k

)
(x−a)n .■

The significance of this theorem in terms of applications is that it states you can multiply
power series just as you would multiply polynomials and everything will be all right on the
common interval of convergence. This is called the Cauchy product.

This theorem can be used to find Taylor series which would perhaps be hard to find
without it. Here is an example.

Example 8.10.2 Find the Taylor series for ex sinx centered at x = 0.
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All that is required is to multiply
ex︷ ︸︸ ︷

1+ x+
x2

2!
+

x3

3!
· · ·




sinx︷ ︸︸ ︷
x− x3

3!
+

x5

5!
+ · · ·


From the above theorem the result should be

x+ x2 +

(
− 1

3!
+

1
2!

)
x3 + · · ·

= x+ x2 +
1
3

x3 + · · ·

You can continue this way and get the following to a few more terms.

x+ x2 +
1
3

x3− 1
30

x5− 1
90

x6− 1
630

x7 + · · ·

I don’t see a pattern in these coefficients but I can go on generating them as long as I want.
(In practice this tends to not be very long.) I also know the resulting power series will
converge for all x because both the series for ex and the one for sinx converge for all x.

Example 8.10.3 Find the Taylor series for tanx centered at x = 0.

Lets suppose it has a Taylor series a0 +a1x+a2x2 + · · · . Then

(
a0 +a1x+a2x2 + · · ·

)
cosx︷ ︸︸ ︷

1− x2

2
+

x4

4!
+ · · ·

=

(
x− x3

3!
+

x5

5!
+ · · ·

)
.

Using the above, a0 = 0,a1x = x so

a1 = 1,
(

0
(
−1
2

)
+a2

)
x2 = 0

so a2 = 0. (
a3−

a1

2

)
x3 =

−1
3!

x3

so a3− 1
2 =− 1

6 so a3 =
1
3 . Clearly one can continue in this manner. Thus the first several

terms of the power series for tan are

tanx = x+
1
3

x3 + · · · .

You can go on calculating these terms and find the next two yielding

tanx = x+
1
3

x3 +
2

15
x5 +

17
315

x7 + · · ·

This is a very significant technique because, as you see, there does not appear to be a very
simple pattern for the coefficients of the power series for tanx. Of course there are some
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issues here about whether tanx even has a power series, but if it does, the above must be
it. In fact, tan(x) will have a power series valid on some interval centered at 0 and this
becomes completely obvious when one uses methods from complex analysis but it isn’t too
obvious at this point. If you are interested in this issue, read the last section of the chapter.
Note also that what has been accomplished is to divide the power series for sinx by the
power series for cosx just like they were polynomials.

8.11 Exercises
1. Find the radius of convergence of the following.

(a) ∑
∞
k=1
( x

2

)n

(b) ∑
∞
k=1 sin

( 1
n

)
3nxn

(c) ∑
∞
k=0 k!xk

(d) ∑
∞
n=0

(3n)n

(3n)! xn

(e) ∑
∞
n=0

(2n)n

(2n)! xn

2. Find ∑
∞
k=1 k2−k.

3. Find ∑
∞
k=1 k23−k.

4. Find ∑
∞
k=1

2−k

k .

5. Find ∑
∞
k=1

3−k

k .

6. Show there exists a function f which is continuous on [0,1] but nowhere differen-
tiable and an infinite series of the form ∑

∞
k=1 pk (x) where each pk is a polynomial

which converges uniformly to f (x) on [0,1] . Thus it makes absolutely no sense to
write something like f ′ (x) = ∑

∞
k=1 p′k (x) . Hint: Use the Weierstrass approximation

theorem.

7. Find the power series centered at 0 for the function 1/
(
1+ x2

)
and give the radius

of convergence. Where does the function make sense? Where does the power series
equal the function?

8. Find a power series for the function f (x)≡ sin(
√

x)√
x for x > 0. Where does f (x) make

sense? Where does the power series you found converge?

9. Use the power series technique which was applied in Example 8.6.1 to consider the
initial value problem y′ = y,y(0) = 1. This yields another way to obtain the power
series for ex.

10. Use the power series technique on the initial value problem y′+ y = 0, y(0) = 1.
What is the solution to this initial value problem?

11. Use the power series technique to find solutions in terms of power series to the initial
value problem

y′′+ xy = 0, y(0) = 0,y′ (0) = 1.

Tell where your solution gives a valid description of a solution for the initial value
problem. Hint: This is a little different but you proceed the same way as in Example
8.6.1. The main difference is you have to do two differentiations of the power series
instead of one.

12. Find several terms of a power series solution to the nonlinear initial value problem

y′′+asin(y) = 0, y(0) = 1,y′ (0) = 0.
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This is the equation which governs the vibration of a pendulum. Explain why there
exists a power series which gives the solution to the above initial value problem.
Multiply the equation by y′ and identify what you have obtained as the derivative of
an interesting quantity which must be constant.

13. Suppose the function ex is defined in terms of a power series, ex ≡ ∑
∞
k=0

xk

k! . Use
Theorem 5.5.6 on Page 98 to show directly the usual law of exponents,

ex+y = exey.

Be sure to check all the hypotheses.

14. Let fn (x)≡
( 1

n + x2
)1/2

. Show that for all x,

||x|− fn (x)| ≤
1√
n
.

Thus these approximate functions converge uniformly to the function f (x) = |x|.
Now show f ′n (0) = 0 for all n and so f ′n (0)→ 0. However, the function f (x) ≡ |x|
has no derivative at x = 0. Thus even though fn (x)→ f (x) for all x, you cannot say
that f ′n (0)→ f ′ (0) .

15. Let the functions, fn (x) be given in Problem 14 and consider

g1 (x) = f1 (x) , gn (x) = fn (x)− fn−1 (x) if n > 1.

Show that for all x,
∞

∑
k=0

gk (x) = |x|

and that g′k (0) = 0 for all k. Therefore, you can’t differentiate the series term by term
and get the right answer3.

16. Use the theorem about the binomial series to give a proof of the binomial theorem

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk

whenever n is a positive integer.

17. Find the power series for sin
(
x2
)

by plugging in x2 where ever there is an x in the
power series for sinx. How do you know this is the power series for sin

(
x2
)
?

18. Find the first several terms of the power series for sin2 (x) by multiplying the power
series for sin(x) . Next use the trig. identity, sin2 (x) = 1−cos(2x)

2 and the power series
for cos(2x) to find the power series.

19. Find the power series for f (x) = 1√
1−x2

.

3How bad can this get? It can be much worse than this. In fact, there are functions which are continuous
everywhere and differentiable nowhere. We typically don’t have names for them but they are there just the same.
Every such function can be written as an infinite sum of polynomials which of course have derivatives at every
point. Thus it is nonsense to differentiate an infinite sum term by term without a theorem of some sort.



8.12. THE FUNDAMENTAL THEOREM OF ALGEBRA 183

20. Let a,b be two positive numbers and let p > 1. Choose q such that

1
p
+

1
q
= 1.

Now verify the important inequality

ab≤ ap

p
+

bq

q
.

Hint: You might try considering f (a) = ap

p + bq

q − ab for fixed b > 0 and examine
its graph using the derivative.

21. Using Problem 20, show that if α > 0, p > 1, it follows that for all x > 0(
p−1

p
x+

α

p
x1−p

)p

≥ α.

22. Using Problem 21, define for p > 1 and α > 0 the following sequence

xn+1 ≡
p−1

p
xn +

α

p
x1−p

n , x1 > 0.

Show limn→∞ xn = x where x=α1/p. In fact show that after x1 the sequence decreases
to α1/p.

23. Consider the sequence
{(

1+ x
n

)n}∞

n=1 where x is a positive number. Using the bino-
mial theorem show this sequence is increasing. Next show the sequence converges.

24. Consider the sequence
{(

1+ x
n

)n+1
}∞

n=1
where x is a positive number. Show this

sequence decreases when x > 2. Hint: You might consider showing (1+ y)(x/y)+1 is
increasing in y provided x > 2. To do this, you might use the following observation
repeatedly. If f (0) = 0 and f ′ (y)> 0, then f (y)≥ 0. There may also be other ways
to do this.

25. Let z
ez−1 = ∑

∞
n=0

bn
n! zn. The bn are called the Bernoulli numbers. Show that

b0

0!n!
+

b1

1!(n−1)!
+

b2

2!(n−2)!
+ · · ·+ bn−1

(n−1)!1!
=

{
1 if n = 1
0 id n > 1

Hint: You might use the Cauchy product after multiplying both sides by ez−1.

8.12 The Fundamental Theorem of Algebra
The fundamental theorem of algebra states that every non constant polynomial having co-
efficients inC has a zero inC. IfC is replaced byR, this is not true because of the example,
x2 + 1 = 0. This theorem is a very remarkable result and notwithstanding its title, all the
best proofs of it depend on either analysis or topology. It was proved by Gauss in 1797.
The proof given here follows Rudin [24]. See also Hardy [14] for a similar proof, more dis-
cussion and references. You can also see the interesting article on Wikipedia. You google
fundamental theorem of algebra and go to this site. There are many ways to prove it. This
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article claims the first completely correct proof was done by Argand in 1806. The shortest
proof is found in the theory of complex analysis and is a simple application of Liouville’s
theorem or the formula for counting zeros.

Recall De Moivre’s theorem, Problem 15 on Page 172 from trigonometry which is listed
here for convenience.

Theorem 8.12.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + isin t)]n = rn (cosnt + isinnt) .

Recall that this theorem is the basis for proving the following corollary from trigonom-
etry, also listed here for convenience, see Problem 16 on Page 172.

Corollary 8.12.2 Let z be a non zero complex number and let k be a positive integer.
Then there are always exactly k kth roots of z in C.

Lemma 8.12.3 Let ak ∈ C for k = 1, · · · ,n and let p(z)≡ ∑
n
k=1 akzk. Then p is contin-

uous.

Proof:
|azn−awn| ≤ |a| |z−w|

∣∣zn−1 + zn−2w+ · · ·+wn−1∣∣ .
Then for |z−w|< 1, the triangle inequality implies |w|< 1+ |z| and so if |z−w|< 1,

|azn−awn| ≤ |a| |z−w|n(1+ |z|)n .

If ε > 0 is given, let

δ < min
(

1,
ε

|a|n(1+ |z|)n

)
.

It follows from the above inequality that for |z−w| < δ , |azn−awn| < ε. The function of
the lemma is just the sum of functions of this sort and so it follows that it is also continuous.
In particular, if zk→ z, then p(zk)→ p(z). ■

Here are some observations about compactness. Recall Theorem 4.8.14 which says that
closed and bounded sets in C are sequentially compact. A version of this is the following
theorem called the Weierstrass Bolzano theorem.

Theorem 8.12.4 Let {zk} be a sequence of complex numbers such that |zk| is a
bounded sequence of real numbers. Then there exists a subsequence

{
znk

}
and a complex

number z such that limk→∞ znk = z. Sets of the form K ≡ {z ∈ C : |z| ≤ r} are sequentially
compact.

Proof: The existence of z follows from the observation that

{zk} ⊆ {z ∈ C such that |z| ≤ r}

for some r > 0. This disk just described is sequentially compact by Theorem 4.8.14. ■

Theorem 8.12.5 Let p(z) be a polynomial of degree n ≥ 1 having complex coeffi-
cients. Then there exists z0 such that p(z0) = 0, a zero of the polynomial.
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Proof: Suppose the nonconstant polynomial

p(z) = a0 +a1z+ · · ·+anzn,an ̸= 0,

has no zero in C. By the triangle inequality,

|p(z)| ≥ |an| |z|n−
∣∣a0 +a1z+ · · ·+an−1zn−1∣∣

≥ |an| |z|n−
(
|a0|+ |a1| |z|+ · · ·+ |an−1| |z|n−1

)
Now the term |an| |z|n dominates all the other terms which have |z| raised to a lower power
and so lim|z|→∞ |p(z)|= ∞. Now let

0≤ λ ≡ inf{|p(z)| : z ∈ C}

Then since lim|z|→∞ |p(z)| = ∞, it follows that there exists r > 0 such that if |z| > r, then
|p(z)| ≥ 1+λ . It follows that

λ = inf{|p(z)| : |z| ≤ r}

Since K ≡ {z : |z| ≤ r} is sequentially compact, it follows that, letting {zk} ⊆ K with
|p(zk)| ≤ λ +1/k, there is a subsequence still denoted as {zk} such that limk→∞ zk = z0 ∈K.
Then |p(z0)|= λ and so λ > 0. Thus,

|p(z0)|= min
z∈K
|p(z)|= min

z∈C
|p(z)|> 0

Then let q(z) = p(z+z0)
p(z0)

. This is also a polynomial which has no zeros and the minimum

of |q(z)| is 1 and occurs at z = 0. Since q(0) = 1, it follows q(z) = 1+akzk + r (z) where
r (z) consists of higher order terms. Here ak is the first coefficient of q(z) which is nonzero.
Choose a sequence, zn→ 0, such that akzk

n < 0. For example, let −akzk
n = (1/n). Then for

r (z) = amzm +am+1zm+1 + ...+anzn for m > k,

|q(zn)| =
∣∣∣1+akzk + r (z)

∣∣∣≤ 1−1/n+ |r (zn)|

≤ 1− 1
n
+

1
n

n

∑
j=m

∣∣a j
∣∣ |ak|1/k

(
1
n

)( j−k)/k

< 1

for all n large enough because the sum is smaller than 1 for n large enough. This contradicts
|q(z)| ≥ 1. ■

8.13 Some Other Theorems
First recall Theorem 5.5.6 on Page 98. For convenience, the version of this theorem which
is of interest here is listed below.

Theorem 8.13.1 Suppose ∑
∞
i=0 ai and ∑

∞
j=0 b j both converge absolutely. Then(

∞

∑
i=0

ai

)(
∞

∑
j=0

b j

)
=

∞

∑
n=0

cn

where cn = ∑
n
k=0 akbn−k. Furthermore, ∑

∞
n=0 cn converges absolutely.
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Proof: It only remains to verify the last series converges absolutely. Letting pnk equal
1 if k ≤ n and 0 if k > n. Then by Theorem 5.5.3 on Page 97

∞

∑
n=0
|cn| =

∞

∑
n=0

∣∣∣∣∣ n

∑
k=0

akbn−k

∣∣∣∣∣≤ ∞

∑
n=0

n

∑
k=0
|ak| |bn−k|=

∞

∑
n=0

∞

∑
k=0

pnk |ak| |bn−k|

=
∞

∑
k=0

∞

∑
n=0

pnk |ak| |bn−k|=
∞

∑
k=0

∞

∑
n=k
|ak| |bn−k|=

∞

∑
k=0
|ak|

∞

∑
n=0
|bn|< ∞. ■

The above theorem is about multiplying two series. What if you wanted to consider
(∑∞

n=0 an)
p where p is a positive integer maybe larger than 2? Is there a similar theorem to

the above?

Definition 8.13.2 Define ∑k1+···+kp=m ak1ak2 · · ·akp as follows. Consider all or-
dered lists of nonnegative integers k1, · · · ,kp which have the property that ∑

p
i=1 ki = m. For

each such list of integers, form the product, ak1ak2 · · ·akp and then add all these products.

Note that ∑
n
k=0 akan−k = ∑k1+k2=n ak1ak2 . Therefore, from the above theorem, if ∑ai

converges absolutely, it follows (∑∞
i=0 ai)

2 = ∑
∞
n=0
(
∑k1+k2=n ak1ak2

)
. It turns out a similar

theorem holds for replacing 2 with p.

Theorem 8.13.3 Suppose ∑
∞
n=0 an converges absolutely. Then if p is a positive in-

teger, (
∞

∑
n=0

an

)p

=
∞

∑
m=0

cmp

where cmp ≡ ∑k1+···+kp=m ak1 · · ·akp .

Proof: First note this is obviously true if p = 1 and is also true if p = 2 from the above
theorem. Now suppose this is true for p and consider (∑∞

n=0 an)
p+1. By the induction

hypothesis and the above theorem on the Cauchy product,(
∞

∑
n=0

an

)p+1

=

(
∞

∑
n=0

an

)p(
∞

∑
n=0

an

)
=

(
∞

∑
m=0

cmp

)(
∞

∑
n=0

an

)

=
∞

∑
n=0

(
n

∑
k=0

ckpan−k

)
=

∞

∑
n=0

n

∑
k=0

∑
k1+···+kp=k

ak1 · · ·akpan−k

=
∞

∑
n=0

∑
k1+···+kp+1=n

ak1 · · ·akp+1 ■

This theorem implies the following corollary for power series.

Corollary 8.13.4 Let
∞

∑
n=0

an (x−a)n

be a power series having radius of convergence, r > 0. Then if |x−a|< r,(
∞

∑
n=0

an (x−a)n

)p

=
∞

∑
n=0

bnp (x−a)n

where bnp ≡ ∑k1+···+kp=n ak1 · · ·akp .
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Proof: Since |x−a|< r, the series, ∑
∞
n=0 an (x−a)n , converges absolutely. Therefore,

the above theorem applies and(
∞

∑
n=0

an (x−a)n

)p

=
∞

∑
n=0

(
∑

k1+···+kp=n
ak1 (x−a)k1 · · ·akp (x−a)kp

)

=
∞

∑
n=0

(
∑

k1+···+kp=n
ak1 · · ·akp

)
(x−a)n .■

With this theorem it is possible to consider the question raised in Example 8.10.3 on
Page 180 about the existence of the power series for tanx. This question is clearly included
in the more general question of when (∑∞

n=0 an (x−a)n)
−1 has a power series.

Lemma 8.13.5 Let f (x) = ∑
∞
n=0 an (x−a)n, a power series having radius of conver-

gence r > 0. Suppose also that f (a) = 1. Then there exists r1 > 0 and {bn} such that for
all |x−a|< r1,

1
f (x)

=
∞

∑
n=0

bn (x−a)n .

Proof: By continuity, there exists r1 > 0 such that if |x−a|< r1, then

∞

∑
n=1
|an| |x−a|n < 1.

Now pick such an x. Then

1
f (x)

=
1

1+∑
∞
n=1 an (x−a)n =

1
1+∑

∞
n=0 cn (x−a)n

where cn = an if n > 0 and c0 = 0. Then∣∣∣∣∣ ∞

∑
n=1

an (x−a)n

∣∣∣∣∣≤ ∞

∑
n=1
|an| |x−a|n < 1 (8.32)

and so from the formula for the sum of a geometric series,

1
f (x)

=
∞

∑
p=0

(
−

∞

∑
n=0

cn (x−a)n

)p

.

By Corollary 8.13.4, this equals

∞

∑
p=0

∞

∑
n=0

bnp (x−a)n (8.33)

where bnp = ∑k1+···+kp=n (−1)p ck1 · · ·ckp . Thus
∣∣bnp

∣∣ ≤ ∑k1+···+kp=n
∣∣ck1

∣∣ · · · ∣∣ckp

∣∣ ≡ Bnp
and so by Theorem 8.13.3,

∞

∑
p=0

∞

∑
n=0

∣∣bnp
∣∣ |x−a|n ≤

∞

∑
p=0

∞

∑
n=0

Bnp |x−a|n =
∞

∑
p=0

(
∞

∑
n=0
|cn| |x−a|n

)p

< ∞
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by 8.32 and the formula for the sum of a geometric series. Since the series of 8.33 converges
absolutely, Theorem 5.5.3 on Page 97 implies the series in 8.33 equals

∞

∑
n=0

(
∞

∑
p=0

bnp

)
(x−a)n

and so, letting ∑
∞
p=0 bnp ≡ bn, this proves the lemma. ■

With this lemma, the following theorem is easy to obtain.

Theorem 8.13.6 Let f (x) = ∑
∞
n=0 an (x−a)n, a power series having radius of con-

vergence r > 0. Suppose also that f (a) ̸= 0. Then there exists r1 > 0 and {bn} such that
for all |x−a|< r1,

1
f (x)

=
∞

∑
n=0

bn (x−a)n .

Proof: Let g(x)≡ f (x)/ f (a) so that g(x) satisfies the conditions of the above lemma.
Then by that lemma, there exists r1 > 0 and a sequence, {bn} such that

f (a)
f (x)

=
∞

∑
n=0

bn (x−a)n

for all |x−a|< r1. Then 1
f (x) = ∑

∞
n=0 b̃n (x−a)n where b̃n = bn/ f (a) . ■

There is a very interesting question related to r1 in this theorem. Consider f (x) =
1+ x2. In this case r = ∞ but the power series for 1/ f (x) converges only if |x| < 1. What
happens is this, 1/ f (x) will have a power series that will converge for |x−a|< r1 where r1
is the distance between a and the nearest singularity or zero of f (x) in the complex plane.
In the case of f (x) = 1+x2 this function has a zero at x =±i. This is just another instance
of why the natural setting for the study of power series is the complex plane. To read more
on power series, you should see the book by Apostol [3] or any text on complex variable.
An introduction is given later in this book.



Chapter 9

Integration
The integral originated in attempts to find areas of various shapes and the ideas involved
in finding integrals are much older than the ideas related to finding derivatives. In fact,
Archimedes1 was finding areas of various curved shapes about 250 B.C. using the main
ideas of the integral. Newton and Leibniz first observed the relation between the integral
and the derivative. However, their observations were incomplete because they did not have
a precise definition for the integral. This came much later in the early 1800’s and the first
such definition sufficient to include continuous functions was due to Cauchy around 1820
who gave the first complete proof of the fundamental theorem of Calculus. Not much later,
Dirichlet proved convergence of Fourier series to the mid-point of the jump of a piecewise
continuous function under suitable conditions. However, a general theory for the integral
which would include piecewise continuous functions did not come about till around 1854
with the work of Riemann and completed by Darboux. Lebesgue solved the hard questions
about this integral in the early 1900’s.

Of course people used the fundamental theorem of calculus, which was based on finding
antiderivatives, to compute integrals all through the eighteenth century, but the fundamental
question whether there exists an antiderivative for continuous functions was not considered
till the time of Cauchy. However, using the later nineteenth century ideas of the Weierstrass
approximation theorem as developed by Bernstein, we can consider this question. It will
be entirely adequate to deal with all functions typically encountered in elementary calculus
and is very short. After this, are sections devoted to the more general Riemann Stieltjes
integrals due to Stieltjes which date from the late nineteenth century, used in number theory,
probability, and functional analysis. In this more general theory, one uses an integrator
function to include in the notion of an integral things like sums and a mixture of sums and
integrals.

9.1 The Integral of 1700’s
Recall the following definition from beginning calculus.

Definition 9.1.1 ∫
f (x)dx denotes the set of functions F which have the property

that F ′ (x) = f (x). These are called antiderivatives. When f is continuous on [a,b] , it is
also required that F is continuous on [a,b] in addition to having F ′ (x) = f (x) on (a,b).

From the chapter on the derivative,
∫

∑
n
k=0 akxk = ∑

n
k=0 ak

xk+1

k+1 +C where C is an arbi-
trary constant. Thus it is easy to find an antiderivative for any polynomial.

The next lemma shows that also every continuous function defined on a closed interval
[a,b] has an antiderivative.

Lemma 9.1.2 Let f be a continuous, real valued function defined on [a,b] . Then there
exists F such that F ′ (x) = f (x) for all x ∈ (a,b) . At the end points, F ′ (x) will refer to a
one sided derivative.

1Archimedes 287-212 B.C. found areas of curved regions by stuffing them with simple shapes which he knew
the area of and taking a limit. He also made fundamental contributions to physics. The story is told about how he
determined that a gold smith had cheated the king by giving him a crown which was not solid gold as had been
claimed. He did this by finding the amount of water displaced by the crown and comparing with the amount of
water it should have displaced if it had been solid gold.

189
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Proof: Assume that a< b in what follows. If not, simply switch a and b in the argument.
Let {pn} be a sequence of polynomials for which ∥pn− f∥ → 0 and let P′n (x) = pn (x) for
all x ∈ (a,b). By the mean value theorem,

|Pn (x)−Pn (a)− (Pm (x)−Pm (a))|=

|Pn (x)−Pm (x)− (Pn (a)−Pm (a))|
= |(pn (t)− pm (t))(x−a)| ≤ ∥pn− pm∥|b−a|
≤ (∥pn− f∥+∥ f − pm∥) |b−a|

The right side converges to 0 as n,m→ ∞ and so by completeness, there exists

F (x) = lim
n→∞

(Pn (x)−Pn (a)) ,

this for any choice of x. It remains to verify that F ′ (x) = f (x) . Say x ∈ [a,b) and let h > 0.
Then by the mean value theorem,

Pn (x+h)−Pn (x)
h

=
(Pn (x+h)−Pn (a))− (Pn (x)−Pn (a))

h
= pn (thn) (∗)

for some thn ∈ (x,x+h). By compactness, there is a subsequence, still denoted as thn for
which limn→∞ thn = th ∈ [x,x+h]. Now

|pn (thn)− f (th)| ≤ |pn (thn)− f (thn)|+ | f (thn)− f (th)|
≤ ∥pn− f∥+ | f (thn)− f (th)|

and so, letting n→ ∞, this shows, from continuity of f that |pn (thn)− f (th)| → 0. Taking
a limit in ∗,

F (x+h)−F (x)
h

= f (th) , th ∈ [x,x+h]

Now by continuity of f , we can take a limit of this as h→ 0 and obtain F ′ (x) = f (x) ,
where F ′ (x) is a right derivative at x = a. For x ∈ (a,b], the situation is exactly the same
for when h is restrained to be negative.

F (x+h)−F (x)
h

=−F (x− (−h))−F (x)
−h

=
F (x)−F (x− k)

k

where k≡−h and so for F ′ (x) the left derivative, it exists at each point of (a,b] and equals
f (x) by exactly similar arguments to the above. Thus at every point of (a,b) both the right
and left derivatives exist for F and both are equal to f so F is differentiable on (a,b). Also,
the appropriate one sided derivatives for F exist at x ∈ {a,b} and are likewise f (x). ■

Definition 9.1.3 For the rest of this section, [a,b] will denote the closed interval
having end points a and b but a could be larger than b or smaller than b. It is written this
way to indicate that there is a direction of motion from a to b which will be reflected by the
definition of the integral given below. It is an “oriented interval”. Then for f continuous
on [a,b] , ∫ b

a
f (x)dx≡ F (b)−F (a)

where F is an antiderivative for f on [a,b].
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Proposition 9.1.4 The integral is well defined for f continuous on [a,b].

Proof: Suppose F,G are both antiderivatives. Then letting

H (x)≡ F (x)−G(x) ,H ′ (x) = 0

it follows by the mean value theorem, H (b)−H (a) = 0(b−a) = 0 so F (b)−G(b) =
F (a)−G(a) which implies F (b)−F (a) = G(b)−G(a). ■

Proposition 9.1.5 The above integral is well defined for f continuous on [a,b] and
satisfies the following properties.

1.
∫ b

a f dx = f (x̂)(b−a) for some x̂ between a and b, x̂ /∈ {a,b} . Thus
∣∣∣∫ b

a f dx
∣∣∣ ≤

∥ f∥|b−a| .

2. If f is continuous on an interval which contains all necessary intervals,∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx, so

∫ b

a
f dx+

∫ a

b
f dx =

∫ b

b
f dx = 0

3. If F (x)≡
∫ x

a f dt, Then F ′ (x) = f (x) . Also,∫ b

a
(α f (x)+βg(x))dx = α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx

If a < b, and f (x)≥ 0, then
∫ b

a f dx≥ 0. Also
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

4.
∫ b

a 1dx = b−a.

Proof: The integral is well defined by Proposition 9.1.4 and Lemma 9.1.2. Consider 1.
Let F ′ (x) = f (x) ,F as in Lemma 9.1.2 so∫ b

a
f (x)dx≡ F (b)−F (a) = f (x̂)(b−a)

for some x̂ in the open interval determined by a,b. This is by the mean value theorem.
Hence

∣∣∣∫ b
a f dx

∣∣∣≤ ∥ f∥|b−a| .
Now consider 2. Let F ′ = f on a closed interval which contains all necessary intervals.

Then from the definition,∫ c

a
f dx+

∫ b

c
f dx = F (c)−F (a)+F (b)−F (c) = F (b)−F (a)≡

∫ b

a
f (x)dx

Next consider 3. For F (x) ≡
∫ x

a f (x)dx, the definition says that F (x) = G(x)−G(a)
where G is an antiderivative of f . Since F (x) = G(x)−G(a) , f = G′ = F ′. It follows that
F ′ (x) = f (x) with an appropriate one sided derivative at the ends of the interval. Now let
F ′ = f ,G′ = g. Then α f +βg = (αF +βG)′ and so∫ b

a
(α f (x)+βg(x))dx ≡ (αF +βG)(b)− (αF +βG)(a)

= αF (b)+βG(b)− (αF (a)+βG(a))

= α (F (b)−F (a))+β (G(b)−G(a))

≡ α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx
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If f ≥ 0,a < b, then the mean value theorem implies that for F ′ = f , and some

t ∈ (a,b) ,F (b)−F (a) =
∫ b

a
f dx = f (t)(b−a)≥ 0.

Thus ∫ b

a
(| f |− f )dx ≥ 0,

∫ b

a
(| f |+ f )dx≥ 0 so∫ b

a
| f |dx ≥

∫ b

a
f dx and

∫ b

a
| f |dx≥−

∫ b

a
f dx

so this proves
∣∣∣∫ b

a f dx
∣∣∣ ≤ ∫ b

a | f |dx. This, along with part 2 implies the other claim that∣∣∣∫ b
a f dx

∣∣∣≤ ∣∣∣∫ b
a | f |dx

∣∣∣ even if a > b.

The last claim is obvious because an antiderivative of 1 is F (x) = x. ■
Note also that the usual change of variables theorem from elementary calculus is avail-

able because, by the chain rule, if F ′ = f , then f (g(x))g′ (x) = d
dx F (g(x)) so that, from

the above proposition,

F (g(b))−F (g(a)) =
∫ g(b)

g(a)
f (y)dy =

∫ b

a
f (g(x))g′ (x)dx.

We usually let y = g(x) and dy = g′ (x)dx and then change the limits as indicated above,
or equivalently we massage the expression to look like the above. Integration by parts also
follows from differentiation rules.

Also notice that, by considering real and imaginary parts, you can define the integral of
a complex valued continuous function∫ b

a
f (t)dt ≡

∫ b

a
Re f (t)dt + i

∫ b

a
Im f (t)dt

and that the change of variables formula just described would hold. Just apply the above
to the real and imaginary parts. Similarly, you could consider continuous functions with
values in Rp by considering the component functions.

Definition 9.1.6 A function f : [a,b] → R is piecewise continuous if there is an
ordered list of intermediate points zi having an order consistent with

[a,b] , (zi− zi−1)(b−a)> 0

a = z0,z1, · · · ,zn = b, called a partition of [a,b] , and functions fi continuous on [zi−1,zi]
such that f = fi on (zi−1,zi). For f piecewise continuous, define∫ b

a
f (t)dt ≡

n

∑
i=1

∫ zi

zi−1

fi (s)ds

Observation 9.1.7 Note that this defines the integral when the function has finitely
many discontinuities and that changing the value of the function at finitely many points
does not affect the integral.
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Of course this gives what appears to be a new definition because if f is continuous on
[a,b] , then it is piecewise continuous for any such partition. However, it gives the same
answer because, from this new definition,∫ b

a
f (t)dt =

n

∑
i=1

(F (zi)−F (zi−1)) = F (b)−F (a)

Does this give the main properties of the integral? In particular, is the integral still linear?
Suppose f ,g are piecewise continuous. Then let {zi}n

i=1 include all the partition points of
both of these functions. Then, since it was just shown that no harm is done by including
more partition points,

∫ b
a α f (t)+βg(t)dt ≡

n

∑
i=1

∫ zi

zi−1

(α fi (s)+βgi (s))ds =
n

∑
i=1

α

∫ zi

zi−1

fi (s)ds+
n

∑
i=1

β

∫ zi

zi−1

gi (s)ds

= α

n

∑
i=1

∫ zi

zi−1

fi (s)ds+β

n

∑
i=1

∫ zi

zi−1

gi (s)ds = α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt

Also, the claim that
∫ b

a f dt =
∫ c

a f dt +
∫ b

c f dt is obtained exactly as before by considering
all partition points on each integral preserving the order of the limits in the small intervals
determined by the partition points. That is, if a > c, you would have zi−1 > zi in computing∫ c

a f dt.

Definition 9.1.8 Let I be an interval. Then XI (t) is 1 if t ∈ I and 0 if t /∈ I.
Then a step function will be of the form ∑

n
k=1 ckXIk (t) where Ik = [ak−1,ak] is an inter-

val and {Ik}n
k=1 are non-overlapping intervals whose union is an interval [a,b] so b−a =

∑
n
k=1 (ak−ak−1). Then, as explained above,∫ b

a

n

∑
k=1

ckXIk (t)dt =
n

∑
k=1

ck

∫ ak

ak−1

1dt =
n

∑
k=1

ck (ak−ak−1) .

The main assertion of the above Proposition 9.1.5 is that for any f continuous, there
exists a unique solution to the initial value problem F ′ (t) = f (t) , along with F (a) = 0 and
it is F (t) =

∫ t
a f (x)dx. As an example of something which satisfies this initial value prob-

lem consider A(x) the area under the graph of a curve y = f (x) as shown in the following
picture between a and x.

a
A(x)

y = f (x)

x x+h

A(x+h)−A(x)

Thus A(x+h)−A(x) ∈ [ f (x)h, f (x+h)h] and so

A(x+h)−A(x)
h

∈ [ f (x) , f (x+h)] .

Then taking a limit as h→ 0, one obtains A′ (x) = f (x) ,A(a) = 0 and so one would have
A(x) =

∫ x
a f (t)dt. Other situations for the graph of y = f (x) are similar. This suggests that

we should define the area under the graph of the curve between a and x > a as this integral.
Is this as general as a complete treatment of Riemann integration? No it is not. In

particular, it does not include the well known example where f (x) = sin
( 1

x

)
for x ∈ (0,1]
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and f (0)≡ 0. However, it is sufficiently general to include all cases which are typically of
interest starting with Dirichlet and his consideration of convergence of Fourier series. It is
also enough to build a theory of ordinary differential equations and do all standard examples
of beginning calculus. However, this integral, as well as the more general Riemann integral
discussed below are woefully inadequate when it comes to a need to handle limits. You
need the Lebesgue integral or something more sophisticated to obtain this. Such integrals
are considered later.

9.2 The Riemann Stieltjes Integral
In this section are the principal theorems about Stieltjes integrals, including the classical
Riemann integral, as a special case. A good source for more of these things is the book
by Apostol, [2] and Hobson [18]. The difference here is that instead of dx you use dg
where g is a function, usually of bounded variation. This is more general than the previous
section. You simply take g(x) = x in what follows and obtain it. I wanted to give a review
of familiar material first before launching in to Stieltjes integrals.

In all which follows I will always tacitly assume that f is a bounded function defined
on some finite interval.

9.3 Fundamental Definitions and Properties
First we need to define what is meant by finite total variation.

Definition 9.3.1 Let g be a function defined on [a,b]. For

P[a,x] ≡ {x0, · · · ,xn}

a partition of [a,x] ,define V
(
P[a,x],g

)
by

n

∑
i=1
|g(xi)−g(xi−1)| .

Define the total variation of g on [a,x] by

V[a,x] (g)≡ sup
{

V
(
P[a,x],g

)
: P[a,x] is a partition of [a,x]

}
.

Then g is said to be of bounded variation on [a,b] if V[a,b] (g) is finite. Also, for P =
{x0,x1, · · · ,xn} where xk ≥ xk−1, ∥P∥ ≡max{|xk− xk−1| : k = 1,2, · · · ,n} .

Then with this definition, one has an important proposition which pertains to the case
of principal interest here in which the functions are all real valued. The above definition
of finite total variation works for functions which have values in some normed linear space
however.

Proposition 9.3.2 Every real valued function g of bounded variation can be written
as the difference of two increasing function, one of which is the function x→ V[a,x] (g) .
Furthermore, the functions of bounded variation are exactly those functions which are the
difference of two increasing functions.
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Proof: Let g be of bounded variation. It is obvious from the definition that x→V[a,x] (g)
is an increasing function. Also g(x) = V[a,x] (g)−

(
V[a,x] (g)−g(x)

)
The first part of the

proposition is proved if I can show x→ V[a,x] (g)− g(x) is increasing. Let x ≤ y. Is it true
that V[a,x] (g)−g(x)≤V[a,y] (g)−g(y)? This is true if and only if

g(y)−g(x)≤V[a,y] (g)−V[a,x] (g) (9.1)

To show this is so, first note that V
(
P[a,x],g

)
≤V

(
Q[a,x],g

)
whenever the partition Q[a,x] ⊇

P[a,x]. You demonstrate this by adding in one point at a time and using the triangle inequal-
ity. Now let Py and P[a,x] be partitions of [a,y] and [a,x] respectively such that

V
(
P[a,x],g

)
+ ε >V[a,x] (g) , V (Py,g)+ ε >V[a,y] (g)

Without loss of generality Py contains x because from what was just shown you could add
in the point x and the approximation of V (Py,g) to V[a,y] (g) would only be better. Then
from the definition,

V[a,y] (g)−V[a,x] (g)≥V (Py,g)−
(
V
(
P[a,x],g

)
+ ε
)

≥ |g(y)−g(x)|− ε ≥ g(y)−g(x)− ε

and since ε is arbitrary, this establishes 9.1. This proves the first part of the proposition.
Now suppose g(x) = g1 (x)−g2 (x) where each gi is an increasing function. Why is g

of bounded variation? Letting x < y

|g(y)−g(x)| = |g1 (y)−g2 (y)− (g1 (x)−g2 (x))|
≤ (g1 (y)−g1 (x))+(g2 (y)−g2 (x))

Therefore, if P = {x0, · · · ,xn} is any partition of [a,b]

n

∑
i=1
|g(xi)−g(xi−1)| ≤

n

∑
i=1

(g1 (xi)−g1 (xi−1))+(g2 (xi)−g2 (xi−1))

= (g1 (b)−g1 (a))+(g2 (b)−g2 (a))

and this shows V[a,b] (g)≤ (g1 (b)−g1 (a))+(g2 (b)−g2 (a)) so g is of bounded variation.
■

The following is the definition of the Riemann Stieltjes integral.

Definition 9.3.3 A bounded function f defined on [a,b] is said to be Riemann Stielt-
jes integrable if there exists a number I with the property that for every ε > 0, there exists
δ > 0 such that if

P≡ {x0,x1, · · · ,xn} , a = x0 < · · ·< xn = b

is any partition having ∥P∥< δ , and zi ∈ [xi−1,xi] ,∣∣∣∣∣I− n

∑
i=1

f (zi)(g(xi)−g(xi−1))

∣∣∣∣∣< ε.

The number
∫ b

a f (x) dg(x)is defined as I. I will denote this Riemann Stieltjes sum approx-
imating I as ∑P f (zi)(g(xi)−g(xi−1)). When f is Riemann Stieltjes integrable on [a,b]
with respect to g as just described, this is denoted as f ∈ R([a,b] ,g) or simply as R [a,b] if
the definition is clear for g.
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A special case is the following definition.

Definition 9.3.4 The Riemann integral is a special case of the above in which the
integrator function g(x) = x. We write

∫ b
a f (x)dg(x) in the form

∫ b
a f (x)dx to signify the

Riemann integral.

There is only one possible number I satisfying the above definition.

Lemma 9.3.5 The integral
∫ b

a f (x) dg(x) is well defined in the sense that if there is such
a number I, then there is only one.

Proof: Suppose you have two of them I, Î and that P, P̂ are corresponding partitions
such that ∥P∥ ,

∥∥P̂
∥∥ are both small enough that∣∣∣∣∣I−∑

P
f (zi)(g(xi)−g(xi−1))

∣∣∣∣∣< ε,

∣∣∣∣∣Î−∑
P̂

f (ẑi)(g(xi)−g(xi−1))

∣∣∣∣∣< ε

whenever zi or ẑi are in [xi−1,xi]. Let Q≡ P∪ P̂ and choose zi and ẑi to be the left endpoint
of the sub intervals defined by the partition Q. Then ∥Q∥≤min

(
∥P∥ ,

∥∥P̂
∥∥) and so |I−S|<

ε,
∣∣Î−S

∣∣< ε where
S = ∑

Q
f (xi−1)(g(xi)−g(xi−1)) .

Then
∣∣I− Î

∣∣≤ |I−S|+
∣∣S− Î

∣∣< 2ε. Since ε is arbitrary, I = Î. ■
Next is a fairly obvious theorem which says essentially that things which hold for sums

typically hold for integrals also, provided the integrals exist.

Theorem 9.3.6 Assuming all integrals make sense, the following relation exists for
f ,g functions and a,b scalars.∫ b

a

(
a f +b f̂

)
dg = a

∫ b

a
f dg+b

∫ b

a
f̂ dg.

Assuming all integrals make sense and g is increasing, it follows that∫ b

a
| f |dg≥

∣∣∣∣∫ b

a
f dg
∣∣∣∣ .

Also, if a < c < b and all integrals make sense for I = [a,c] , [a,b] , [c,b] , then∫ b

a
f dg =

∫ c

a
f dg+

∫ b

c
f dg

Proof: Consider the first claim. Since all is assumed to make sense, (It is shown soon
that continuity of the f functions and bounded variation of the g is sufficient.) there exists
δ > 0 such that if ||P||< δ , then∣∣∣∣∫ b

a

(
a f +b f̂

)
dg−SP

(
a f +b f̂

)∣∣∣∣ , ∣∣∣∣aSP ( f )−a
∫ b

a
f dg
∣∣∣∣∣∣∣∣bSP

(
f̂
)
−b

∫ b

a
f̂ dg
∣∣∣∣< ε
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where SP (h) denotes a suitable Riemann sum with respect to such a partition. Choose the
same point in [xi−1,xi] for each function in the list. Then from the above, 3ε >∣∣∣∣bSP

(
f̂
)
+aSP ( f )−SP

(
a f +b f̂

)
−
(

a
∫ b

a
f dg+b

∫ b

a
f̂ dg−

∫ b

a

(
a f +b f̂

)
dg
)∣∣∣∣

However, bSP
(

f̂
)
+aSP ( f )−SP

(
a f +b f̂

)
= 0 from properties of sums. Therefore,∣∣∣∣a∫ b

a
f dg+b

∫ b

a
f̂ dg−

∫ b

a

(
a f +b f̂

)
dg
∣∣∣∣< 3ε

and since ε is arbitrary, this shows that the expression inside |·| equals 0.
If g is increasing, then the Riemann sums are all nonnegative if f ≥ 0. Thus∫ b

a
(| f |− f )dg,

∫ b

a
(| f |+ f )dg≥ 0

and so ∫ b

a
| f |dg≥max

(∫ b

a
f dg,−

∫ b

a
f dg
)
,
∫ b

a
| f |dg≥

∣∣∣∣∫ b

a
f dg
∣∣∣∣

For the last claim, let δ > 0 be such that when ∥P∥< δ , all integrals are approximated
within ε be a Riemann sum based on P. Without loss of generality, letting PI be such a
partition for I each of the intervals needed, we can assume P[a,b] contains c since adding it
in will not increase ∥P∥. Also we can let each of the other two PI be the restriction of P[a,b]
to [a,c] or [c,b]. Then∣∣∣∣∫ c

a
f dg−SP[a,c] ( f )

∣∣∣∣< ε,

∣∣∣∣∫ b

c
f dg−SP[c,b]

∣∣∣∣< ε,

∣∣∣∣∫ b

a
f dg−SP[a,b]

∣∣∣∣< ε

we can also pick the same intermediate point in each of these sums. Then SP[a,b] = SP[a,c] +

SP[c,b] and so, from the triangle inequality,
∣∣∣∫ b

a f dg−
(∫ c

a f dg+
∫ b

c f dg
)∣∣∣< 3ε and since ε

is arbitrary, the desired relation follows. ■
When does the integral make sense? The main result is the next theorem. We have in

mind the case where f and g have real values but there is no change in the argument if
they have complex values or even more general situations such as where g has values in a
complete normed linear space and f has scalar values or when f has values in a normed
linear space and g has scalar values or even more general situations. You simply change
the meaning of the symbols used in the following argument. This is why I am being vague
about where f and g have their values.

Theorem 9.3.7 Let f be continuous on [a,b] and let g be of finite total varia-
tion on [a,b]. Then f is Riemann Stieltjes integrable in the sense of Definition 9.3.3,
f ∈ R([a,b] ,g) .

Proof: Since f is continuous and [a,b] is sequentially compact, it follows from Theo-
rem 6.7.2 that f is uniformly continuous. Thus if ε > 0 is given, there exists δ > 0 such
that if |x− y|< δ , then

| f (x)− f (y)|< ε

2
(
V[a,b] (g)+1

) .



198 CHAPTER 9. INTEGRATION

Let P = {x0, · · · ,xn} be a partition such that ||P|| < δ . Now if you add in a point z on the
interior of I j and consider the new partition,

x0 < · · ·< x j−1 < z < x j < · · ·< xn

denoting it by P′,

S (P, f )−S
(
P′, f

)
=

j−1

∑
i=1

(
f (ti)− f

(
t ′i
))

(g(xi)−g(xi−1))

+ f (t j)
(
g(x j)−g

(
x j−1

))
− f

(
t ′j
)(

g(z)−g
(
x j−1

))
− f
(
t ′j+1

)
(g(x j)−g(z))+

n

∑
i= j+1

(
f (ti)− f

(
t ′i+1
))

(g(xi)−g(xi−1))

The term, f (t j)
(
g(x j)−g

(
x j−1

))
can be written as

f (t j)
(
g(x j)−g

(
x j−1

))
= f (t j)(g(x j)−g(z))+ f (t j)

(
g(z)−g

(
x j−1

))
and so, the middle terms can be written as

f (t j)(g(x j)−g(z))+ f (t j)
(
g(z)−g

(
x j−1

))
− f
(
t ′j
)(

g(z)−g
(
x j−1

))
− f

(
t ′j+1

)
(g(x j)−g(z))

=
(

f (t j)− f
(
t ′j+1

))
(g(x j)−g(z))+

(
f (t j)− f

(
t ′j
))(

g(z)−g
(
x j−1

))
The absolute value of this is dominated by

<
ε

2
(
V[a,b] (g)+1

) (∣∣g(x j)−g(z)
∣∣+ ∣∣g(z)−g

(
x j−1

)∣∣)
This is because the various pairs of values at which f is evaluated are closer than δ . Simi-
larly, ∣∣∣∣∣ j−1

∑
i=1

(
f (ti)− f

(
t ′i
))

(g(xi)−g(xi−1))

∣∣∣∣∣≤ j−1

∑
i=1

∣∣ f (ti)− f
(
t ′i
)∣∣ |g(xi)−g(xi−1)|

≤
j−1

∑
i=1

ε

2
(
V[a,b] (g)+1

) |g(xi)−g(xi−1)|

and∣∣∣∣∣ n

∑
i= j+1

(
f (ti)− f

(
t ′i+1
))

(g(xi)−g(xi−1))

∣∣∣∣∣≤ n

∑
i= j+1

ε

2
(
V[a,b] (g)+1

) |g(xi)−g(xi−1)| .

Thus renumbering the points to include z,

∣∣S (P, f )−S
(
P′, f

)∣∣≤ n+1

∑
i=1

ε

2
(
V[a,b] (g)+1

) |g(xi)−g(xi−1)|< ε/2.

Similar reasoning would apply if you added in two new points in the partition or more gen-
erally, any finite number of new points. You would just have to consider more exceptional
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terms. Therefore, if ||P|| < δ and Q is any partition, then from what was just shown, you
can pick the points on the intervals any way you like and

|S (P, f )−S (P∪Q, f )|< ε/2.

Therefore, if ||P|| , ||Q||< δ ,

|S (P, f )−S (Q, f )| ≤ |S (P, f )−S (P∪Q, f )|+ |S (P∪Q, f )−S (Q, f )|
< ε/2+ ε/2 = ε

Now consider a sequence εn→ 0. Then from what was just shown, there exist δ n > 0
such that for ∥P∥ ,∥Q∥< δ n, |S (P, f )−S (Q, f )|< εn. Let Kn be defined by

Kn ≡ ∪{S (P, f ) : ∥P∥< δ n}.

In other words, take the closure of the set of numbers consisting of all Riemann sums,
S (P, f ) such that ∥P∥ < δ n. It follows from the definition, Kn ⊇ Kn+1 for all n and each
Kn is closed with diam(Kn) = εn → 0. Then by Theorem 4.10.15 there exists a unique
I ∈ ∩∞

n=1Kn. (In more general situations, you would use completeness and a corresponding
theorem which says the intersection of nested closed sets having diameters converging
to 0 contains a unique point. I mention this because this all holds just as well in case
the continuous function has values in an infinite dimensional space in which closed and
bounded sets are maybe not compact. We are not concerned with this case in this book.)
Letting ε > 0, there exists n such that εn < ε. Then if ∥P∥< δ n, it follows |S (P, f )− I| ≤
εn < ε. Thus f is Riemann Stieltjes integrable in the sense of Definition 9.3.3 and I =∫ b

a f dg. ■
Are there easy to apply theorems which will let you conclude that something is or

is not Riemann Stieltjes integrable? This involves the relation between integrability and
upper and lower sums. It is specific to the case where f and g have real values and does not
generalize readily like the above theorem does.

Definition 9.3.8 Let f be real valued, bounded on [a,b], and

P≡ {x0, · · · ,xm}

be a partition with g an increasing integrator function. Then the upper and lower sums are
defined respectively as

U ( f ,P)≡
m

∑
i=1

Mi (g(ti)−g(ti−1)) , L( f ,P)≡
m

∑
i=1

mi (g(ti)−g(ti−1))

where
Mi ≡ sup{ f (x) : x ∈ [xi−1,xi]} , mi ≡ inf{ f (x) : x ∈ [xi−1,xi]}

Now here is an interesting lemma about partitions.

Lemma 9.3.9 Suppose f is a bounded function defined on [a,b] and | f (x)|< M for all
x ∈ [a,b] and let g be increasing. Let Q be a partition having n points,

{
x∗0, · · · ,x∗n

}
and let

P be any other partition. Then

|U ( f ,P)−L( f ,P)| ≤ 2Mn
∥∥Pg
∥∥+ |U ( f ,Q)−L( f ,Q)|

where
∥∥Pg
∥∥ is defined by max{g(xi)−g(xi−1) : P = {x0, · · · ,xm}} .
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Proof: Let P = {x0, · · · ,xm} . Let I denote the set

I ≡ {i : [xi−1,xi] contains some point of Q}

and IC ≡ {0, · · · ,m}\ I. Then

U ( f ,P)−L( f ,P) = ∑
i∈I

(Mi−mi)(g(xi)−g(xi−1))+ ∑
i∈IC

(Mi−mi)(g(xi)−g(xi−1))

In the second sum above, for each i ∈ IC, [xi−1,xi] must be contained in
[
x∗k−1,x

∗
k

]
for

some k because there are no points of Q in [xi−1,xi]. Therefore, the sum of the terms for
which [xi−1,xi] is contained in

[
x∗k−1,x

∗
k

]
is no larger than the term in the sum which equals

U ( f ,Q)−L( f ,Q) . (Note how it is important that g be increasing.) Therefore, the second
sum is no larger than U ( f ,Q)−L( f ,Q) and

U ( f ,P)−L( f ,P)≤∑
i∈I

(Mi−mi)(g(xi)−g(xi−1))+U ( f ,Q)−L( f ,Q) (9.2)

Now consider the first sum. Since | f (x)| ≤M,(Mi−mi)(g(xi)−g(xi−1))≤ 2M
∣∣∣∣Pg
∣∣∣∣ and

so, since each of these intervals [xi−1,xi] for i ∈ I contains at least one point of Q, there can
be no more than n of these. Hence the first sum is dominated by 2Mn

∥∥Pg
∥∥ . ■

The following theorem applies to the case where f ,g are real valued and g is continuous.
This includes the case of greatest interest which is g(x) = x in which one is considering the
Riemann integral. Historically, it shows that Riemann integrability is equivalent to Darboux
integrability. The latter consists of definining the integral in terms of upper and lower sums,
the integral being the unique number between all upper sums and all lower sums. Darboux
showed that his integral was equivalent to the Riemann integral which has been described
above by using the special case g(x) = x which is a special case of the following theorem.
Thus the following theorem is essentially due to Darboux.

Theorem 9.3.10 Let g be an increasing continuous function and let f be real val-
ued and | f (x)| ≤M for all x. Then f ∈ R([a,b] ,g) if and only if for each ε > 0, there exists
a partition Q such that

U ( f ,Q)−L( f ,Q)< ε (9.3)

Proof: ⇐ Let ε > 0 be given and let Q be a partition such that U ( f ,Q)−L( f ,Q) <
ε/3. Say Q =

{
x∗0, · · · ,x∗n

}
. Now there exists δ such that if each xi − xi−1 < δ , then

|g(xi)−g(xi−1)| < ε

6Mn . Thus
∥∥Pg
∥∥ in the above lemma is no larger than ε

6Mn . Therefore,
from Lemma 9.3.9 above, if ∥P∥< δ , then

|U ( f ,P)−L( f ,P)| ≤ 2Mn
∥∥Pg
∥∥+ |U ( f ,Q)−L( f ,Q)| ≤ ε

3
+

ε

3
< ε.

It follows, since ε is arbitrary that there exists δ m→ 0 such that the diameter of Sm defined
by

Sm ≡ ∪

{
∑
P

f (tk)(g(xk)−g(xk−1)) : ∥P∥ ≤ δ m

}
converges to 0. Thus there is a unique I in the intersection of these Sm and by definition,
this is the integral.
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⇒ Suppose f ∈ R([a,b] ,g) . Then given ε > 0, there is δ > 0 and I such that if ∥P∥< δ∣∣∣∣∣∑P f (tk)(g(xk)−g(xk−1))− I

∣∣∣∣∣< ε

3

Pick such a partition P = a = x0 < · · · < xn = b. Here tk ∈ [xk−1,xk] is arbitrary. Pick
tk,sk ∈ [xk−1,xk] such that

f (tk)+
ε

6(g(b)−g(a)+1)n
> Mk, f (sk)−

ε

6(g(b)−g(a)+1)n
< mk

Then letting r (ε)≡ ε

6(g(b)−g(a)+1)n ,

U ( f ,P)−L( f ,P)<
n

∑
i=1

( f (tk)+ r (ε)− ( f (sk)− r (ε)))(g(xk)−g(xk−1))

<
n

∑
i=1

2r (ε)(g(xk)−g(xk−1))+

∣∣∣∣∣∑P f (tk)(g(xk)−g(xk−1))− I

∣∣∣∣∣
+

∣∣∣∣∣∑P f (sk)(g(xk)−g(xk−1))− I

∣∣∣∣∣< ε

3
+

ε

3
+

ε

3
= ε ■

Example 9.3.11 Let g(x) = x be increasing and continuous and let f be decreasing. Then
for P = a = x0 < · · ·< xn = b a partition of equally spaced points,

U ( f ,P)−L( f ,P) =
n

∑
k=1

f (xk−1)(xk− xk−1)−
n

∑
k=1

f (xk)(xk− xk−1)

=
b−a

n

n

∑
k=1

( f (xk−1)− f (xk)) =
b−a

n
( f (a)− f (b))

Thus for n large enough, U ( f ,P)−L( f ,P) < ε . It follows
∫ b

a f dx exists. A similar argu-
ment shows that if f is increasing, then the integral exists.

From this important result, one can obtain fairly easily the fact that various functions
of Riemann integrable functions are Riemann integrable.

Definition 9.3.12 Let k : D×D→ R satisfy∣∣k (a,b)− k
(
â, b̂
)∣∣≤ K

(
|a− â|+

∣∣b− b̂
∣∣) .

Such a function is called Lipschitz and K is called the Lipschitz constant.

Theorem 9.3.13 Let f ,h ∈ R([a,b] ,g) for g an increasing function and suppose
f ([a,b]) ,g([a,b]) are both contained in D. Let k : D×D→ R be Lipschitz with constant
K. Then k ( f ,h) ∈ R([a,b] ,g).

Proof: By assumption and Theorem 9.3.13, along with the observation that if P ⊆ Q,
then U ( f ,P)≥U ( f ,Q) and L( f ,P)≤ L( f ,Q) , there exists a partition P such that

U ( f ,P)−L( f ,P)< ε, U (h,P)−L(h,P)< ε.
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Now let

Mk
i ≡ sup{k ( f (x) ,h(x)) : x ∈ [xi−1,xi]} ,

mk
i ≡ inf{k ( f (x) ,h(x)) : x ∈ [xi−1,xi]}

Mh
i ≡ sup{h(x) : x ∈ [xi−1,xi]} ,mh

i ≡ inf{h(x) : x ∈ [xi−1,xi]} ,

a similar convention holding for M f
i ,m

f
i . Here P = {x0,x1, · · · ,xn}. Then

U (k ( f ,h))−L(k ( f ,h)) =
n

∑
k=1

(
Mk

i −mk
i

)
(g(xi)−g(xi−1))

≤
n

∑
k=1

K
((

M f
i −m f

i

)
+
(

Mh
i −mh

i

))
(g(xi)−g(xi−1))≤ K (ε + ε)

Since ε is arbitrary, this shows k ( f ,g) ∈ R([a,b] ,g) . In case this went by too fast, see the
following explanation. ■

In case there is a question about the assertion that(
Mk

i −mk
i

)
≤ K

((
M f

i −m f
i

)
+
(

Mh
i −mh

i

))
Pick xM,xm ∈ [xi−1,xi] such that k ( f (xM) ,h(xM)) > Mk

i − ε, k ( f (xm) ,h(xm)) < mk
i + ε.

Then (
Mk

i −mk
i

)
≤ k ( f (xM) ,h(xM))− k ( f (xm) ,h(xm))+2ε

≤ K (| f (xM)− f (xm)|+ |h(xM)−h(xm)|)+2ε ≤ K
((

M f
i −m f

i

)
+
(

Mh
i −mh

i

))
+2ε

and since ε is arbitrary, this shows the assertion.
This theorem could be generalized by letting k be continuous, but if you want to do

everything right, the context of Riemann integration is not the right place to look anyway.
Much more satisfactory results are available in the theory of Lebesgue integration. I am
trying to keep things simple without excluding the most important examples.

Here is an example of the kind of thing considered obtained from the above theorem.

Example 9.3.14 Let f ,h be Riemann Stieltjes integrable, real valued functions with respect
to g an increasing integrator function. Then so is max( f ,h) ,min( f ,h) ,a f +bh for a,b real
numbers, f h, and likely many other combinations of these functions.

The only claims not obvious are the one about f h and max( f ,h) ,min( f ,h). However,
g,h are bounded by assumption. Therefore, h, f have all values in some interval [−R,R] .
Let k (a,b)≡ ab for (a,b) ∈ [−R,R]× [−R,R].∣∣k (a,b)− k

(
â, b̂
)∣∣≤ |ab− âb|+

∣∣âb− âb̂
∣∣≤ R |a− â|+R

∣∣b− b̂
∣∣

As to max( f ,h) , it equals | f−h|+ f+h
2 which clearly satisfies the necessary condition.

Note that this theorem includes the most important example in which g(t) = t, the
Riemann integral.

The following corollary gives many examples of functions which are integrable. This
corollary includes the case of Riemann integrability of a piecewise continuous function.
This was first shown by Riemann. However, it is important that either f or g is continuous
at the exceptional points for f .
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Corollary 9.3.15 Let g be an increasing function defined on [a,b] and let | f | be bound-
ed by M and f is continuous on [a,b] except for {c1, · · · ,cr}. At these points either f or g
is continuous. Then

∫ b
a f dg exists.

Proof: By Theorem 9.3.7, I just need to show that there is a partition P such that
U ( f ,P)−L( f ,P) < ε . Let

∥∥P̃
∥∥ < δ , P̃ = a = y0 < · · · < yn = b where δ is so small that

if some ci ∈ [yk−1,yk] , then for Mk,mk having the meaning described above as sup and inf
of f on the kth interval,

|(Mk−mk)(g(yk)−g(yk−1))|<
ε

5r
(9.4)

This is possible because either f or g is continuous at ci. Note there are at most r of these
intervals. The validity of the above inequality only depends on

∥∥P̃
∥∥ so to eliminate possible

cases, assume that none of the yi equal any of the finitely many points in the list except
possibly yn and y0 if there is a discontinuity at an end point. Then there are m≤ r+1 closed
intervals

{
I j
}m

j=1 which remain, other than these special ones which contain an exceptional
point and on each of these intervals, f is continuous. Hence denoting as U ( f ,Pj) an upper
sum corresponding to a partition Pj of I j and L( f ,Pj) defined similarly, we can choose Pj
on I j such that U ( f ,Pi)−L( f ,Pj)<

ε

5(r+1) . Letting P be a partition of [a,b] consisting of
the yk along with the points of each Pj, it follows that

U ( f ,P)−L( f ,P)<
m

∑
j=1

(U ( f ,Pi)−L( f ,Pj))+ r (Mk−mk)(g(yk)−g(yk−1))

≤ ε

5(r+1)
m+

ε

5
<

2ε

5
< ε ■

Proposition 9.3.16 Suppose f ∈R([a,b] ,g) where g is an increasing function. If f = f̂
except at finitely many points {z1, · · · ,zn} at which g is continuous, then f̂ ∈R([a,b] ,g) and∫

f̂ dg =
∫

f dg.

Proof: By assumption, there exists P such that U ( f ,P)−L( f ,P)< ε

4 . Then by adding
in more points to P by including points on either side of the exceptional points and using the
continuity of g at these exceptional points, we can pick these extra points close enough to
the exceptional points such that if P̂ consists of the new partition with the new points added
in,
∣∣U ( f̂ , P̂

)
−U ( f ,P)

∣∣< ε

4 and
∣∣L( f̂ , P̂

)
−L( f ,P)

∣∣< ε

4 . Therefore, U
(

f̂ , P̂
)
−L
(

f̂ , P̂
)
<

3ε

4 showing that f̂ is also in R([a,b] ,g) . Also, the two integrals are between all upper and
lower sums. Thus these integrals are equal because if

∫
f̂ dg≥

∫
f dg,∣∣∣∣∫ f̂ dg−

∫
f dg
∣∣∣∣≤U

(
f̂ , P̂
)
−L( f ,P)≤U

(
f̂ , P̂
)
−L

(
f̂ ,P
)
+

ε

4
< ε

Since ε is arbitrary, this shows the two are equal. It works the same if
∫

f dg≥
∫

f̂ dg. ■
In case g(x) = x so you are considering the Riemann integral, this theorem is more gen-

eral than the one which says that piecewise continuous functions are Riemann integrable.
It is more general because you could have a function which is continuous except at finitely
many points but maybe the limit of the function from one side or another does not even
exist. A piecewise continuous function is defined next.
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Definition 9.3.17 A bounded function f : [a,b]→R is called piecewise continuous
if there are points zi such that a = z0 < z1 < · · · < zn = b and continuous functions gi :
[zi−1,zi]→ R such that for t ∈ (zi−1,zi) ,gi (t) = f (t).

I think that the case of piecewise continuous functions is certainly the case of most
interest, however. What happens is that the right and left limits of f exist at each of the
exceptional points. Thus we can speak of

lim
x→zi+

f (x)≡ f (zi+) , and lim
x→zi−

f (x)≡ f (zi−)

where the first limit is taken from the right and the second limit from the left. On [zi−1,zi] ,
the function gi equals f except at the endpoints it is the right or left limit of f .

The situation for piecewise continuous functions is stated as the following corollary. I
will give a proof because this is, in my opinion, the most important case and it won’t hurt
to have a new and maybe more elementary proof. In this corollary, the integrator function
is g(t) = t.

Corollary 9.3.18 Let f : [a,b]→ R be piecewise continuous. Then f is Riemann inte-
grable. Also ∫ b

a
f dt =

n

∑
i=1

∫ zi

zi−1

gidt (9.5)

Where gi = f on (zi−1,zi) with gi continuous on [zi−1,zi].

Proof: Let Pi be a partition for [zi−1,zi] . Since there are only finitely many of these
intervals, there exists δ > 0 such that if ∥Pi∥< δ , then for each i,∣∣∣∣∣∑Pi

gi−
∫ zi

zi−1

gidt

∣∣∣∣∣< ε

Let M f be an upper bound for | f | on [a,b], Mg an upper bound for all |gi|. Now let ∥P∥<
δ < ε where P is a partition of [a,b] , these points denoted as x j. Let P̂i be those points of
P which are in (zi−1,zi] and let Pi consist of P̂i along with zi−1 and zi. Thus ∥Pi∥< δ . Then
for yi ∈ [xi−1,xi] ,∣∣∣∣∣ n

∑
i=1

∫ zi

zi−1

gidt−∑
P

f

∣∣∣∣∣≤ n

∑
i=1

∣∣∣∣∣∣
∫ zi

zi−1

gidt− ∑
x j∈P̂i

f (y j)
(
x j− x j−1

)∣∣∣∣∣∣
Now for x j ∈ P̂i, f (y j) = gi (y j) except maybe at end points where these differ by no more
than 2

(
M f +Mg

)
≡ 2M. Thus the above is no more than

≤
n

∑
i=1

∣∣∣∣∣
∫ zi

zi−1

gidt− ∑
x j∈Pi

gi (y j)
(
x j− x j−1

)∣∣∣∣∣+ n

∑
i=1

4
(
M f +Mg

)
δ

< nε +4Mnδ < ε (n+4Mn)

Since ε is arbitrary, this shows that f is indeed Riemann integrable and equals 9.5. ■
Recall that every bounded variation real function is the difference of two increasing

functions. This is Proposition 9.3.2. Then one can easily generalize the above Corollary
9.3.15 to the case where g is only real and of bounded variation.
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Corollary 9.3.19 Let g be the difference of two increasing functions g= g1−g2 defined
on [a,b] and let f be bounded by M and is continuous on [a,b] except at finitely many points
{c1, · · · ,cr}. At these points either f or both g1,g2 are continuous. Then

∫ b
a f dg exists.

Proof: The details are left to the reader. However, you simply apply the above Corollary
9.3.15 to

∫ b
a f dg1 and

∫ b
a f dg2 and then note that from the definition,

∫ b
a f dg =

∫ b
a f dg1−∫ b

a f dg2 ■
The above has given many examples of functions which are integrable. Now here is

one which is not integrable with respect to any continuous bounded variation function.

Example 9.3.20 Here is an example of a function which is not integrable. Let

f (t)≡
{

1 if x is rational
0 if x is not rational (9.6)

and let g be an increasing continuous function, g(b) > g(a). Then in reference to [a,b],
U ( f ,g) = g(b)−g(a) and L( f ,g) = 0 so

∫ b
a f dg does not exist. This follows from Theorem

9.3.10.

There is a fundamental relationship between f ∈ R([a,b] ,g) and g ∈ R([a,b] , f ). It
turns out that if you have one, then you have the other also and in addition to this, there is
a fundamental integration by parts formula. This is a very remarkable formula.

9.4 Integration by Parts
Theorem 9.4.1 Let f ,g be two functions defined on [a,b]. Suppose f ∈ R([a,b] ,g) .
Then g ∈ R([a,b] , f ) and the following integration by parts formula holds.

∫ b

a
f dg+

∫ b

a
gd f = f g(b)− f g(a) .

Proof: By definition there exists δ > 0 such that if ∥P∥ < δ then whenever zi ∈
[xi−1,xi] , ∣∣∣∣∣ n

∑
i=1

f (zi)(g(xi)−g(xi−1))−
∫ b

a
f dg

∣∣∣∣∣< ε

Pick such a partition. Notice f g(b)− f g(a) =∑
n
i=1 f g(xi)− f g(xi−1) .Therefore, subtract-

ing ∑
n
i=1 g(ti)( f (xi)− f (xi−1)) from both sides where ti ∈ [xi−1,xi] ,

f g(b)− f g(a)−
n

∑
i=1

g(ti)( f (xi)− f (xi−1))

=
n

∑
i=1

( f g(xi)− f g(xi−1))−
n

∑
i=1

g(ti)( f (xi)− f (xi−1))

=
n

∑
i=1

f (xi)(g(xi)−g(ti))+ f (xi−1)(g(ti)−g(xi−1))
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But this is just a Riemann Stieltjes sum for
∫ b

a f dg corresponding to the partition which
consists of all the xi along with all the ti and if P′ is this partition, ∥P′∥< δ because it has
at least as many points in it as P. Therefore,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Riemann sum for
∫ b

a f dg︷ ︸︸ ︷ f g(b)− f g(a)−
n

∑
i=1

g(ti)( f (xi)− f (xi−1))︸ ︷︷ ︸
Riemann sum for

∫ b
a gd f

−
∫ b

a
f dg

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< ε

and this has shown that from the definition, g ∈ R([a,b] , f ) and∫ b

a
gd f = f g(b)− f g(a)−

∫ b

a
f dg.■

It is an easy theorem to remember. Think something sloppy like this: d ( f g) = f dg+
gd f and so

f g(b)− f g(a) =
∫ b

a
d ( f g) =

∫ b

a
f dg+

∫ b

a
gd f (9.7)

and all you need is for at least one of these integrals on the right to make sense. Then the
other automatically does and the formula follows.

Corollary 9.4.2 ∫ b
a f dg exists if f is continuous and g of bounded variation or if g is

continuous and f of bounded variation.

Proof: This follows from the above integration by parts result and Theorem 9.3.7. ■
The following proposition shows

∫ b
a f (t)dg(t) =

∫ b
a f (t)g′ (t)dt under suitable as-

sumptions. Actually, this will be true even if g has values in some vector space. To begin
with is an argument which could be used to show this. This argument is technical and for
the topics of interest in this book, the proposition is sufficient. Therefore, you might want
to go directly to the proposition. The reason that it is more complicated is that the mean
value theorem is not available unless the function is real valued.

Suppose now that g is differentiable on [a,b] and has a continuous derivative x→ g′ (x) .
Consider the following function where (x,y) ∈ [a,b]× [a,b]

k (x,y)≡

{ |g(y)−g(x)−g′(x)(y−x)|
|y−x| if x ̸= y

0 if x = y

Then k is continuous in the sense that if xn→ x,yn→ y, it follows that k (xn,yn)→ k (x,y).
Thus it is uniformly continuous by Theorem 6.7.2. Thus if ∥P∥ < δ , for P a partition of
[a,b] ,

n

∑
i=1
|g(xi)−g(xi−1)| ≤

n

∑
i=1

∣∣g′ (xi)
∣∣ |xi− xi−1|+

n

∑
i=1

ε |xi− xi−1|

≤
(
ε +max

{∣∣g′ (x)∣∣ : x ∈ [a,b]
})

(b−a)
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Now note that whenever Q is a partition, the estimate for total variation obtained from
V (Qb,g) ≤ V ((Q∪P)b ,g). Therefore, in finding the total variation of g one can assume
that all partitions have norm no more than δ . Then since ε is arbitrary, this shows that

V[a,b] (g)≤ |b−a|max
{∣∣g′ (x)∣∣ : x ∈ [a,b]

}
Then by Theorem 9.4.1, both

∫ b
a f dg and

∫ b
a f g′dt exist. Then one can use a similar argu-

ment to what is about to be presented in the next proposition to conclude that these two
integrals are equal. The only difference is that in the general case, you would need to avoid
the mean value theorem and instead use a left sum to approximate the difference in g and a
similar argument to what was just presented to show that g is of finite total variation. The
reason for noting this argument is to allow the possibility that g has vector values, possibly
in an infinite dimensional space. However, for this book, we are mainly concerned with g
having real values. For this case, there is a much easier argument based on the mean value
theorem.

In the assumptions for the following Proposition, it is easier to simply assume that g′ (x)
exists and g′ is continuous on [a,b] where g′ (a) ,g′ (b) are defined as appropriate one sided
derivatives, but in the interest of generality, it is only assumed in the following that g′ (t)
exists on (a,b) and is continuous on [a,b]. However, giving the condition on [a,b] is likely
easier to remember and will suffice in all typical situations.

Proposition 9.4.3 Let g be real valued, continuous on [a,b] , and have a derivative
which is continuous and bounded on (a,b). Then g has finite total variation and for f
continuous, ∫ b

a
f (t)dg(t) =

∫ b

a
f (t)g′ (t)dt,

the integral on the right existing because t → f (t)g′ (t) is continuous on (a,b) , bounded,
and γ (t)≡ t is continuous at the endpoints, Corollary 9.3.15.

Proof: First consider the claim that g has finite total variation. Let a = x0 < x1 < · · ·<
xn = b. By the mean value theorem,

n

∑
i=1
|g(ti)−g(ti−1)|=

n

∑
i=1

∣∣g′ (si)
∣∣(ti− ti−1)≤max

{∣∣g′ (x)∣∣ : x ∈ [a,b]
}
(b−a) .

Thus V[a,b] (g)< ∞.

Now, by Theorem 9.4.1,
∫ b

a f (t)g′ (t)dt,
∫ b

a f (t)dg(t) both exist. Therefore, there ex-
ists a δ such that if ||P||< δ , then letting P be {x0, · · · ,xn} ,∣∣∣∣∣ n

∑
i=1

f (ui)(g(xi)−g(xi−1))−
∫ b

a
f (t)dg(t)

∣∣∣∣∣ < ε,∣∣∣∣∣ n

∑
i=1

f (ui)g′ (ui)(xi− xi−1)−
∫ b

a
f (t)g′ (t)dt

∣∣∣∣∣ < ε

for any choice of ui ∈ [xi−1,xi]. But in the first expression, the mean value theorem implies
g(xi)−g(xi−1) = g′ (vi)(xi− xi−1) for some vi ∈ (xi−1,xi). Let ui = vi in the top inequality
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to obtain ∣∣∣∣∣ n

∑
i=1

f (vi)(g(xi)−g(xi−1))−
∫ b

a
f (t)dg(t)

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
i=1

f (vi)g′ (vi)(xi− xi−1)−
∫ b

a
f (t)dg(t)

∣∣∣∣∣< ε

Then let ui = vi in the bottom inequality as well to obtain∣∣∣∣∫ b

a
f (t)dg(t)−

∫ b

a
f (t)g′ (t)dt

∣∣∣∣≤
∣∣∣∣∣
∫ b

a
f (t)dg(t)−

n

∑
i=1

f (vi)g′ (vi)(xi− xi−1)

∣∣∣∣∣
+

∣∣∣∣∣ n

∑
i=1

f (vi)g′ (vi)(xi− xi−1)−
n

∑
i=1

f (vi)(g(xi)−g(xi−1))

∣∣∣∣∣
+

∣∣∣∣∣ n

∑
i=1

f (vi)(g(xi)−g(xi−1))−
∫ b

a
f (t)dg(t)

∣∣∣∣∣< ε +0+ ε = 2ε

Since ε is arbitrary, this shows
∫ b

a f (t)dg(t) =
∫ b

a f (t)g′ (t)dt. ■
What does the integration by parts formula 9.7 say in case g′ exists and is continuous

and f ′ exists and is continuous? By Proposition 9.4.3 above, both
∫ b

a f dg and
∫ b

a gd f exist.
Now the integration by parts formula says f g(b)− f g(a) =

∫ b
a f dg+

∫ b
a gd f and from

what was just shown in Proposition 9.4.3, this reduces to

f g(b)− f g(a) =
∫ b

a
f (t)g′ (t)dt +

∫ b

a
g(t) f ′ (t)dt (9.8)

which is the usual integration by parts formula from calculus.

Proposition 9.4.4 Let f ,g both be continuous on [a,b] with continuous bounded deriv-
atives on (a,b) . Then the usual calculus integration by parts formula 9.8 is valid.

9.5 The Fundamental Theorem of Calculus
Note how as a special case, you get the usual fundamental theorem of calculus by letting
f (t)≡ 1. Indeed, from Theorem 9.4.1

∫ b

a
1g′ (t)dt =

∫ b

a
1dg(t)+

obviously 0︷ ︸︸ ︷∫ b

a
gd f = 1g(b)−1g(a) = g(b)−g(a)

This proves:

Theorem 9.5.1 If g′ is continuous on [a,b] , then g(b)−g(a) =
∫ b

a g′ (t)dt.

A version of this presented more directly is the following.

Theorem 9.5.2 Suppose
∫ b

a f (t)dt exists and F ′ (t) = f (t) for each t ∈ (a,b) for
some F continuous on [a,b]. Then

∫ b
a f (t)dt = F (b)−F (a).
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Proof: There exists δ > 0 such that if ∥P∥< δ , then for P = x0, · · · ,xn,∣∣∣∣∣
∫ b

a
f (t)dt−

n

∑
k=1

f (tk)(xk− xk−1)

∣∣∣∣∣< ε, for any tk ∈ [xk−1,xk] .

Use the mean value theorem to pick tk ∈ (xk−1,xk) such that f (tk)(xk− xk−1) = F (xk)−
F (xk−1) . Then∣∣∣∣∣

∫ b

a
f (t)dt−

n

∑
k=1

f (tk)(xk− xk−1)

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a
f (t)dt−

n

∑
k=1

F (xk)−F (xk−1)

∣∣∣∣∣
=

∣∣∣∣∫ b

a
f (t)dt− (F (b)−F (a))

∣∣∣∣< ε

Since ε > 0 is arbitrary, this proves the theorem. ■
Note that this did not explicitly require f to be continuous, just Riemann integrable.

In case f is continuous or piecewise continuous, this shows the integral discussed here is
the same as the integral of Definition 9.1.3 because, as shown in Proposition 9.1.5 both
can be computed by using an antiderivative. If

∫̂
is the earlier 1700’s integral and if f is

piecewise continuous with exceptional points between a and b, α0,α1, ...,αn, and f = fi
on (α i−1,α i) , then

∫̂ b

a
f dx≡

n

∑
i=1

∫̂ α i

α i−1

fidx =
n

∑
i=1

∫
α i

α i−1

fidx =
∫ b

a
f dx.

Definition 9.5.3 When everything makes sense,
∫ b

a f (t)dg(t)≡−
∫ a

b f (t)dg(t)

This also shows the well known change of variables formula.

Theorem 9.5.4 Suppose F ′ (y) = f (y) for y between φ (a) and φ (b) and f , φ
′ are

continuous. Then ∫
φ(b)

φ(a)
f (y)dy =

∫ b

a
f (φ (t))φ

′ (t)dt

Proof: This is true because both sides reduce to F (φ (b))−F (φ (a)) .■
The other form of the fundamental theorem of calculus is also obtained. Note that in

case of the Riemann integral if f ≥ 0, and a≤ b, then
∫ b

a f (t)dt ≥ 0. Therefore, assuming
f is continuous, ∫ b

a
(| f (t)|− f (t))dt ≥ 0,

∫ b

a
(| f (t)|+ f (t))dt ≥ 0

and so
∫ b

a | f (t)|dt ≥
∫ b

a f (t)dt,
∫ b

a | f (t)|dt ≥ −
∫ b

a f (t)dt which implies
∫ b

a | f (t)|dt ≥∣∣∣∫ b
a f (t)dt

∣∣∣. This also follows from Theorem 9.3.6.

Theorem 9.5.5 Let f be continuous on [a,b] and suppose V[a,b] (g) < ∞. Then f ∈
R([a,x] ,g) for all x ∈ [a,b]. If g(t) = t, then for F (x) =

∫ x
a f (t)dt, it follows that F ′ (t) =

f (t) for t ∈ (a,b).
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Proof: The first part is obvious because V[a,x] (g)≤V[a,b] (g)< ∞ and so f ∈ R([a,x] ,g)
by Theorem 9.3.7. It remains to verify the last part. Let t ∈ (a,b) and let |h| be small
enough that everything of interest is in [a,b]. First suppose h > 0. Then∣∣∣∣F (t +h)−F (t)

h
− f (t)

∣∣∣∣= ∣∣∣∣1h
∫ t+h

t
f (s)ds− 1

h

∫ t+h

t
f (t)ds

∣∣∣∣
≤ 1

h

∫ t+h

t
| f (s)− f (t)|ds≤ 1

h

∫ t+h

t
εds = ε

provided that ε is small enough due to continuity of f at t. A similar inequality is ob-
tained if h < 0 except in the argument, you will have t + h < t so you have to switch
the order of integration in going to the second line and replace 1/h with 1/(−h). Thus
limh→0

F(t+h)−F(t)
h = f (t). ■

An examination of the proof along with Corollary 9.3.15 yields the following corollary.

Corollary 9.5.6 Let f be continuous on [a,b] except for finitely many points. Then
F (x)≡

∫ x
a f dx exists for all x ∈ [a,b]. F ′ (x) = f (x) for x any point in (a,b) at which f is

continuous.

9.6 Uniform Convergence and the Integral
It turns out that uniform convergence is very agreeable in terms of the integral. The follow-
ing is the main result.

Theorem 9.6.1 Let g be of bounded variation and let fn be continuous and converg-
ing uniformly to f on [a,b]. Then f is also integrable and

∫ b
a f dg = limn→∞

∫ b
a fndg.

Proof: The uniform convergence implies f is also continuous. See Theorem 6.9.7.
Therefore,

∫ b
a f dg exists. Now let n be given large enough that

∥ f − fn∥ ≡ max
x∈[a,b]

| f (x)− fn (x)|< ε

Next pick δ > 0 small enough that if ||P||< δ , then∣∣∣∣∣
∫ b

a
f dg−

n

∑
k=1

f (tk)(g(xk)−g(xk−1))

∣∣∣∣∣ < ε∣∣∣∣∣
∫ b

a
fndg−

n

∑
k=1

fn (tk)(g(xk)−g(xk−1))

∣∣∣∣∣ < ε

for any choice tk ∈ [xk−1,xk]. Pick such a P and the same tk for both sums. Then∣∣∣∣∫ b

a
f dg−

∫ b

a
fndg

∣∣∣∣≤
∣∣∣∣∣
∫ b

a
f dg−

n

∑
k=1

f (tk)(g(xk)−g(xk−1))

∣∣∣∣∣
+

∣∣∣∣∣ n

∑
k=1

( f (tk)− fn (tk))(g(xk)−g(xk−1))

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a
fndg−

n

∑
k=1

fn (tk)(g(xk)−g(xk−1))

∣∣∣∣∣
< ε +

n

∑
k=1

ε |g(xk)−g(xk−1)|+ ε ≤ 2ε +V[a,b] (g)ε

Since ε is arbitrary, this shows that limn→∞

∣∣∣∫ b
a f dg−

∫ b
a fndg

∣∣∣= 0. ■
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9.7 A Simple Procedure for Finding Integrals
Suppose f is a continuous function and F is an increasing integrator function. How do you
find

∫ b
a f (x)dF? Is there some sort of easy way to do it which will handle lots of simple

cases? It turns out there is a way. It is based on Lemma 9.4.3. First of all

F (x+)≡ lim
y→x+

F (y) , F (x−)≡ lim
y→x−

F (y)

For an increasing function F , the jump of the function at x equals F (x+)−F (x−).

Procedure 9.7.1 Suppose f is continuous on [a,b] and F is an increasing function
defined on [a,b] such that there are finitely many intervals determined by the partition
a = x0 < x1 < · · ·< xn = b which have the property that on [xi,xi+1] , the following function
is differentiable and has a continuous derivative.

Gi (x)≡

 F (x) on (xi,xi+1)
F (xi+) when x = xi
F (xi+1−) when x = xi+1

Also assume F (a) = F (a+) ,F (b) = F (b−). Then

∫ b

a
f (x)dF =

n−1

∑
j=0

∫ x j+1

x j

f (x)G′j (x)dx+
n−1

∑
i=1

f (xi)(F (xi+)−F (xi−))

Here is why this procedure works. Let δ be very small and consider the partition

a = x0 < x1−δ < x1 < x1 +δ < x2−δ < x2 < x2 +δ <

· · ·xn−1−δ < xn−1 < xn−1 +δ < xn−δ < xn = b

where δ is also small enough that whenever |x− y|< δ , it follows | f (x)− f (y)|< ε. Then
from the properties of the integral presented above,

∫ x1−δ

a
f dF +

∫ x2−δ

x1+δ

f dF + · · ·+
∫ b

xn−1+δ

f dF +
n−1

∑
i=1

( f (xi)− ε)(F (xi +δ )−F (xi−δ ))

≤
∫ b

a
f dF ≤

∫ x1−δ

a
f dF +

∫ x2−δ

x1+δ

f dF + · · ·+
∫ b

xn−1+δ

f dF

+
n−1

∑
i=1

( f (xi)+ ε)(F (xi +δ )−F (xi−δ ))

By Lemma 9.4.3 this implies∫ x1−δ

a
f G′0dx+

∫ x2−δ

x1+δ

f G′1dx+ · · ·+
∫ b

xn−1+δ

f G′n−1dx

+
n−1

∑
i=1

( f (xi)− ε)(F (xi +δ )−F (xi−δ ))≤
∫ b

a
f dF ≤
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∫ x1−δ

a
f G′0dx+

∫ x2−δ

x1+δ

f G′1dx+ · · ·+
∫ b

xn−1+δ

f G′n−1dx

+
n−1

∑
i=1

( f (xi)+ ε)(F (xi +δ )−F (xi−δ ))

Now let δ → 0 to obtain the desired integral is between

n−1

∑
j=0

∫ x j+1

x j

f (x)G′j (x)dx+
n−1

∑
i=1

( f (xi)+ ε)(F (xi+)−F (xi−))

and
n−1

∑
j=0

∫ x j+1

x j

f (x)G′j (x)dx+
n−1

∑
i=1

( f (xi)− ε)(F (xi+)−F (xi−))

Since ε is arbitrary, this shows the procedure is valid. This yields the following right away.

Lemma 9.7.2 Let F be increasing. Then X[a,b] ∈ R([a,b] ,F) and the following formula
is valid.

∫ b
a X[a,b]dF = F (b+)−F (a−) .

9.8 Stirling’s Formula
In this section is an elementary approach to Stirlings formula. This formula is an asymptotic
approximation for n!. It is quite old, dating to about 1730. The approach followed here is
like the one in the Calculus book of Courant found in the references. Later I will give a
different one found in [24]. See also [9].

To begin with is a simple lemma which really depends on the shape of the graph of
t→ ln t.

Lemma 9.8.1 For n a positive integer,

1
2
(ln(n+1)+ ln(n))≤

∫ n+1

n
ln(t)dt ≤ ln

(
n+

1
2

)
(9.9)

Proof: Consider the following picture.

ln(n)

ln(n+1)

n n+1

x

t

n+ 1
2

There are two trapezoids, the area of the larger one is larger than
∫ n+1

n ln(t)dt and the
area of the smaller being smaller than this integral. The equation of the line which forms
the top of the large trapezoid is

y− ln
(

n+
1
2

)
=

1
n+ 1

2

(
x−
(

n+
1
2

))
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Thus the area of the large trapezoid is obtained by averaging the two vertical sides and
multiplying by the length of the base which is 1. This is easily found to be ln

(
n+ 1

2

)
. Then

the area of the smaller trapezoid is obtained also as the average of the two vertical sides
times the length of the base which is 1

2 (ln(n+1)+ ln(n)). ■
Now observe the following:

exp

(
n−1

∑
k=1

1
2
(ln(k)+ ln(k+1))

)
=

n−1

∏
k=1

(k (k+1))1/2

= (1 ·2)1/2 (2 ·3)1/2 · · ·((n−1) ·n)1/2 = (n−1)!
√

n = n!n−1/2

Letting Tn ≡ ∑
n−1
k=1

1
2 (ln(k)+ ln(k+1)) ,exp(Tn) = n!n−1/2. Then∫ n

1
ln(t)dt−Tn

≤
n−1

∑
k=1

ln
(

k+
1
2

)
−

n−1

∑
k=1

1
2
(ln(k)+ ln(k+1))

=
1
2

n−1

∑
k=1

(
ln
(

k+
1
2

)
− ln(k)

)
− 1

2

n−1

∑
k=1

(
ln(k+1)− ln

(
k+

1
2

))
≤ 1

2

n−1

∑
k=1

(
ln(k)− ln

(
k− 1

2

))
− 1

2

n−1

∑
k=1

(
ln(k+1)− ln

(
k+

1
2

))

=
1
2

n−1

∑
k=1

(
ln(k)− ln

(
k− 1

2

))
− 1

2

n

∑
k=2

(
ln(k)− ln

(
k− 1

2

))
=

1
2

ln2−
(

1
2

ln(n)− ln
(

n− 1
2

))
≤ ln2

2

(∫ n+1

1
ln(t)dt−Tn+1

)
−
(∫ n

1
ln(t)dt−Tn

)
=

∫ n+1

n
ln(t)dt−

(
1
2
(ln(n)+ ln(n+1))

)
≥ 0

Thus {
∫ n

1 ln(t)dt−Tn} increases to some α ≤ ln2
2 . Doing the integral,

(n lnn−n)−Tn→ α

and so taking the exponential,
nn

enn!n−1/2 → eα

This has proved the following lemma.

Lemma 9.8.2 limn→∞
n!en

nn+1/2 = c for some positive number c.
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In many applications, the above is enough. However, the constant can be found. There
are various ways to show that this constant c equals

√
2π . The version given here also

includes a formula which is interesting for its own sake.
Using integration by parts, it follows that whenever n is a positive integer larger than 1,∫

π/2

0
sinn (x)dx =

n−1
n

∫
π/2

0
sinn−2 (x)dx

Lemma 9.8.3 For m≥ 1,∫
π/2

0
sin2m (x)dx =

(2m−1)(2m−3) · · ·1
2m(2m−2) · · ·2

π

2
,∫

π/2

0
sin2m+1 (x)dx =

(2m)(2m−2) · · ·2
(2m+1)(2m−1) · · ·3

.

Proof: Consider the first formula in the case where m = 1. From beginning calculus,∫ π/2
0 sin2 (x)dx = π

4 = 1
2

π

2 so the formula holds in this case. Suppose it holds for m. Then
from the above reduction identity and induction,∫

π/2

0
sin2m+2 (x)dx =

2m+1
2(m+1)

∫
π/2

0
sin2m (x)dx

=
2m+1

2(m+1)
(2m−1) · · ·1

2m(2m−2) · · ·2
π

2
.

The second claim is proved similarly. ■
Then using the reduction identity and the above,

2m+1
2m

≥
∫ π/2

0 sin2m (x)dx
2m

2m+1
∫ π/2

0 sin2m−1 (x)dx
=

∫ π/2
0 sin2m (x)dx∫ π/2

0 sin2m+1 (x)dx
=

=
π

2
(2m+1)

(2m−1)2 (2m−3)2 · · ·1
22m (m!)2 ≥ 1

It follows from the squeezing theorem that

lim
m→∞

1
2m+1

22m (m!)2

(2m−1)2 (2m−3)2 · · ·1
=

π

2

This exceedingly interesting formula is Wallis’ formula.
Now multiply both the top and the bottom of the expression on the left by

(2m)2 (2(m−1))2 · · ·22

which is 22m (m!)2 . This is another version of the Wallis formula.

π

2
= lim

m→∞

22m

2m+1
22m (m!)2 (m!)2

((2m)!)2

It follows that √
π

2
= lim

m→∞

22m
√

2m+1
(m!)2

(2m)!
= lim

m→∞

22m
√

2m
(m!)2

(2m)!
(9.10)
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Now with this result, it is possible to find c in Stirling’s formula. Recall

lim
m→∞

m!
mm+(1/2)e−mc

= 1 = lim
m→∞

mm+(1/2)e−mc
m!

In particular, replacing m with 2m,

lim
m→∞

(2m)!

(2m)2m+(1/2) e−2mc
= lim

m→∞

(2m)2m+(1/2) e−2mc
(2m)!

= 1

Therefore, from 9.10,

√
π

2
= lim

m→∞

(
mm+(1/2)e−mc

m!

)2(
(2m)2m+(1/2)e−2mc

2m!

) ( 22m
√

2m
(m!)2

(2m)!

)
= lim

m→∞

22m
√

2m

(
mm+(1/2)e−mc

)2(
(2m)2m+(1/2) e−2mc

)

= c lim
m→∞

22m
√

2m
m2m+1

22m+1/2
(
m2m+(1/2)

) = c lim
m→∞

1
2

m2m+1

m2m+1 =
c
2

so c =
√

2π . This proves Stirling’s formula.

Theorem 9.8.4 limm→∞
m!

mm+(1/2)e−m =
√

2π .

9.9 Fubini’s Theorem an Introduction
Fubini’s theorem has become the name of a theorem which involves interchanging the order
of integration in iterated integrals. You may have seen it mentioned in a beginning calculus
course. It is actually an incredibly deep result, much more so than what will be indicated
here. Here I will only consider enough to allow what will be done in this book. It turns out
that iterated integrals are what occur naturally in many situations, and each integral in an
iterated integral is a one dimensional notion, so it is natural to consider the interchange of
iterated integrals in a book on single variable calculus. All of this depends on the theorems
about continuous functions defined on a subset of Fp. In the case considered here, p = 2.

The following theorem is just like an earlier one for functions of one variable.

Theorem 9.9.1 Let f be increasing and let g be continuous on [a,b]. Then there
exists c ∈ [a,b] such that

∫ b
a gd f = g(c)( f (b)− f (c)).

Proof: If f is constant, there is nothing to prove so assume f (b) > f (a). Let M ≡
max{g(x) : x ∈ [a,b]} ,m ≡ min{g(x) : x ∈ [a,b]}. Then in a Riemann sum for

∫ b
a gd f , if

g is replaced by M, the resulting Riemann sum will increase and if it is replaced with m,
the resulting sum will decrease. Therefore,

m( f (b)− f (a)) =
∫ b

a
md f ≤

∫ b

a
gd f ≤

∫ b

a
Md f = M ( f (b)− f (a))

and so m ≤ 1
f (b)− f (a)

∫ b
a gd f ≤ M. Therefore, by the intermediate value theorem, there is

c ∈ [a,b] such that 1
f (b)− f (a)

∫ b
a gd f = g(c) .■



216 CHAPTER 9. INTEGRATION

Lemma 9.9.2 Let f : [a,b]× [c,d]→ R be continuous at every point so it is uniformly
continuous. Let α,β be increasing on [a,b] , [c,d] respectively. Then

x→
∫ d

c
f (x,y)dβ (y) , y→

∫ b

a
f (x,y)dα (x)

are both continuous functions.

Proof: Consider the first. The other is exactly similar.∣∣∣∣∫ d

c
f (x,y)dβ (y)−

∫ d

c
f (x̂,y)dβ (y)

∣∣∣∣= ∣∣∣∣∫ d

c
( f (x,y)− f (x̂,y))dβ (y)

∣∣∣∣
≤
∫ d

c
| f (x,y)− f (x̂,y)|dβ (y)

But by uniform continuity, if |x− x̂| is small enough, then | f (x,y)− f (x̂,y)|< ε and so the
integral in the above is no larger than ε (β (d)−β (c)). Since ε is arbitrary, this shows the
claim. ■

Note that, since these are continuous functions, it follows from Theorem 9.3.7 that it
makes perfect sense to write the iterated integrals∫ b

a

∫ d

c
f (x,y)dβ (y)dα (x) ,

∫ d

c

∫ b

a
f (x,y)dα (x)dβ (y)

Of course the burning question is whether these two numbers are equal. This is the next
theorem.

Theorem 9.9.3 Let f : [a,b]× [c,d]→ R be continuous and let β ,α be increasing
functions on [c,d] , [a,b] respectively. Then∫ b

a

∫ d

c
f (x,y)dβ (y)dα (x) =

∫ d

c

∫ b

a
f (x,y)dα (x)dβ (y)

Proof: ∫ b

a

∫ d

c
f (x,y)dβ (y)dα (x) =

n

∑
i=1

∫ xi

xi−1

∫ d

c
f (x,y)dβ (y)dα (x)

=
n

∑
i=1

∫ xi

xi−1

m

∑
j=1

∫ y j

y j−1

f (x,y)dβ (y)dα (x) =
n

∑
i=1

m

∑
j=1

∫ xi

xi−1

∫ y j

y j−1

f (x,y)dβ (y)dα (x)

By the mean value theorem for integrals, Theorem 9.9.1, this is

n

∑
i=1

m

∑
j=1

∫ xi

xi−1

(
β (y j)−β

(
y j−1

))
f (x, t j)dα (x)

=
n

∑
i=1

m

∑
j=1

(
β (y j)−β

(
y j−1

))
(α (xi)−α (xi−1)) f (si, t j)

Also, by the same reasoning,∫ d

c

∫ b

a
f (x,y)dα (x)dβ (y) =

m

∑
j=1

n

∑
i=1

(
β (y j)−β

(
y j−1

))
(α (xi)−α (xi−1)) f

(
s′i, t
′
j
)
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and now because of uniform continuity, it follows that if the partition points are close
enough, ∣∣ f (s′j, t ′j)− f (s j, t j)

∣∣< ε

(β (d)−β (c))(α (b)−α (a))

and so
∣∣∣∫ d

c
∫ b

a f (x,y)dα (x)dβ (y)−
∫ b

a
∫ d

c f (x,y)dβ (y)dα (x)
∣∣∣ < ε . Since ε is arbitrary,

this shows the two iterated integrals are equal. ■
The following is concerning a very important formula. First recall the arctan function.

Restricting tan to
(
−π

2 ,
π

2

)
, this function is one to one and has an inverse function called

arctan. Thus arctan(y) = x where x ∈
(
−π

2 ,
π

2

)
and tanx = y. Then, using the theory of the

derivative of inverse functions, it follows that arctan is differentiable and arctan′ (y)y′ (x) =
1 and so arctan′ (y) = 1

sec2(x) =
1

1+tan2(x) =
1

1+y2 . Also, arctan(0) = 0 obviously because

tan(0) = 0. Therefore, arctan(y) =
∫ y

0
1

1+u2 du.
Incidentally, this nice formula can be used to obtain all the trig functions. Note that

arctan(1) = π/4 because, from the above development, tan(π/4) = 1.

Theorem 9.9.4 The following holds. limx→∞

∫ x
0 e−t2

dt =
√

π

2 .

Proof: Using the theorems about the integral obtained earlier, in particular the funda-
mental theorem of calculus,

d
dx

(∫ x

0
e−t2

dt
)2

= 2
(∫ x

0
e−t2

dt
)

e−x2
= 2x

(∫ 1

0
e−x2u2

du
)

e−x2

= 2x
∫ 1

0
e−x2(u2+1)du

Then, integrating both sides and interchanging the order of integration with Fubini’s theo-
rem, Theorem 9.9.3,(∫ x

0
e−t2

dt
)2

=
∫ x

0
2v
∫ 1

0
e−v2(u2+1)dudv =

∫ 1

0

∫ x

0
2ve−v2(u2+1)dvdu

=
∫ 1

0

−e−v2(u2+1)

u2 +1
|x0du =

∫ 1

0

(
1

u2 +1
− e−x2(u2+1)

u2 +1

)
du

Hence ∫ x

0
e−t2

dt =

√√√√∫ 1

0

(
1

u2 +1
− e−x2(u2+1)

u2 +1

)
du

Now the integrand on the right converges uniformly to 1
u2+1 as x→ ∞ and so we can pass

to a limit as x→ ∞ and obtain limx→∞

∫ x
0 e−t2

dt =
√∫ 1

0
1

u2+1 du =
√

π

2 . ■

9.10 Geometric Length of a Curve in Rp

I think that the right way to consider length is in terms of one dimensional Hausdorff
measure. However, this is not a topic for this book. In this section, I am using the Euclidean
norm because this is the one which corresponds to the usual notion of distance.
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Definition 9.10.1 A set of points γ∗ ⊆ Rp is an oriented piecewise smooth curve
if there is an oriented interval [a,b] and γ∗ ≡ γ ([a,b]) , and there are intermediate points
between a and b,z1,z2, ...,zn such that (b−a)(zk− zk−1)> 0 and the following hold:

1. γ is one to one on [a,b) and γ is one to one on (a,b]

2. γ = γk on (zk−1,zk) with γ ′k continuous on [zk−1,zk] , where γ ′k (zk) ,γ
′ (zk−1) is an

appropriate one sided derivative.

3. γ ′k ̸= 0 on (zk−1,zk) .

Here γ ′ is defined in the usual way, γ (t +h) = γ (t)+γ ′ (t)h+o(h). See Problem 16 on
Page 155. Then letting P be an ordered partition of [a,b] ,P = {a = t0, t1, ..., tn = b} where
(b−a)(tk− tk−1) > 0, and letting L(P) denote the sum ∑

n
k=1 |γ (tk)− γ (tk−1)| , the length

of γ∗ denoted as L is defined as

sup{L(P) : P is an ordered partition of [a,b]} .

Note that this gives an intrinsic definition of length depending only on γ∗ and not on
the particular parametrization because it picks a particular order along the curve γ∗ and
expresses the length as the sup of the lengths of all polygonal approximations of this curve.

Proposition 9.10.2 With the above definition of length, L =
∫ b

a |γ ′ (t)|dt.

Proof: Whenever considering P, one of these ordered partitions, there is no loss of
generality in assuming that the intermediate points z1,z2, ...,zn are in P because L(P) only
gets larger when points are added in to P. I will tacitly assume this in all that follows. Let
f : [zk−1,zk]× [zk−1,zk]

f (s, t)≡

{
(γ(t)−γ(s))−γ ′(s)(t−s)

t−s if t ̸= s
0 if t = s

Then f is uniformly continuous due to continuity of γ ′ and compactness. Therefore there
exists δ k > 0 such that if |t− s|< δ k, then |(γ (t)− γ (s))− γ ′ (s)(t− s)|< ε

b−a |t− s|. Now
let ∥P∥ < δ ≡ min{δ k,k = 1,2, ...,n} and always P includes the zk. Then by the triangle
inequality, for such P,∣∣γ ′ (tk−1)

∣∣ |tk− tk−1|−
ε

b−a
|tk− tk−1| ≤ |γ (tk)− γ (tk−1)|

≤
∣∣γ ′ (tk−1)

∣∣ |tk− tk−1|+
ε

b−a
|tk− tk−1| (9.11)

Thus, for ∥P∥ < δ , L(|γ ′| ,P)− ε ≤ L(P). Recall also the upper sums get smaller when
points are added and lower sums get larger. Therefore, there exists P with ∥P∥ < δ and
U (|γ ′| ,P)−L(|γ ′| ,P)< ε . In particular, from the above inequality, L(P)≤ ∑P |γ ′|+ ε ≤∫ b

a |γ ′|dx+2ε so L≤
∫ b

a |γ ′|dx+2ε . Thus, there exists possibly another P, with the above
holding and also L− ε < L(P)≤ L. Then, from 9.11,∫ b

a

∣∣γ ′∣∣dx−2ε ≤ L
(∣∣γ ′∣∣ ,P)− ε ≤ L(P)≤ L≤

∫ b

a

∣∣γ ′∣∣dx+2ε
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and so L−
∫ b

a |γ ′|dx ∈ [−2ε,2ε] . Since ε is arbitrary, it follows that L =
∫ b

a |γ ′|dx. ■
There are exactly two directions of motion over γ∗. In tracing out γ∗, one can either let

t go from a to b or from b to a and these are the only possibilities if γ is to be one to one.
Indeed, if γ̂ maps the interval to γ∗ and is continuous and one to one, then γ̂

−1 ◦ γ is either
strictly increasing or strictly decreasing by Lemma 6.4.3. Increasing means same direction
and decreasing, the opposite direction.

9.11 Exercises
1. In the chapter, upper and lower sums were considered. Suppose g is an increasing

function and you are considering upper and lower sums for approximating
∫ b

a f dg.
Show that when you add in a point to the partition, the upper sum which results is no
larger but the lower sum is no smaller.

2. Let f (x) = 1+ x2 for x ∈ [−1,3] and let P =
{
−1,− 1

3 ,0,
1
2 ,1,2

}
. Find U ( f ,P) and

L( f ,P) for F (x) = x and for F (x) = x3.

3. Let P =
{

1,1 1
4 ,1

1
2 ,1

3
4 ,2
}

and F (x) = x. Find upper and lower sums for the function
f (x) = 1

x using this partition. What does this tell you about ln(2)?

4. If f ∈ R([a,b] ,F) with F (x) = x and f is changed at finitely many points, show the
new function is also in R([a,b] ,F) . Is this still true for the general case where F is
only assumed to be an increasing function? Explain.

5. In the case where F (x) = x, define a “left sum” as ∑
n
k=1 f (xk−1)(xk− xk−1) and a

“right sum”, ∑
n
k=1 f (xk)(xk− xk−1) . Also suppose that all partitions have the prop-

erty that xk − xk−1 equals a constant, (b−a)/n so the points in the partition are
equally spaced, and define the integral to be the number these right and left sums get
close to as n gets larger and larger. Show that for f given in 9.6,

∫ x
0 f (t) dt = x if

x is rational and
∫ x

0 f (t) dt = 0 if x is irrational. It turns out that the correct answer
should always equal zero for that function, regardless of whether x is rational. This
illustrates why this method of defining the integral in terms of left and right sums is
total nonsense. Show that even though this is the case, it makes no difference if f is
continuous.

6. The function F (x) ≡ ⌊x⌋ gives the greatest integer less than or equal to x. Thus
F (1/2) = 0,F (5.67) = 5,F (5) = 5, etc. If F (x) = ⌊x⌋ as just described, find∫ 10

0 xdF. More generally, find
∫ n

0 f (x)dF where f is a continuous function.

7. Suppose f is a bounded function on [0,1] and for each ε > 0,
∫ ‘1

ε
f (x)dx exists. Can

you conclude
∫ 1

0 f (x)dx exists?

8. A differentiable function f defined on (0,∞) satisfies f (xy) = f (x)+ f (y) , f ′ (1) =
1. Find f and sketch its graph.

9. Does there exist a function which has two continuous derivatives but the third deriva-
tive fails to exist at any point? If so, give an example. If not, explain why.

10. Suppose f is a continuous function on [a,b] and
∫ b

a f 2dF = 0 where F is a strictly
increasing integrator function. Show that then f (x) = 0 for all x. If F is not strictly
increasing, is the result still true?
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11. Suppose f is a continuous function and
∫ b

a f (x)xndx = 0 for n = 0,1,2,3 · · · . Show
using Problem 10 that f (x) = 0 for all x. Hint: You might use the Weierstrass ap-
proximation theorem.

12. Here is a function:

f (x) =

{
x2 sin

(
1
x2

)
if x ̸= 0

0 if x = 0

Show this function has a derivative at every point of R. Does it make any sense to
write

∫ 1
0 f ′ (x)dx = f (1)− f (0) = f (1)? Explain.

13. Let f (x) =
{

sin
( 1

x

)
if x ̸= 0

0 if x = 0
. Is f Riemann integrable with respect to the integra-

tor on the interval [0,1]?

14. Recall that for a power series, ∑
∞
k=0 ak (x− c)k you could differentiate term by term

on the interval of convergence. Show that if the radius of convergence of the above
series is r > 0 and if [a,b]⊆ (c− r,c+ r) , then∫ b

a

∞

∑
k=0

ak (x− c)k dx = a0 (b−a)+
∞

∑
k=1

ak

k
(b− c)k+1−

∞

∑
k=1

ak

k
(a− c)k+1

In other words, you can integrate term by term.

15. Find ∑
∞
k=1

2−k

k .

16. Let f be Riemann integrable on [0,1] . Show directly that x→
∫ x

0 f (t)dt is continu-
ous. Hint: It is always assumed that Riemann integrable functions are bounded.

17. Suppose f ,g are two functions which are continuous with continuous derivatives
on [a,b] . Show using the fundamental theorem of calculus and the product rule the
integration by parts formula. Also explain why all the terms make sense.∫ b

a f ′ (t)g(t)dt = f (b)g(b)− f (a)g(a)−
∫ b

a f (t)g′ (t)dt

18. Show 1
1+x2 = ∑

n
k=0 (−1)k x2k + (−1)n+1x2n+2

1+x2 .Now use this to find a series which con-
verges to arctan(1) = π/4. Recall arctan(x) =

∫ x
0

1
1+t2 dt. For which values of x will

your series converge? For which values of x does the above description of arctan
in terms of an integral make sense? Does this help to show the inferiority of power
series?

19. Define F (x) ≡
∫ x

0
1

1+t2 dt. Of course F (x) = arctan(x) as mentioned above but just
consider this function in terms of the integral. Sketch the graph of F using only its
definition as an integral. Show there exists a constant M such that −M ≤ F (x)≤M.
Next explain why limx→∞ F (x) exists and show this limit equals − limx→−∞ F (x).

20. In Problem 19 let the limit defined there be denoted by π/2 and define T (x) ≡
F−1 (x) for x ∈ (−π/2,π/2) . Show T ′ (x) = 1+ T (x)2 and T (0) = 0. As part of

this, you must explain why T ′ (x) exists. For x ∈ [0,π/2] let C (x) ≡ 1/
√

1+T (x)2

with C (π/2) = 0 and on [0,π/2] , define S (x) by
√

1−C (x)2. Show both S (x) and
C (x) are differentiable on [0,π/2] and satisfy S′ (x) =C (x) and C′ (x) =−S (x) . Find
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the appropriate way to define S (x) and C (x) on all of [0,2π] in order that these func-
tions will be sin(x) and cos(x) and then extend to make the result periodic of period
2π on all of R. Note this is a way to define the trig. functions which is independent
of plane geometry and also does not use power series. See the book by Hardy, [14]
for this approach, if I remember right.

21. Show arcsin(x) =
∫ x

0
1√
1−t2

dt. Now use the binomial theorem to find a power series

for arcsin(x) .

22. The initial value problem from ordinary differential equations is of the form y′ =
f (y) , y(0) = y0. Suppose f is a continuous function of y. Show that a function t→
y(t) solves the above initial value problem if and only if y(t) = y0 +

∫ t
0 f (y(s))ds.

23. Let p,q> 1 and satisfy 1
p +

1
q = 1. Consider the function x= t p−1. Then solving for t,

you get t = x1/(p−1) = xq−1. Explain this. Now let a,b≥ 0. Sketch a picture to show
why

∫ b
0 xq−1dx+

∫ a
0 t p−1dt ≥ ab. Now do the integrals to obtain a very important

inequality bq

q + ap

p ≥ ab. When will equality hold in this inequality?

24. Suppose f ,g are two Riemann Stieltjes integrable functions on [a,b] with respect to
F, an increasing function. Verify Holder’s inequality.

∫ b

a
| f | |g|dF ≤

(∫ b

a
| f |p dF

)1/p(∫ b

a
|g|q dF

)1/q

,
1
p
+

1
q
= 1, p > 1

Hint: Do the following. Let

A =

(∫ b

a
| f |p dF

)1/p

,B =

(∫ b

a
|g|q dF

)1/q

.

Then let a = | f |
A ,b = |g|

B and use the wonderful inequality of Problem 23.

25. Let F (x) =
∫ x3

x2
t5+7

t7+87t6+1 dt. Find F ′ (x) .

26. Let F (x) =
∫ x

2
1

1+t4 dt. Sketch a graph of F and explain why it looks the way it does.

27. Let a and b be positive numbers and consider the function

F (x) =
∫ ax

0

1
a2 + t2 dt +

∫ a/x

b

1
a2 + t2 dt.

Show that F is a constant.

28. Solve the following initial value problem from ordinary differential equations which
is to find a function y such that

y′ (x) =
x4 +2x3 +4x2 +3x+2

x3 + x2 + x+1
, y(0) = 2.

29. If F,G ∈
∫

f (x) dx for all x ∈ R, show F (x) = G(x)+C for some constant, C. Use
this to give a different proof of the fundamental theorem of calculus which has for
its conclusion

∫ b
a f (t)dt = G(b)−G(a) where G′ (x) = f (x) .
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30. Suppose f is continuous on [a,b]. Show there exists c ∈ (a,b) such that

f (c) =
1

b−a

∫ b

a
f (x) dx.

Hint: You might consider the function F (x) ≡
∫ x

a f (t) dt and use the mean value
theorem for derivatives and the fundamental theorem of calculus. In a sense, this
was done in the chapter, but this one is more specific and note that here c ∈ (a,b),
the open interval.

31. Use the mean value theorem for integrals, Theorem 9.1.5 or the above problem to
conclude that

∫ a+1
a ln(t)dt = ln(x)≤ ln

(
a+ 1

2

)
for some x ∈ (a,a+1). Hint: Con-

sider the shape of the graph of ln(x) in the following picture. Explain why if x is
the special value between a and a+1, then the area of A is equal to area of B. Why
should x < a+ 1

2 ?

A
B

xa a+1

Now use this to obtain the inequality 9.9.

32. Suppose f and g are continuous functions on [a,b] and that g(x) ̸= 0 on (a,b) .
Show there exists c ∈ (a,b) such that f (c)

∫ b
a g(x) dx =

∫ b
a f (x)g(x) dx. Hint: De-

fine F (x) ≡
∫ x

a f (t)g(t) dt and let G(x) ≡
∫ x

a g(t) dt. Then use the Cauchy mean
value theorem on these two functions.

33. Consider the function

f (x)≡
{

sin
( 1

x

)
if x ̸= 0

0 if x = 0
.

Is f Riemann integrable on [0,1]? Explain why or why not.

34. The Riemann integral is only defined for bounded functions on bounded intervals.
When f is Riemann integrable on [a,R] for each R > a define an “improper” inte-
gral as follows.

∫
∞

a f (t)dt ≡ limR→∞

∫ R
a f (t)dt whenever this limit exists. Show∫

∞

0
sinx

x dx exists. Here the integrand is defined to equal 1 when x = 0, not that this
matters.

35. Show
∫

∞

0 sin
(
t2
)

dt exists.

36. The most important of all differential equations is the first order linear equation,
y′+ p(t)y = f (t) where p, f are continuous. Show the solution to the initial value
problem consisting of this equation and the initial condition, y(a) = ya is given by
y(t) = e−P(t)ya+e−P(t) ∫ t

a eP(s) f (s) ds, where P(t) =
∫ t

a p(s) ds. Give conditions un-
der which everything is correct. Hint: You use the integrating factor approach. Mul-
tiply both sides by eP(t), verify the left side equals d

dt

(
eP(t)y(t)

)
,and then take the

integral,
∫ t

a of both sides.
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37. Suppose f is a continuous function which is not equal to zero on [0,b]. Show that∫ b

0

f (x)
f (x)+ f (b− x)

dx =
b
2
.

Hint: First change the variables to obtain the integral equals∫ b/2

−b/2

f (y+b/2)
f (y+b/2)+ f (b/2− y)

dy

Next show by another change of variables that this integral equals∫ b/2

−b/2

f (b/2− y)
f (y+b/2)+ f (b/2− y)

dy.

Thus the sum of these equals b.

38. Let there be three equally spaced points, xi−1,xi−1 +h≡ xi, and xi +2h≡ xi+1. Sup-
pose also a function f , has the value fi−1 at x, fi at x+ h, and fi+1 at x+ 2h. Then
consider

gi (x) ≡ fi−1

2h2 (x− xi)(x− xi+1)−
fi

h2 (x− xi−1)(x− xi+1)

+
fi+1

2h2 (x− xi−1)(x− xi) .

Check that this is a second degree polynomial which equals the values fi−1, fi, and
fi+1 at the points xi−1,xi, and xi+1 respectively. The function gi is an approximation
to the function f on the interval [xi−1,xi+1] . Also,∫ xi+1

xi−1

gi (x) dx

is an approximation to
∫ xi+1

xi−1
f (x) dx. Show

∫ xi+1
xi−1

gi (x) dx equals h fi−1
3 + h fi4

3 +
h fi+1

3 .

Now suppose n is even and {x0,x1, · · · ,xn} is a partition of the interval, [a,b] and the
values of a function f defined on this interval are fi = f (xi) . Adding these approxi-
mations for the integral of f on the succession of intervals,

[x0,x2] , [x2,x4] , · · · , [xn−2,xn] ,

show that an approximation to
∫ b

a f (x) dx is

h
3
[ f0 +4 f1 +2 f2 +4 f3 +2 f2 + · · ·+4 fn−1 + fn] .

This is called Simpson’s rule. Use Simpson’s rule to compute an approximation to∫ 2
1

1
t dt letting n = 4.

39. Suppose x0 ∈ (a,b) and that f is a function which has n+ 1 continuous derivatives
on this interval. Consider the following.

f (x) = f (x0)+
∫ x

x0

f ′ (t) dt

= f (x0)+(t− x) f ′ (t) |xx0
+
∫ x

x0

(x− t) f ′′ (t) dt

= f (x0)+ f ′ (x0)(x− x0)+
∫ x

x0

(x− t) f ′′ (t) dt.
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Explain the above steps and continue the process to eventually obtain Taylor’s for-
mula,

f (x) = f (x0)+
n

∑
k=1

f (k) (x0)

k!
(x− x0)

k +
1
n!

∫ x

x0

(x− t)n f (n+1) (t) dt

where n!≡ n(n−1) · · ·3 ·2 ·1 if n≥ 1 and 0!≡ 1.

40. In the above Taylor’s formula, use Problem 32 on Page 222 to obtain the existence
of some z between x0 and x such that

f (x) = f (x0)+
n

∑
k=1

f (k) (x0)

k!
(x− x0)

k +
f (n+1) (z)
(n+1)!

(x− x0)
n+1 .

Hint: You might consider two cases, the case when x > x0 and the case when x < x0.

41. There is a general procedure for constructing methods of approximate integration
like the trapezoid rule and Simpson’s rule. Consider [0,1] and divide this interval
into n pieces using a uniform partition, {x0, · · · ,xn} where xi− xi−1 = 1/n for each
i. The approximate integration scheme for a function f , will be of the form(

1
n

) n

∑
i=0

ci fi ≈
∫ 1

0
f (x) dx

where fi = f (xi) and the constants, ci are chosen in such a way that the above sum
gives the exact answer for

∫ 1
0 f (x) dx where f (x) = 1,x,x2, · · · ,xn. When this has

been done, change variables to write∫ b

a
f (y) dy = (b−a)

∫ 1

0
f (a+(b−a)x) dx

≈ b−a
n

n

∑
i=1

ci f
(

a+(b−a)
(

i
n

))
=

b−a
n

n

∑
i=1

ci fi

where fi = f
(
a+(b−a)

( i
n

))
. Consider the case where n = 1. It is necessary to find

constants c0 and c1 such that

c0 + c1 = 1 =
∫ 1

0
1dx, 0c0 + c1 = 1/2 =

∫ 1

0
xdx.

Show that c0 = c1 = 1/2, and that this yields the trapezoid rule. Next take n = 2 and
show the above procedure yields Simpson’s rule. Show also that if this integration
scheme is applied to any polynomial of degree 3 the result will be exact. That is,

1
2

(
1
3

f0 +
4
3

f1 +
1
3

f2

)
=
∫ 1

0
f (x) dx

whenever f (x) is a polynomial of degree three. Show that if fi are the values of f at
a, a+b

2 , and b with f1 = f
( a+b

2

)
, it follows that the above formula gives

∫ b
a f (x) dx

exactly whenever f is a polynomial of degree three. Obtain an integration scheme
for n = 3.
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42. Let f have four continuous derivatives on [xi−1,xi+1] where xi+1 = xi−1 + 2h and
xi = xi−1 + h. Show using Problem 40, there exists a polynomial of degree three,
p3 (x) , such that

f (x) = p3 (x)+
1
4!

f (4) (ξ )(x− xi)
4

Now use Problem 41 and Problem 38 to conclude∣∣∣∣∫ xi+1

xi−1

f (x) dx−
(

h fi−1

3
+

h fi4
3

+
h fi+1

3

)∣∣∣∣< M
4!

2h5

5
,

where M satisfies, M ≥ max
{∣∣∣ f (4) (t)∣∣∣ : t ∈ [xi−1,xi]

}
. Now let S (a,b, f ,2m) de-

note the approximation to
∫ b

a f (x) dx obtained from Simpson’s rule using 2m equally
spaced points. Show∣∣∣∣∫ b

a
f (x) dx−S (a,b, f ,2m)

∣∣∣∣< M
1920

(b−a)5 1
m4

where M ≥ max
{∣∣∣ f (4) (t)∣∣∣ : t ∈ [a,b]

}
. Better estimates are available in numerical

analysis books but these also have the error in the form C
(
1/m4

)
.

43. A regular Sturm Liouville problem involves the differential equation, for an un-
known function of x which is denoted here by y,(

p(x)y′
)′
+(λq(x)+ r (x))y = 0, x ∈ [a,b]

and it is assumed that p(t) ,q(t)> 0 for any t along with boundary conditions,

C1y(a)+C2y′ (a) = 0, C3y(b)+C4y′ (b) = 0

where C2
1 +C2

2 > 0, and C2
3 +C2

4 > 0. There is an immense theory connected to
these important problems. The constant, λ is called an eigenvalue. Show that if y
is a solution to the above problem corresponding toλ = λ 1 and if z is a solution
corresponding to λ = λ 2 ̸= λ 1, then∫ b

a
q(x)y(x)z(x)dx = 0. (9.12)

Hint: Do something like this:(
p(x)y′

)′ z+(λ 1q(x)+ r (x))yz = 0,(
p(x)z′

)′ y+(λ 2q(x)+ r (x))zy = 0.

Now subtract and either use integration by parts or show(
p(x)y′

)′ z− (p(x)z′
)′ y = ((p(x)y′

)
z−
(

p(x)z′
)

y
)′

and then integrate. From the boundary conditions, show y′ (a)z(a)− z′ (a)y(a) = 0
and y′ (b)z(b)− z′ (b)y(b) = 0. The formula, 9.12 is called an orthogonality relation
and it makes possible an expansion in terms of certain functions called eigenfunc-
tions.
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44. Letting [a,b] = [−π,π] , consider an example of a regular Sturm Liouville problem
which is of the form y′′+ λy = 0,y(−π) = 0,y(π) = 0. Show that if λ = n2 and
yn (x) = sin(nx) for n a positive integer, then yn is a solution to this regular Sturm
Liouville problem. In this case, q(x) = 1 and so from Problem 43, it must be the
case that

∫
π

−π
sin(nx)sin(mx)dx = 0 if n ̸= m. Show directly using integration by

parts that the above equation is true.

45. Suppose g is increasing and f is continuous and of bounded variation. By the the-
orems in the chapter,

∫ b
a f dg exists and so

∫ b
a gd f exists also. See Theorem 9.4.1.

g ∈ R([a,b] , f ) . Show there exists c ∈ [a,b] such that

∫ b

a
gd f = g(a)

∫ c

a
d f +g(b)

∫ b

c
d f

This is called the second mean value theorem for integrals. Hint: Use integration by
parts. ∫ b

a
gd f =−

∫ b

a
f dg+ f (b)g(b)− f (a)g(a)

Now use the first mean value theorem, the result of Theorem 9.9.1 to substitute some-
thing for

∫ b
a f dg and then simplify.

46. Generalize the result of Theorem 9.9.3 to the situation where α and β are only of
bounded variation.

47. This problem is in Apostol [2]. Explain why whenever f is continuous on [a,b]

lim
n→∞

b−a
n

n

∑
k=1

f
(

a+ k
(

b−a
n

))
=
∫ b

a
f dx.

Apply this to f (x) = 1
1+x2 on the interval [0,1] to obtain the very interesting formula

π

4 = limn→∞ ∑
n
k=1

n
n2+k2 .

48. Suppose f : [a,b]×(c,d)→R is continuous. Recall the meaning of the partial deriva-
tive from calculus,

∂ f
∂x

(t,x)≡ lim
h→0

f (t,x+h)− f (t,x)
h

Suppose also ∂ f
∂x (t,x) exists and for some K independent of t,∣∣∣∣∂ f

∂x
(t,z)− ∂ f

∂x
(t,x)

∣∣∣∣< K |z− x| .

This last condition happens, for example if ∂ 2 f (t,x)
∂x2 is uniformly bounded on [a,b]×

(c,d) . (Why?) Define F (x) ≡
∫ b

a f (t,x)dt. Take the difference quotient of F and
show using the mean value theorem that F ′ (x) =

∫ b
a

∂ f (t,x)
∂x dt. Is there a version of

this result with dt replaced with dα where α is an increasing function? How about
α a function of bounded variation?
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49. I found this problem in Apostol’s book [2]. This is a very important result and
is obtained very simply by differentiating under an integral. Read it and fill in

any missing details. Let g(x) ≡
∫ 1

0
e−x2(1+t2)

1+t2 dt and f (x) ≡
(∫ x

0 e−t2
dt
)2

. Note

∂

∂x

(
e−x2(1+t2)

1+t2

)
=−2xe−x2(1+t2) and

∂ 2

∂x2

(
e−x2(1+t2)

1+ t2

)
=−2e−x2(1+t2) +4x2e−x2(1+t2) +4x2e−x2(1+t2)t2

which is bounded for t ∈ [0,1] and x ∈ (−∞,∞) . Explain why this is so. Also show
the conditions of Problem 48 are satisfied so that

g′ (x) =
∫ 1

0

(
−2xe−x2(1+t2)

)
dt.

Now use the chain rule and the fundamental theorem of calculus to find f ′ (x) . Then
change the variable in the formula for f ′ (x) to make it an integral from 0 to 1 and
show f ′ (x)+g′ (x) = 0.Now this shows f (x)+g(x) is a constant. Show the constant
is π/4 by assigning x = 0. Next take a limit as x→∞ to obtain the following formula

for the improper integral,
∫

∞

0 e−t2
dt,
(∫

∞

0 e−t2
dt
)2

= π/4. In passing to the limit in
the integral for g as x→ ∞ you need to justify why that integral converges to 0. To
do this, argue the integrand converges uniformly to 0 for t ∈ [0,1] and then explain
why this gives convergence of the integral. Thus

∫
∞

0 e−t2
dt =

√
π/2.

50. To show you the power of Stirling’s formula, find whether the series ∑
∞
n=1

n!en

nn con-
verges. The ratio test falls flat but you can try it if you like. Now explain why, if n is
large enough, n!≥ 1

2
√

π
√

2e−nnn+(1/2) ≡ c
√

2e−nnn+(1/2).

51. The Riemann integral
∫ b

a f (x)dt for integrator function F (t) = t is only defined if f
is bounded. This problem discusses why this is the case. From the definition of the
Riemann integral, there is a δ > 0 such that if ∥P∥< δ , then the Riemann sum SP ( f )

must satisfy
∣∣∣SP ( f )−

∫ b
a f dt

∣∣∣< 1. Pick such a partition P = {a = x0 < · · ·< xn = b}
and say SP ( f ) = ∑

n
i=1 f (ti)(xi− xi−1) . Suppose that f is unbounded on

[
x j−1,x j

]
.

Then you can modify the points ti, keeping all the same except for t j ∈
[
x j−1,x j

]
and

let this one be t̂ j where this is chosen so large that

∣∣ f (t̂ j)
(
x j− x j−1

)∣∣−(∣∣∣∣∣∑i̸= j
f (ti)(xi− xi−1)

∣∣∣∣∣+
∣∣∣∣∫ b

a
f dt
∣∣∣∣+1

)
> 100

Show this is a contradiction. Hence f must be bounded.

52. Does the above conclusion that f is bounded hold in case of an arbitrary Riemann
Stieltjes integral assuming the integrator function F is strictly increasing?

53. Use Theorem 9.9.1 and Lemma 9.9.2 to justify the following argument. Let f be
continuous on [a,b]× [c,d] . Let

F (x)≡
∫ x

a

∫ d

c
f (t,y)dydt−

∫ d

c

∫ x

a
f (t,y)dtdy.
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Then F is continuous on [a,b] . Also F (a) = 0 and

F ′ (x) =
∫ d

c
f (x,y)dy−

∫ d

c
f (x,y)dy = 0

and so F (b) = 0 so Fubini’s theorem holds.

54. Let {an} be a sequence of positive numbers such that limn→∞ nan = 0 and for all n ∈
N, nan ≥ (n+1)an+1. Show that if this is so, it follows that the series, ∑

∞
k=1 an sinnx

converges uniformly on R. This is a variation of a very interesting problem found in
Apostol’s book, [3]. Hint: Use the Dirichlet partial summation formula on ∑kak

sinkx
k

and show the partial sums of ∑
sinkx

k are bounded independent of x. To do this,
you might argue the maximum value of the partial sums of this series occur when
∑

n
k=1 coskx = 0. Sum this series by considering the real part of the geometric series,

∑
q
k=1

(
eix
)k and then show the partial sums of ∑

sinkx
k are Riemann sums for a certain

finite integral.

55. The problem in Apostol’s book mentioned in Problem 54 does not require nan to
be decreasing and is as follows. Let {ak}∞

k=1 be a decreasing sequence of non-
negative numbers which satisfies limn→∞ nan = 0. Then ∑

∞
k=1 ak sin(kx) converges

uniformly on R. You can find this problem worked out completely in Jones [19].
Fill in the details. This is a very remarkable observation. It says for example that
∑

∞
k=1

1
k1+ln(k) sin(kx) converges uniformly.

Always let p be so large that (p−1)ap−1 < ε . Also, note that |sinx| ≤ |x| for all
x and for x ∈ (0,π/2) ,sinx ≥ x

2π
. (You could just graph sinx− x

2π
to verify this.)

Also, we can assume all ak are positive since there is nothing to show otherwise.
Define b(k) ≡ sup

{
ja j : j ≥ k

}
. Thus k → b(k) is decreasing and b(k)→ 0 and

b(k)/k ≥ ak.

Suppose x < 1/q so each sin(kx)> 0. Then∣∣∣∣∣ q

∑
k=p

ak sin(kx)

∣∣∣∣∣≤ q

∑
k=p

b(k)
k

sin(kx)≤
q

∑
k=p

b(k)
k

kx≤ b(p)(q− p)
1
q
≤ b(p) (9.13)

Next recall that

n

∑
k=1

sin(kx) =
cos
( x

2

)
− cos

((
n+ 1

2

)
x
)

2sin
( x

2

) ≡ mn (x) ,

|mn (x)| ≤ n, |mn (x)| ≤
1

sin(x/2)
if x ∈ (0,π) .

This is from the process for finding the Dirichlet kernel. Then use the process of
summation by parts to obtain in every case that∣∣∣∣∣ q

∑
k=p

ak sin(kx)

∣∣∣∣∣≤ ∣∣aqmq (x)−ap−1mp−1 (x)
∣∣+ ∣∣∣∣∣q−1

∑
k=p

mk (x)(ak−ak+1)

∣∣∣∣∣
≤ 2ε +

q−1

∑
k=p
|mk (x)|(ak−ak+1)≤ 2ε +

1
sin(x/2)

(ap−aq) (9.14)
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We will only consider x ∈ (0,π) for the next part. Then for such x, It remains to
consider x∈ (0,π) with x≥ 1/q. In this case, choose m such that q > 1

x ≥m≥ 1
x −1.

Thus x < 1
m ,

1
m+1 < x. Then from 9.14, 9.13,

∣∣∣∣∣ q

∑
k=p

ak sin(kx)

∣∣∣∣∣≤
≤b(p)︷ ︸︸ ︷∣∣∣∣∣ m

∑
k=p

ak sin(kx)

∣∣∣∣∣+
∣∣∣∣∣ q

∑
k=m+1

ak sin(kx)

∣∣∣∣∣
≤ b(p)+2ε +

1
sin(x/2)

(am+1−aq)≤ b(p)+2ε +
4π

x
am+1

≤ b(p)+2ε +
4π

x
b(m+1)

m+1
≤ b(p)+2ε +

4π

x
b(m+1)x

≤ b(p)+2ε +4πb(p)≤ 2ε +17b(p) , lim
p→∞

b(p) = 0.

Since ε is arbitrary, this shows uniform convergence on (0,π). Thus the series con-
verges uniformly on [−π,π] and hence it converges uniformly on R. This series is
an example of a Fourier series. Its uniform convergence is very significant.

56. Using only the definition of the integral in the 1700’s that
∫ b

a f (t)dt = F (b)−
F (a) , show that if fn → f uniformly for each fn continuous, then

∫ b
a f (t)dt =

limn→∞

∫ b
a fn (t)dt.

57. Suppose S′′+ S = 0,S (0) = 0,S′ (0) = 1 and C′′+C = 0 and C (0) = 1,C′ (0) = 0.
Recall that the power series for sinx and cosx respectively satisfy these initial value
problems. Show directly from the initial value problems that S′ = C and C′ = −S.
Also show that S2 +C2 = 1 and that S (t) = sin t,C (t) = cos t where cos t,sin t, have
the usual geometric descriptions for t the radian measure. Hint: Show S′ satisfies
the same initial value problem as C and use uniqueness. Then show −C′ satisfies the
same initial value problem as S.

58. Show ln′ (t) = 1/t and that for x > 0, ln(x) =
∫ x

1
1
t dt. Use this and the mean value

theorem for integrals to show that ln
( n+1

n

)
− 1

n+1 = (ln(n+1)− ln(n))− 1
n+1 > 0.

Now show that n→ ∑
n
k=1

1
k − ln(n) is a decreasing sequence bounded below by 0 so

it must converge to some number γ. This is called Euler’s constant. To show γ > 0,
consider ∑

n−1
k=1

1
k − ln(n) for n≥ 3. Verify this sequence is increasing and when n = 3

it is positive.

59. Suppose u(t) is nonnegative and continuous for t ∈ [0,T ] and for some K > 0,u(t)≤
u0+K

∫ t
0 u(s)ds. Show that u(t)≤ u0eKt . This is called Gronwall’s inequality. Hint:

Fill in the details. Let w(t) ≡
∫ t

0 u(s)ds so w′ (t)−Kw(t) ≤ u0. Now from the
product rule and chain rule, d

dt

(
e−Ktw(t)

)
≤ u0e−Kt and so

w(t)e−Kt ≤ −1
K

u0e−Kt +
1
K

u0

w(t) ≤ 1
K

u0eKt − 1
K

u0

Therefore, u(t)≤ u0 +K
( 1

K u0eKt − 1
K u0
)
= u0eKt
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60. Let f : R×Rp→ Rp be continuous and bounded and let x0 ∈ Rp. If x : [0,T ]→ Rp

and h > 0, let

τhx(s)≡
{

x0 if s≤ h,
x(s−h) , if s > h.

For t ∈ [0,T ], let xh (t) = x0 +
∫ t

0 f(s,τhxh (s))ds. Show using the Ascoli Arzela the-
orem that there exists a sequence h→ 0 such that xh → x in C ([0,T ] ;Rp). Next
argue

x(t) = x0 +
∫ t

0
f(s,x(s))ds

and conclude the following theorem. If f : R×Rn→ Rn is continuous and bounded,
and if x0 ∈ Rn is given, there exists a solution to the following initial value problem.

x′ = f(t,x) , t ∈ [0,T ] , x(0) = x0. (9.15)

This is the Peano existence theorem for ordinary differential equations.

61. Show, using Gronwall’s inequality of Problem 59 that in the above theorem, if

∥f(t,x)− f(t,y)∥ ≤ K ∥x−y∥ ,

then there is only one solution to the initial value problem 9.15.

62. It you let Br be the closed ball {x : ∥x∥ ≤ r} let

Prx =

{ x
∥x∥ r if ∥x∥> r
x if ∥x∥ ≤ r

Show that Pr is continuous as a map from Rp to Rp.

63. Using the above problem, show using Problem 60 that there is a local solution to 9.15
valid for t ∈ [0,T0] for some T0 ≤ T if it is only assumed that f is continuous, with
no assumption that it is bounded. The last four problems contain all that is typically
left out in undergraduate differential equations courses which is also that which is of
most importance.

64. Suppose f is Riemann integral on the interval [a,b] . The integrator function is just
g(t) = t. Now let h(u) ≡ f (x−u) for u ∈ [x−b,x−a]. Show h is Riemann inte-
grable on this new interval. Do something similar for h(u)≡ f (x+u).



Chapter 10

Improper Integrals
In everything, it is assumed that f is Riemann integrable on finite intervals, usually piece-
wise continuous on finite intervals. Thus there is no issue about whether the Riemann inte-
gral of the function on a finite interval exists. In this chapter, the integrator function will be
g(x) = x. Also I will write an ↓ a to mean that {an} is decreasing and limn→∞ an = a. The
symbol bn ↑ b is defined similarly but here bn is increasing and has limit b.

To begin with, assume the functions are real valued.

Definition 10.0.1 Let a≥−∞ and b≤ ∞. A function f is improper Riemann inte-
grable if it is Riemann integrable on all intervals [α,β ]⊆ (a,b) and if there is a number I
such that whenever an ↓ a, and bn ↑ b, it follows that limn→∞

∫ bn
an

f (t)dt = I. Then I will be
denoted as

∫ b
a f (t)dt. A function f is in L1 (a,b) if | f | is improper Riemann integrable.

Proposition 10.0.2 Let a,b be as in Definition 10.0.1 and let f be a function Riemann
integrable on each [α,β ]⊆ (a,b). Then f ∈ L1 (a,b) if and only if

sup
{∫

β

α

| f (t)|dt : [α,β ]⊆ (a,b)
}
≡ I < ∞

and in this case,
∫ b

a | f (t)|dt = I. Also, whenever f is in L1 (a,b) , it is improper Riemann
integrable.

Proof: ⇒ Say f ∈ L1 (a,b) . If I = ∞, then there would exist αn ↓ a,β n ↑ b and
limn→∞

∫
β n
αn
| f (t)|dt = ∞ contrary to assumption.

⇐ Say I < ∞. Then pick α,β , with [α,β ] ⊆ (a,b) and I − ε <
∫

β

α
| f (t)|dt < I. If

an ↓ a,bn ↑ b, then for all n large enough, α > an > a and β < bn < b and so also, for all n
large enough, I− ε <

∫
β

α
| f (t)|dt <

∫ bn
an
| f (t)|dt < I. Thus limn→∞

∫ bn
an
| f (t)|dt = I.

Consider f ∈ L1 (a,b). Letting an ↓ a,bn ↑ b,∫ bn

an

f (t)dt =
∫ bn

an

| f (t)|+ f (t)
2

dt−
∫ bn

an

| f (t)|− f (t)
2

dt

Now both of those two integrals on the right are increasing in n because the integrands are
nonnegative and they are also bounded above by

∫ b
a | f (t)|dt and so they both converge.

Therefore, limn→∞

∫ bn
an

f (t)dt also exists. ■
The claims of the following example are easy and are left for you to verify.

Example 10.0.3 If f (x) = x−p, for p ∈ (0,1) , then f ∈ L1 (0,1) . If f (x) = e−x, then f ∈
L1 (−a,∞) for any a < ∞. If f (x) = 1/x2, then f ∈ L1 (1,∞). If f (x) = e−tt−p where p > 0,
then f ∈ L1 (0,∞).

Note that it follows from the above Definition 10.0.1 that if f ∈ L1 (−∞,∞) , then if
(a,b) ⊆ (−∞,∞) , then f X(a,b) ∈ L1 ((a,b)). Here X(a,b) (x) is 1 if x ∈ (a,b) and 0 if
x /∈ (a,b). Also clear is that if f ,g∈ L1 (a,b) , then for any scalars α,β ,α f +βg∈ L1 (a,b)
also. Using Problem 64 on Page 230 it is routine to show that if f ∈ L1 (−∞,∞), then if
g(u) = f (x−u) or f (x+u) it follows that g ∈ L1 (−∞,∞) also. Also note that if a is finite
and f is bounded near a by M then

∣∣∣∫ bn
a f (t)dt−

∫ bn
an

f (t)dt
∣∣∣ ≤ M |an−a| so there is no

harm in simply considering
∫ bn

a f (t)dt in the definition.

231
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Lemma 10.0.4 Suppose f ∈ L1 (a,b) . Then for g(t) any bounded continuous function,
say |g(t)| ≤M, f g is improper Riemann integrable.

Proof: There is no issue about the existence of
∫

β

α
| f (t)| |g(t)|dt for [α,β ] ⊆ (a,b)

thanks to Theorem 9.3.13. Then

sup
{∫

β

α

| f (t)| |g(t)|dt : [α,β ]

}
≤ sup

{∫
β

α

| f (t)|Mdt : [α,β ]

}

= M sup
{∫

β

α

| f (t)|dt : [α,β ]

}
= M

∫ b

a
| f (t)|dt

Since | f g| ∈ L1 (a,b) , it follows that f g is improper Riemann integrable by Proposition
10.0.2. ■

Note that, from the last claim about computing the improper integral, all the usual alge-
braic properties of the Riemann integral carry over to these improper integrals of functions
in L1. For example, the integral is linear.

Sometimes it is convenient to define limR→∞

∫ R
−R f (t)dt. This may exist even though

f (t) may not be improper integrable. Such limits are called the Cauchy principal value
integrals.

Example 10.0.5 limR→∞

∫ R
−R

t
1+t2 dt = 0 but limn→∞

∫ R2

−R
t

1+t2 dt = ∞. Both −R→−∞ and
R2→ ∞.

This is left as an exercise. Note that if
∫

∞

−∞
f (t)dt does exist, then you can find it as

a Cauchy principal value integral. It is just that sometimes the Cauchy principal value
integral exists even though the function is not improper Riemann integrable. In the above
example, the function is not in L1. Indeed, you should show that limR→∞

∫ R
−R

|t|
1+t2 dt = ∞.

When functions have values in C, there is no extra problem. You simply consider the
real and imaginary parts. That is,∫ b

a
f (t)dt ≡

∫ b

a
Re f (t)dt + i

∫ b

a
Im f (t)dt

and define a function to be improper Riemann integrable if and only if this is true of its real
and imaginary parts.

Here a complex valued function is in L1 (a,b) means both the real and imaginary parts
are in L1 (a,b) . This is equivalent to saying | f | is in L1 (a,b) because

max(|Re f | , |Im f |)≤ | f | ≤ |Re f |+ |Im f |

Also for f ∈ L1 (a,b) , I use
∣∣∣∫ b

a f (t)dt
∣∣∣ ≤ ∫ b

a | f (t)|dt whenever convenient. This is
certainly true if f has real values. However, it is also true for complex valued f . Likely
the easiest way to see this is to note that it is true for sums. Since these approximate the
integrals, it will be true for the integrals also. You could also do the following. There exists
θ ∈ C such that |θ |= 1 and

θ

∫ b

a
f (t)dt =

∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣
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You just note
∫ b

a f (t)dt ∈ C makes sense if f ∈ L1 and then such a θ exists. Then
some short computations with intervals [an,bn] ⊆ (a,b) show that the left side is equal
to
∫ b

a θ f (t)dt. Since this is real,∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣= ∫ b

a
θ f (t)dt =

∫ b

a
Re(θ f (t))dt ≤

∫ b

a
| f (t)|dt.

10.1 The Dirichlet Integral
There is a very important improper integral involving sin(x)/x. You can show with a little
estimating that x→ sin(x)/x is not in L1 (0,∞) . However, one can show that this function
is improper Riemann integrable. The following lemma is on a very important improper
integral known as the Dirichlet integral after Dirichlet who first used it. See Problem 34
on Page 222 or else Problem 5 on 247 for more hints on how to show this. Here the actual
value of this integral is obtained along with its existence. First note that for x > 0∫

∞

r
e−txdt = lim

R→∞

∫ R

r
e−txdt = lim

R→∞

−e−tx

x
|Rr

= lim
R→∞

(
−e−tR

x
+

e−rx

x

)
=

e−rx

x

Lemma 10.1.1 The following formula holds.

π

2
=
∫

∞

0

sin(x)
x

dx

Here x→ sinx
x is improper Riemann integrable.

Proof: By limx→0
sinx

x = 1, we can assume sinx
x is continuous on [0,1] . Now let

[an,bn]⊆ (0,∞) . Then

∫ bn

an

sinx
x

dx =
∫ bn

an

sin(x)

=1/x︷ ︸︸ ︷∫
∞

0
e−txdtdx =

∫ bn

0
sin(x)

=1/x︷ ︸︸ ︷∫
∞

0
e−txdtdx+ e(n)

where limn→∞ e(n)≡ limn→∞

(
−
∫ an

0
sinx

x dx
)
= 0. Thus∫ bn

an

sinx
x

dx = e(n)+
∫ bn

0
sin(x)

∫ bn

0
e−txdtdx+

∫ bn

0
sin(x)

∫
∞

bn

e−txdtdx

= e(n)+
∫ bn

0
sin(x)

∫ bn

0
e−txdtdx+E (n) (10.1)

where |E (n)| ≤
∫ bn

0 |sin(x)| e−bnx

x dx. Now

|E (n)| ≤
∫ bn

0

<1
|sinx|

x
e−bnxdx <

1
bn

.

Now interchange the order of integration in 10.1 using the Fubini theorem presented earlier,
Theorem 9.9.3. ∫ bn

an

sinx
x

dx = e(n)+E (n)+
∫ bn

0

∫ bn

0
e−tx sin(x)dxdt
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Some tedious integration by parts on the inside integral on the right gives∫ bn

an

sinx
x

dx = e(n)+E (n)

+
∫ bn

0

[
1

t2 +1

((
1− (cosbn)e−bnt + t (sinbn)e−bnt

))]
dt

= e(n)+E (n)+
∫ bn

0

1
1+ t2 dt−

∫ bn

0
e−bnt (cosbn)+ t (sinbn)

1+ t2 dt

= e(n)+E (n)+
∫ bn

0

1
1+ t2 dt−

∫ bn

0
e−bnt 1√

1+ t2
cos(bn−φ t)dt

where φ t is a phase shift. This is because(
1√

1+ t2
,

t√
1+ t2

)
= (cosφ t ,sinφ t) some φ t

so the formula for cos(bn−φ) is used. This last integral satisfies∣∣∣∣∫ bn

0
e−bnt 1√

1+ t2
cos(bn−φ t)dt

∣∣∣∣≤ ∫ bn

0
e−bntdt ≤ 1

bn

Therefore, include it in E (n) and it follows that∫ bn

an

sinx
x

dx = e(n)+E (n)+
∫ bn

0

1
1+ t2 dt

where limn→∞ (e(n)+E (n)) = 0. Taking a limit,

lim
n→∞

∫ bn

an

sinx
x

dx = lim
n→∞

(
e(n)+E (n)+

∫ bn

0

1
1+ t2 dt

)
= π/2 ■ (10.2)

A much shorter way to verify this identity is in the exercises but it depends on a theorem
which has not been discussed yet and to use it, you need to know the existence of the
Dirichlet integral which is obtained here as part of the argument.

For I an interval let

XI (t)≡
{

1 if t ∈ I
0 if t /∈ I

Lemma 10.1.2 Suppose f is Riemann integrable on [a,b] . Then for each ε > 0, there
is a step function s which satisfies |s(x)| ≤ | f (x)| and∫ b

a
| f (x)− s(x)|dx < ε

Also there exists a continuous function h which is 0 at a and b such that |h| ≤ | f | and∫ b

a
| f (x)−h(x)|2 dx < ε
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Proof: First suppose f (x)≥ 0. Then by Theorem 9.3.10, there is a lower sum L( f ,P)
such that ∣∣∣∣∫ b

a
f dt−L( f ,P)

∣∣∣∣≤ (U ( f ,P)−L( f ,P))< ε

Let s correspond to this lower sum. That is, if L( f ,P) = ∑
m
k=1 mk (xk− xk−1) , you let

s(x)≡ ∑
m
k=1 mkXIk (x) where I1 = [x0,x1] , Ik = (xk−1,xk] for k ≥ 2. Then

∫ b

a
| f (x)− s(x)|dx =

∫ b

a
( f (x)− s(x))dx =

∫ b

a
f dt−L( f ,P)< ε

In general, you break down f . f (x) = | f (x)|+ f (x)
2 − | f (x)|− f (x)

2 ≡ f+− f− where both f+ and
f− are nonnegative functions. These are both integrable thanks to Theorem 9.3.13. Then
let s+ ≤ f+,s− ≤ f− with

∫ b
a ( f+− s+)dx,

∫ b
a ( f−− s−)dx both less than ε/2. Then letting

s = s+− s−, it is also a step function and∫ b

a
| f − s|dx =

∫ b

a
|( f+− f−)− (s+− s−)|dx =

∫ b

a
|( f+− s+)+(s−− f−)|dx

≤
∫ b

a
| f+− s+|dx+

∫ b

a
| f−− s−|dx <

ε

2
+

ε

2
= ε

In addition to this,

|s(x)|= |s+ (x)− s− (x)| ≤ s+ (x)+ s− (x)≤ f+ (x)+ f− (x) = | f (x)| .

This takes care of the case where f is real. If it is complex valued, then to say it is Riemann
integrable means simply that the real and imaginary parts are Riemann integrable. You
apply what was just shown to these real and imaginary parts of f .

Now consider the last claim. First let f ≥ 0 and let s be as chosen earlier with s(x) ≤
f (x) and

∫ b
a | f (x)− s(x)|dx≤ η . Say s(x) = ∑

n
k=1 mkXIk (x) where Ik is an interval. Con-

sider the following picture which approximates XIk with a continuous function called hk
which is zero at the ends of the interval Ik.

α βα +δ β −δ

hδ
k

Then replace s(x) with ∑
n
k=1 mkhδ

k (x)≡ hδ (x) . Then hδ is a continuous function which
equals zero at a,b. Also,

∫ b
a

∣∣s(x)−hδ (x)
∣∣dx < η if δ is small enough. (Why?). Then let

δ be this small and denote the resulting function by h. Thus for M an upper bound to
sup{| f (x)−h(x)| : x ∈ [a,b]} ,∫ b

a
| f (x)−h(x)|2 dx ≤ M

∫ b

a
| f (x)−h(x)|dx

≤ M
(∫ b

a
| f (x)− s(x)|+ |s(x)−h(x)|dx

)
≤ 2Mη

Since η is arbitrary, this proves the second assertion in the case that f ≥ 0. To get the
result in general, do what was done in the first part. Let f = f+− f− where these two
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functions are nonnegative and Riemann integrable thanks to Theorem 9.3.13. Let h+ ≤ f+
and h− ≤ f− go with f+ and f− respectively as in the above such that∫ b

a
| f+ (x)−h+ (x)|2 dx,

∫ b

a
| f− (x)−h− (x)|2 dx≤ ε/4

Then for h = h+−h−,
∫ b

a | f −h|2 dx =
∫ b

a | f+− f−− (h+−h−)|2 dx

≤
∫ b

a
(| f+−h+|+ | f−−h−|)2 dx≤ 2

∫ b

a

(
| f+−h+|2 + | f−−h−|2

)
dx

≤ 4(ε/4) = ε

and since ε is arbitrary, this yields continuous h, zero at end points such that |h| ≤ | f |
as before. In case f has complex values, apply this that was just shown to the real and
imaginary parts as was just done. ■

10.2 Convergence
The pointwise convergence of Fourier series was first successfully shown by Dirichlet in
1829. Here this important result, discussed later, is obtained from the very remarkable
Riemann Lebesgue lemma.

Theorem 10.2.1 The following hold

1.
∫

∞

0
sinu

u du = π

2 =
∫

∞

0
sin(ru)

u du for any r > 0

2. limr→∞

∫
∞

δ

sin(ru)
u du = 0 whenever δ > 0.

3. If f ∈ L1 (R) , then limr→∞

∫
∞

−∞
sin(ru) f (u)du = 0. Note this implies that for any

finite interval, [a,b] ,

lim
r→∞

∫ b

a
sin(ru) f (u)du = 0.

You just apply the first part to the function which is extended as 0 off [a,b].

Proof: The first part 1. is Lemma 10.1.1.
Next consider 2. First note that

∫
∞

0
sin(ru)

u du =
∫

∞

0
sin(t)

t r 1
r dt =

∫
∞

0
sin(t)

t dt.Now consider
the truncated integral

∫
∞

δ

sin(ru)
u du. It equals

∫
∞

0
sin(ru)

u du−
∫

δ

0
sin(ru)

u du which can be seen
from the definition of what the improper integral means. Also, you can change the variable.
Let ru = t so rdu = dt and the above reduces to∫

∞

0

sin(t)
t

r
1
r

dt−
∫ rδ

0

sin(t)
t

dt =
∫

∞

δ

sin(ru)
u

du

Thus π

2 −
∫ rδ

0
sin(t)

t dt =
∫

∞

δ

sin(ru)
u du and so limr→∞

∫
∞

δ

sin(ru)
u du = 0 from the first part.

Now consider the third claim, the Riemann Lebesgue lemma. Then for f ∈ L1, let
fR,r (t)≡X[−r,R] (t) f (t). Then for R,r large,∫

∞

−∞

| f (t)− fR,r (t)|dt =
∫

∞

R
| f (t)|dt +

∫ −r

−∞

| f (t)|dt < ε (10.3)
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Now fR,r is Riemann integrable and so there is a step function s(t) = ∑
n
i=1 aiXIi (t) such

that |s(t)| ≤ | fR,r (t)| and∫ R

−r
| fR,r (t)− s(t)|dt =

∫
∞

−∞

| fR,r (t)− s(t)|dt < ε (10.4)

This follows from Lemma 10.1.2. From 10.4 and 10.3,
∫

∞

−∞
|s(t)− f (t)|dt < 2ε. Now∣∣∣∣∫ ∞

−∞

f (t)sin(rt)dt
∣∣∣∣ ≤ ∫

∞

−∞

|( f (t)− s(t))sin(rt)|dt +
∣∣∣∣∫ ∞

−∞

s(t)sin(rt)dt
∣∣∣∣

≤ 2ε +

∣∣∣∣∫ ∞

−∞

s(t)sin(rt)dt
∣∣∣∣ (10.5)

It remains to verify that limr→∞

∫
∞

−∞
s(t)sin(rt)dt = 0. Since s(t) is a sum of scalars times

XI for I an interval, it suffices to verify that limr→∞

∫
∞

−∞
X[a,b] (t)sin(rt)dt = 0 However,

this integral is
∫ b

a sin(rt)dt = −1
r cos(rb)+ 1

r cos(ra) which clearly converges to 0 as r→
∞. Therefore, for r large enough, 10.5 implies∣∣∣∣∫ ∞

−∞

f (t)sin(rt)dt
∣∣∣∣< 3ε

Since ε is arbitrary, this shows that 3. holds. ■
Another proof is in Problem 12 on Page 249.
A simple repeat of the above argument shows the following slightly more general ver-

sion of the Riemann Lebesgue lemma.

Corollary 10.2.2 If f ∈ L1 (R) , then limr→∞

∫
∞

−∞
sin(ru+ c) f (u)du = 0. Also,

lim
r→∞

∫
∞

−∞

cos(ru+ c) f (u)du = 0.

Proof: If you do the first part, which is in the exercises, the second claim comes right
away from the observation that sin(x+π/2) = cos(x) . Thus

cos(ru+ c) = sin(ru+ c+π/2) .■

The case of most interest here is that of piecewise continuous functions.

Definition 10.2.3 The following notation will be used assuming the limits exist.

lim
u→0+

g(x+u)≡ g(x+) , lim
u→0+

g(x−u)≡ g(x−)

The convergence of Fourier series is discussed a little later. It will be based on the
following theorem and a corollary which follow from the above Riemann Lebesgue lemma.
Here is a graph of sin(nx)/x for a few values of n. Note that limx→0+

sin(nx)
x = n and that

the graph shrinks and wriggles very fast as x increases for n large. This suggests that if f
is smooth enough, then limn→∞

∫
∞

0 f (x) sin(nx)
x dx might be expected to depend on f (0+).

At least it is not unreasonable that this should happen. This is part of the following major
theorem.
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0 1 2 3

0

5

10

15

Lemma 10.2.4 Let f ∈ L1 ((0,∞)) and suppose | f (0)− f (u)|<Kuγ for some γ ∈ (0,1]
whenever 0 < u≤ δ . Then

lim
r→∞

2
π

∫
∞

0

sin(ru)
u

f (u)du = f (0)

Proof: From the theorem about the Dirichlet integral, Theorem 10.2.1,

2
π

∫
∞

0

sin(ru)
u

f (u)du− f (0) =
2
π

∫
δ

0

sin(ru)
u

( f (u)− f (0))du (10.6)

+
2
π

∫
∞

δ

sin(ru)
u

f (u)du− 2
π

∫
∞

δ

sin(ru)
u

f (0)du (10.7)

Now f (u)
u ∈ L1 (δ ,∞) because

∣∣∣ f (u)
u

∣∣∣≤ 1
δ
| f (u)| and so, by the Riemann Lebesgue lemma,

the first integral of 10.7 converges to 0 as r→ ∞. The second integral of 10.7 converges
to 0 as r→ ∞ because of the second part of Theorem 10.2.1. Now consider the integral
in 10.6. s→ f (u)− f (0)

u is in L1 ([0,δ ]) because
∣∣∣ f (u)− f (0)

u

∣∣∣ ≤ uγ−1 which has finite integral

since γ > 0. Therefore, limr→∞
2
π

∫
δ

0
sin(ru)

u ( f (u)− f (0))du = 0 by the Riemann Lebesgue
lemma. ■

Theorem 10.2.5 Suppose that g ∈ L1 (R) and that at some x, g is locally Holder
continuous from the right and from the left. This means there exist constants K,δ > 0 and
r ∈ (0,1] such that for |x− y|< δ ,

|g(x+)−g(y)|< K |x− y|r (10.8)

for y > x and
|g(x−)−g(y)|< K |x− y|r (10.9)

for y < x. Then

lim
r→∞

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du =

g(x+)+g(x−)
2

.

Proof: The function u→ g(x−u)+g(x+u)
2 ≡ f (u) is in L1 (0,∞) as noted earlier. Also for

f (0) defined as g(x+)+g(x−)
2 , the conditions of Lemma 10.2.4 are obtained. Therefore, from

that lemma,

lim
r→∞

2
π

∫
∞

0

sin(ur)
u

f (u)du = lim
r→∞

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du

=
g(x+)+g(x−)

2
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as claimed. ■
There is an other condition which will allow the same conclusion as the above condi-

tion. It is that g is of bounded variation on [x−δ ,x+δ ] for some δ > 0. This is called
the Jordan condition whereas the more common assumption used above is the Dini condi-
tion. This Jordan condition implies that u→ (g(x−u)−g(x−)+g(x+u)−g(x+)) is of
bounded variation on [0,δ ].

First, here is a little review. If H is continuous, Theorem 9.9.1, the mean value theorem
for integrals, implies that if g is increasing, then∫ b

a
H (x)dg = H (c)(g(b)−g(a))

for some c ∈ [a,b]. Suppose then that H (x) ≡
∫ x

a h(t)dt where h is continuous and g is
increasing on [a,b] .

Suppose H (x)≡
∫ x

a h(t)dt where h is continuous and g is increasing on [a,b] . Then by
integration by parts, Theorem 9.4.1,∫ b

a
gdH +

∫ b

a
Hdg = g(b)H (b)

From the first mean value theorem for integrals, there is c ∈ [a,b] such that
∫ b

a Hdg =
H (c)(g(b)−g(a)) . Then∫ b

a
gdH =

∫ b

a
ghdt =−H (c)(g(b)−g(a))+g(b)H (b)

= g(b)
∫ b

c
h(t)dt +g(a)

∫ c

a
h(t)dt

This is sometimes called the second mean value theorem for integrals. Sufficient conditions
are that h is continuous and g increasing. This is stated as the following lemma.

Lemma 10.2.6 Let h be continuous and g increasing. Then there is c ∈ [a,b] such that∫ b

a
g(x)h(x)dx = g(b)

∫ b

c
h(x)dx+g(a)

∫ c

a
h(x)dx

The conclusion is exactly the same if g(a) is replaced with g(a+) with maybe a different
c ∈ [a,b].

Proof: The last claim follows from a repeat of the above argument using g̃(x) defined
as g(x) for x > a and g(a+) when x = a. Such a change does nothing to the Riemann
integral on the left in the above formula and g̃ is still increasing. Hence, for some c∈ [a,b] ,∫ b

a
g(x)h(x)dx =

∫ b

a
g̃(x)h(x)dx = g(b)

∫ b

c
h(x)dx+g(a+)

∫ c

a
h(x)dx ■

Lemma 10.2.7 Suppose g is of bounded variation on [0,δ ] ,δ > 0 and suppose g ∈
L1 (0,a) where δ < a≤ ∞. Then

lim
r→∞

2
π

∫ a

0
g(t)

sin(rt)
t

dt = g(0+)
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Proof: Since every bounded variation function is the difference of two increasing func-
tions, it suffices to assume that g is increasing on [0,δ ] and so this will be assumed. Note
that this also shows that g(0+) exists. Recall the second mean value theorem of Problem
45 on Page 226 or the above Lemma 10.2.6 applied to g(0) defined as g(0+).

From the material on the Dirichlet integral, there exists C with
∣∣∫ r

0
sin t

t dt
∣∣<C indepen-

dent of r. Indeed,
∣∣∫ r

0
sin t

t dt− π

2

∣∣< 1 if r is sufficiently large. For r not this large, one has
the integral of a continuous function.

Let h ∈ (0,δ ) be such that if t ≤ h, |g(t)−g(0+)|< ε

2C+1 . Then split up the integral as
follows.

2
π

∫ a

0
g(t)

sin(rt)
t

dt =

I1︷ ︸︸ ︷
2
π

∫ h

0
(g(t)−g(0+))

sin(rt)
t

dt +g(0+)

I2︷ ︸︸ ︷
2
π

∫ h

0

sin(rt)
t

dt

+

I3︷ ︸︸ ︷∫ a

h
g(t)

sin(rt)
t

dt

Use the second mean value theorem on I1. It equals

(g(h)−g(0+))
2
π

∫ h

cr

sin(rt)
t

dt = (g(h)−g(0+))
2
π

∫ rh

rcr

sin(u)
u

du

the integral is
(∫ hr

0
sinu

u du−
∫ rcr

0
sinu

u du
)

and both terms are bounded by some constant C
so the integral is bounded independent of large r by 2C. Then∣∣∣∣(g(h)−g(0+))

2
π

∫ rh

rcr

sin(u)
u

du
∣∣∣∣≤ ε

2C+1
2C < ε

Now consider g(0+) I2. It equals g(0+) 2
π

∫ rh
0

sin(u)
u du so its limit as r→ ∞ is g(0+).

It is just the Dirichlet integral again.
Finally, consider I3. For t ≥ h, g(t)

t is in L1 (h,a) and so, the 0 extension off [h,∞) is in
L1 ([0,a)) . By the Riemann Lebesgue lemma, of Theorem 10.2.1, this integral I3 converges
to 0 as r→ ∞. ■

With this, here is a different version of Theorem 10.2.5.

Corollary 10.2.8 Suppose that g ∈ L1 (R) and that at some x, g is of finite total varia-
tion on [x−δ ,x+δ ] for some δ > 0. Then

lim
r→∞

2
π

∫
∞

0

sin(ur)
u

(
g(x−u)+g(x+u)

2

)
du =

g(x+)+g(x−)
2

.

Proof: This follows from Lemma 10.2.7 applied to u→ g(x−u)+g(x+u)
2 . ■

10.3 The Gamma Function
Recall the definition of an improper integral specialized to (0,∞). You let an ↓ 0,bn ↑ ∞

and
∫

∞

0 f (t)dt = limn→∞

∫ bn
an

f (t)dt.

Definition 10.3.1 Whenever α > 0, Γ(α)≡
∫

∞

0 e−ttα−1 dt.
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Lemma 10.3.2 The improper integral
∫

∞

0 e−ttα−1 dt exists for each α > 0.

Proof: Let

f (t) =
{

tα−1 if t ≤ 1
Ce−t/2 if t > 1

where C is chosen large enough that for t > 1,Ce−t/2 > e−ttα−1. Then obviously f ∈
L1 (0,∞) and f (t)≥ e−ttα−1. Also, if [α,β ]⊆ (0,∞) ,∫

β

α

e−ttα−1 dt ≤
∫

∞

0
f (t)dt < ∞

and so t → e−ttα−1 is in L1 (0,∞) so the improper integral exists as claimed thanks to
Proposition 10.0.2. ■

This gamma function has some fundamental properties described in the following pro-
position. In case the improper integral exists, we can obviously compute it in the form
limδ→0+

∫ 1/δ

δ
f (t)dt which is used in what follows. Thus also the usual algebraic proper-

ties of the Riemann integral are inherited by the improper integral.

Proposition 10.3.3 For n a positive integer, n! = Γ(n+1). In general, one has the
following identity: Γ(1) = 1,Γ(α +1) = αΓ(α)

Proof: First of all, Γ(1) = limδ→0
∫

δ
−1

δ
e−tdt = limδ→0

(
e−δ − e−(δ

−1)
)
= 1. Next,

for α > 0,

Γ(α +1) = lim
δ→0

∫
δ
−1

δ

e−ttα dt = lim
δ→0

[
−e−ttα |δ

−1

δ
+α

∫
δ
−1

δ

e−ttα−1dt

]

= lim
δ→0

(
e−δ

δ
α − e−(δ

−1)δ
−α +α

∫
δ
−1

δ

e−ttα−1dt

)
= αΓ(α)

Now it is defined that 0! = 1 and so Γ(1) = 0!. Suppose that Γ(n+1) = n!, what of
Γ(n+2)? Is it (n+1)!? if so, then by induction, the proposition is established. From what
was just shown, Γ(n+2) = Γ(n+1)(n+1) = n!(n+1) = (n+1)! and so this proves the
proposition. ■

The properties of the gamma function also allow for a fairly easy proof about differen-
tiating under the integral in a Laplace transform. First is a definition.

Definition 10.3.4 A function φ has exponential growth on [0,∞) if there are posi-
tive constants λ ,C such that |φ (t)| ≤Ceλ t for all t ≥ 0.

Theorem 10.3.5 Let f (s) =
∫

∞

0 e−stφ (t)dt where t → φ (t)e−st is improper Rie-
mann integrable for all s large enough and φ has exponential growth, |φ (t)| ≤Ceλ t . Then
for s large enough, f (k) (s) exists and equals

∫
∞

0 (−t)k e−stφ (t)dt.

Proof: Suppose true for some k ≥ 0. By definition it is so for k = 0. Then always
assuming s > λ , |h|< s−λ , where |φ (t)| ≤Ceλ t ,λ ≥ 0,

f (k) (s+h)− f (k) (s)
h

=
∫

∞

0
(−t)k e−(s+h)t − e−st

h
φ (t)dt
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=
∫

∞

0
(−t)k e−st

(
e−ht −1

h

)
φ (t)dt =

∫
∞

0
(−t)k e−st

(
(−t)eθ(h,t)

)
φ (t)dt

where θ (h, t) is between −ht and 0, this by the mean value theorem. Thus by mean value
theorem again, ∣∣∣∣∣ f (k) (s+h)− f (k) (s)

h
−
∫

∞

0
(−t)k+1 e−st

φ (t)dt

∣∣∣∣∣
≤
∫

∞

0
|t|k+1 Ceλ te−st

∣∣∣eθ(h,t)−1
∣∣∣dt ≤

∫
∞

0
tk+1Ceλ te−steα(h,t) |ht|dt

≤
∫

∞

0
tk+2Ceλ te−st |h|et|h|dt =C |h|

∫
∞

0
tk+2e−(s−(λ+|h|))tdt

Let u = (s− (λ + |h|)) t,du = (s− (λ + |h|))dt and changing the variable, you see that
the right side converges to 0 as h→ 0 so f (k+1) (t) has the correct form. This proves the
theorem. ■

The function f (s) just defined is called the Laplace transform of φ .
Incidentally, f (k) (s) exists for each k and s ∈C with Re(s)> λ by the same argument.

This will be used later when the computation of inverse Laplace transforms is considered.

10.4 Laplace Transforms
It will be assumed here that t→ f (t)e−st is in L1 (0,∞) for all s large enough.

Definition 10.4.1 We say that a function defined on [0,∞) has exponential growth
if for some λ ≥ 0, and C > 0, | f (t)| ≤Ceλ t .

Note that this condition is satisfied if | f (t)| ≤ a+beλ t . You simply pick C > max(a,b)
and observe that a+beλ t ≤ 2Ceλ t .

Proposition 10.4.2 Let f have exponential growth and be continuous except for finitely
many points in [0,R] for each R. Then limR→∞

∫ R
0 f (t)e−stdt ≡ L f (s) exists for every

s > λ where | f (t)| ≤ eλ t . That limit is denoted as
∫

∞

0 f (t)e−stdt.

Proof: It is clear that f has exponential growth implies t → f (t)e−st is in L1 (R) and
so the improper integral above exists. ■

Certain properties are obvious. For example,

1. If a,b scalars and if g, f have exponential growth, then for all s large enough,

L (a f +bg)(s) = aL ( f )(s)+bL (g)(s)

2. If f ′ (t) exists and has exponential growth, and so does f (t) then for s large enough,

L
(

f ′
)
(s) =− f (0)+ sL ( f )(s)

One can also compute Laplace transforms of many standard functions without much
difficulty. One of the most important properties of the Laplace transform is the convolution.

Definition 10.4.3 Let f ,g have exponential growth and be continuous except for
finitely many points in each [0,R]. Then f ∗g(t)≡

∫ t
0 f (t−u)g(u)du.
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Observation 10.4.4 f ∗ g = g ∗ f . This merely involves changing the variable. Let
v = t−u.

The following proposition will involve an assumption that the functions are continuous.
This is not necessary but I have not developed the necessary machinery for Fubini’s theorem
to do this in full generality and an ad hoc approach sufficient to include discontinuous
functions would be tedious. Therefore, here is an easy lemma.

Lemma 10.4.5 Let f ,g be continuous on [0,R]. Then∫ R

0

∫ t

0
f (t−u)g(u)dudt =

∫ R

0

∫ R

u
f (t−u)g(u)dtdu (10.10)

Proof: First note the following. For F (t)≡
∫ t

0 f (u)du and G(t) defined similarly,∫ R

0

∫ t

0
f (t)g(u)dudt =

∫ R

0
f (t)

∫ t

0
g(u)dudt =

F (t)
∫ t

0
g(u)du|R0 −

∫ R

0
F (t)g(t)dt = F (R)G(R)−

∫ R

0
F (t)g(t)dt

∫ R

0

∫ R

u
f (t)g(u)dtdu =

∫ R

0
g(u)

∫ R

u
f (t)dtdu =

∫ R

0
g(u)(F (R)−F (u))du

= G(R)F (R)−
∫ R

0
F (u)g(u)du

If f is a polynomial, then f (t−u)g(u) is a sum of terms of the form f̂ (t) ĝ(u) and so 10.10
holds. Now by Weierstrass approximation theorem, there is a sequence of polynomials { fn}
which converges uniformly to f on [0,R] . Hence, since 10.10 holds for each fn replacing
f it continues to hold in the limit. ■

Proposition 10.4.6 Let f ,g have exponential growth and be continuous. Then f ∗ g
has the same properties. Also L ( f ∗g)(s) = L ( f )(s)L (g)(s) for all s large enough.

Proof: Consider the second claim. Say | f (t)| ≤ Ceλ t , |g(t)| ≤ Ĉeλ̂ t . Letting µ ≥
max

(
λ , λ̂

)
,∣∣∣∣∫ t

0
f (t−u)g(u)du

∣∣∣∣≤ ∫ t

0
CĈeµ(t−u)eµudu≤CĈteµt ≤CĈe2max(µ,1)t

Now consider the claim about the convolution. Let s> 2max(µ,1)≡ γ . By Lemma 10.4.5,∫ R

0
e−st

∫ t

0
f (t−u)g(u)dudt =

∫ R

0

∫ R

u
e−st f (t−u)g(u)dtdu

=
∫ R

0
e−sug(u)

∫ R

u
e−s(t−u) f (t−u)dtdu =

∫ R

0
e−sug(u)

∫ R−u

0
e−sv f (v)dvdu

=
∫ R

0
e−sug(u)

∫ R

0
e−sv f (v)dv−

(∫ R

R−u
e−sv f (v)dv

)
du
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Therefore, ∫ R

0
e−st ( f ∗g)(t)dt =

∫ R

0
e−sug(u)du

∫ R

0
e−sv f (v)dv

−
∫ R

0
e−sug(u)

∫ R

R−u
e−sv f (v)dvdu (10.11)

Now ∣∣∣∣∫ R

0
e−sug(u)

∫ R

R−u
e−sv f (v)dvdu

∣∣∣∣≤ ∫ R

0
Ĉe−(s−γ)u

∫ R

R−u
Ce−(s−γ)vdvdu

≡
∫ R

0
Ĉe−λu

∫ R

R−u
Ce−λvdvdu≤CĈ

∫ R

0
e−λue−λ (R−u)du =CĈe−λRR

which converges to 0 as R→ ∞. Therefore, the last term on the right in 10.11 converges to
0 and so, taking a limit as R→ ∞ in 10.11 yields L ( f ∗g)(s) = L ( f )(s)L (g)(s). ■

That which is most certainly not obvious is the following major theorem. This is omit-
ted from virtually all ordinary differential equations books, and it is this very thing which
justifies the use of Laplace transforms in solving various equations. Without it or something
like it, the whole method is nonsense. I am following Widder [26]. This theorem says that
if you know the Laplace transform, this will determine the function it came from at every
point of continuity. The proof only involves the theory of the integral which was presented
in this chapter and Stirling’s formula. Also, it would easily generalize to functions having
values in some normed vector space. First is a lemma.

Lemma 10.4.7 Let a > 0 and b > 1. Then limk→∞
1
k!
∫

∞

bk vke−(1− a
k )vdv = 0.

Proof: First change variables
(
1− a

k

)
v = kx. A few computations show that the above

integral is 1
k!

kk+1

(1− a
k )

k+1

∫
∞

(1− a
k )b xke−kxdx. Now let 1 < b̂ < b. Then for k large enough,(

1− a
k

)
b> b̂, so the above integral is dominated by 1

k!
kk+1

(1− a
k )

k+1

∫
∞

b̂ xke−kxdx. Using integra-

tion by parts and Stirling’s formula which implies that for large k,k! > 1
2

√
2πkk+(1/2)e−k,

and also that
(
1+ a

k

)k ≤ ea, this is dominated for large k by

1
k!

kk+1(
1− a

k

)k+1
e−kb̂

k

k

∑
j=0

b̂ j =
2√

2π
√

k
1

1− a
k

ea(
1− a2

k2

)k e−k(b̂−1)

(
b̂k+1−1

b̂−1

)

< e−k(b̂−1)

(
b̂k+1−1

b̂−1

)

which converges to 0 as k→ ∞ since b̂ > 1. ■

Theorem 10.4.8 Let φ have exponential growth, |φ (t)| ≤ Cemt where we can let
m≥ 0. Suppose also that φ is integrable on every interval [0,R] and let f (s)≡L (φ)(s).
Then if t is a point of continuity of φ , it follows that

φ (t) = lim
k→∞

(−1)k

k!

[
f (k)
(

k
t

)](
k
t

)k+1

.

Thus φ (t) is determined by its Laplace transform at every point of continuity.
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Proof: f (s)≡
∫

∞

0 e−suφ (u)du so f (k) (s) =
∫

∞

0 (−u)k e−suφ (u)du. This is valid for all
s large enough and the exponential growth of φ (t) thanks to Theorem 10.3.5. Formally,
you differentiate under the integral. Then, always assuming k is sufficiently large,

(−1)k

k!

[
f (k)
(

k
t

)](
k
t

)k+1

=
(−1)k

k!

(∫
∞

0
(−u)k e−

k
t u

φ (u)du
)(

k
t

)k+1

Now let v = ku
t so this becomes

(−1)k

k!

(∫
∞

0

(
− tv

k

)k
e−v

φ

( tv
k

) t
k

dv
)(

k
t

)k+1

=
1
k!

∫
∞

0
vke−v

φ

( tv
k

)
dv

∫
∞

0
1
k! vke−vdv = 1 by Proposition 10.3.3 and so the above equals

= φ (t)+
1
k!

∫
∞

0
vke−v

(
φ

( tv
k

)
−φ (t)

)
dv

Suppose now that φ is continuous at t > 0,0 < δ < t. To say that
∣∣ tv

k − t
∣∣ < δ is to

say that v ∈
(

t−δ

t k, t+δ

t k
)

. Split the integral into one which goes from 0 to t−δ

t k, one

from t−δ

t k to t+δ

t k, and one from t+δ

t k to ∞ where δ is small enough that when
∣∣ tv

k − t
∣∣<

δ ,
∣∣φ ( tv

k

)
−φ (t)

∣∣< ε. Then the middle integral∣∣∣∣∣ 1
k!

∫ t+δ
t k

t−δ
t k

vke−v
(

φ

( tv
k

)
−φ (t)

)
dv

∣∣∣∣∣≤ 1
k!

∫ t+δ
t k

t−δ
t k

vke−v
εdv≤ ε

It remains to consider the other two integrals.

1
k!

∫ t−δ
t k

0
vke−v

(
φ

( tv
k

)
−φ (t)

)
dv+

1
k!

∫
∞

t+δ
t k

vke−v
(

φ

( tv
k

)
−φ (t)

)
dv (∗)

Now v→ vke−v is increasing for v < k. The first of these, on this interval, tv
k ≤ t− δ and

so there is a constant C (t) such that
∣∣φ ( tv

k

)
−φ (t)

∣∣<C (t). Thus, using Stirling’s formula,
the first integral is dominated by

C (t)
1
k!

∫ t−δ
t k

0
vke−vdv ≤ 2C (t)

1√
2πkk+1/2e−k

(
t−δ

t
k
)(

t−δ

t
k
)k

e−(
t−δ

t k)

< 2C (t)
1√
2π

√
k
(

e
δ
t

(
1− δ

t

))k

≡ 2C (t)
1√
2π

√
krk

where r ≡ e
δ
t

(
1− δ

t

)
which is less than 1 since δ < t. Then limk→∞

√
krk = 0 by a use of

the root test. In the second integral of ∗,
∣∣φ ( tv

k

)
−φ (t)

∣∣≤C (t)em tv
k . Then, simplifying this

second integral, it is dominated by C(t)
k!
∫

∞
t+δ

t k vke−(1−mt
k )vdv which converges to 0 as k→∞

by Lemma 10.4.7. ■
I think the approach given above is especially interesting because it gives an explicit

description of φ (t) at most points1. I will next give a proof based on the Weierstrass approx-
imation theorem to prove this major result which shows that the function is determined by

1If φ is piecewise continuous on every finite interval, this is obvious. However, the method will end up showing
this is true more generally.
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its Laplace transform. I think it is easier to follow but lacks the explicit description given
above. Later in the book is a way to actually compute the function with given Laplace
transform using a contour integral and the method of residues from complex analysis.

Lemma 10.4.9 Suppose q is a continuous function defined on [0,1] . Also suppose that
for all n = 0,1,2, · · · ,

∫ 1
0 q(x)xndx = 0. Then it follows that q = 0.

Proof: By assumption, for p(x) any polynomial,
∫ 1

0 q(x) p(x)dx = 0. Now let {pn (x)}
be a sequence of polynomials which converge uniformly to q(x) by Theorem 6.10.2. Say
maxx∈[0,1] |q(x)− pn (x)|< 1

n Then

∫ 1

0
q2 (x)dx =

∫ 1

0
q(x)(q(x)− pn (x))dx+

=0︷ ︸︸ ︷∫ 1

0
q(x) pn (x)dx

≤
∫ 1

0
|q(x)(q(x)− pn (x))|dx≤

∫ 1

0
|q(x)|dx

1
n

Since n is arbitrary, it follows that
∫ 1

0 q2 (x)dx = 0 and by continuity, it must be the case
that q(x) = 0 for all x since otherwise, there would be a small interval on which q2 (x) is
positive and so the integral could not have been 0 after all. ■

Lemma 10.4.10 Suppose |φ (t)| ≤Ce−δ t for some δ > 0 and all t > 0 and also that φ

is continuous. Suppose that
∫

∞

0 e−stφ (t)dt = 0 for all s > 0. Then φ = 0.

Proof: First note that limt→∞ |φ (t)|= 0. Next change the variable letting x = e−t and so
x ∈ [0,1]. Then this reduces to

∫ 1
0 xs−1φ (− ln(x))dx. Now if you let q(x) = φ (− ln(x)) , it

is not defined when x= 0, but x= 0 corresponds to t→∞. Thus limx→0+ q(x)= 0. Defining
q(0)≡ 0, it follows that it is continuous and for all n = 0,1,2, · · · ,

∫ 1
0 xnq(x)dx = 0 and so

q(x) = 0 for all x from Lemma 10.4.9. Thus φ (− ln(x)) = 0 for all x ∈ (0,1] and so
φ (t) = 0 for all t ≥ 0. ■

Now suppose only that |φ (t)| ≤ Ceλ t so φ has exponential growth and that for all s
sufficiently large, L (φ) = 0. Does it follow that φ = 0? Say this holds for all s≥ s0 where
also s0 > λ . Then consider φ̂ (t)≡ e−s0tφ (t) . Then if s > 0,∫

∞

0
e−st

φ̂ (t)dt =
∫

∞

0
e−ste−s0t

φ (t)dt =
∫

∞

0
e−(s+s0)tφ (t)dt = 0

because s+ s0 is large enough for this to happen. It follows from Lemma 10.4.10 that
φ̂ = 0. But this implies that φ = 0 also. This proves the following fundamental theorem.

Theorem 10.4.11 Suppose φ has exponential growth and is continuous on [0,∞).
Suppose also that for all s large enough, L (φ)(s) = 0. Then φ = 0.

This proves the case where φ is continuous. Can one still recover φ at points of con-
tinuity? Suppose φ is continuous at every point but finitely many on each interval [0, t]
and has exponential growth and L (φ)(s) = 0 for all s large enough. Does it follow that
φ (t) = 0 for t a point of continuity of φ? Approximating with finite intervals [0,R] in place
of [0,∞) and then taking a limit, (details left to you.)

0 =
∫

∞

0
e−st

φ (t)dt = e−st
∫ t

0
φ (u)du|∞t=0 + s

∫
∞

0
e−st

(∫ t

0
φ (u)du

)
dt
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The boundary term is 0 for large s because∣∣∣∣∫ t

0
φ (u)du

∣∣∣∣≤ ∫ t

0
|φ (u)|du≤

∫ t

0
Ceλudu =

C
λ

(
eλ t −1

)
≤ C

λ
eλ t

Therefore, 0=
∫

∞

0 e−st
(∫ t

0 φ (u)du
)

dt and by Theorem 10.4.11,
∫ t

0 φ (u)du= 0 for all t > 0.
Then by the fundamental theorem of calculus, Corollary 9.5.6, g′ (t) = φ (t) = 0 at every
point of continuity. This proves the following theorem.

Theorem 10.4.12 Suppose φ has exponential growth having finitely many points
of discontinuity on every interval of the form [0,R]. Suppose also that for all s large enough,
L (φ)(s) = 0. Then φ (t) = 0 whenever φ is continuous at t.

Note that this implies that if L φ = L ψ then, L (φ −ψ) = 0 so φ = ψ at all points of
continuity.

10.5 Exercises
1. Prove Lemma 10.4.5 by considering

F (z)≡
∫ z

0

∫ t

0
f (t−u)g(u)dudt−

∫ z

0

∫ z

u
f (t−u)g(u)dtdu.

Explain why F (0) = 0 and use the first mean value theorem for integrals to show
that F ′ (z) = 0 for z > 0. Generalize to f ,g are piecewise continuous.

2. Find Γ
( 1

2

)
. Hint: Γ

( 1
2

)
≡
∫

∞

0 e−tt−1/2dt. Explain why this equals 2
∫

∞

0 e−u2
du. Then

use Problem 49 on Page 227 or Theorem 9.9.4. Find a formula for Γ
( 3

2

)
,Γ
( 5

2

)
, etc.

3. For p,q > 0, B(p,q) ≡
∫ 1

0 xp−1(1− x)q−1dx. This is called the beta function. Show
Γ(p)Γ(q) = B(p,q)Γ(p+ q). Hint: You might want to adapt and use the Fubini
theorem presented earlier in Theorem 9.9.3 on Page 216 about iterated integrals.

4. Verify that L (sin(t)) = 1
1+s2 .

5. Show directly that
∫

∞

0
sinx

x dx exists. Hint: For large R and small ε, consider∫ R

ε

sin t
t

dt =
∫

π/2

ε

sin t
t

dt +
∫ R

π/2

sin t
t

dt

and show that the limit of the first as ε → 0 exists and the limit of the second as
R→ ∞ also exists. Hint: The second integral is

−cos t
t
|R
π/2−

∫ R

π/2

cos t
t2 dt =

−cos(R)
R

−
∫ R

π/2

cos t
t2 dt

Then t→ cos t
t2 is in L1

(
π

2 ,∞
)

so the limit exists as R→ ∞. Why? Then the first term

on the right converges to 0 as R→ ∞. Now consider
∫

π/2
ε

sin t
t dt. Explain why the

integrand is positive and bounded above by 1/
√

t. Then compare with
∫

π/2
ε

1√
x dx =

2
√

π/2−2
√

ε . Argue that

lim
ε→0+

∫
π/2

ε

sin t
t

dt = sup
{∫

π/2

ε

sin t
t

dt : 0 < ε < π/2
}
≤ 2
√

π/2.
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6. For s≥ 0, define F (s)≡
∫

∞

0 e−sx sinx
x dx. Thus

F (0)−F (s) = lim
R→∞

∫ R

0

(
1− e−sx) sinx

x
dx.

Show lims→0+ F (s) = F (0). Hint: You might try to justify the following steps or
something similar.

|F (0)−F (s)| ≤
∣∣∣∣∫ M

0

(
1− e−st)∣∣∣∣+ ∣∣∣−cos t

t
|∞M
∣∣∣+ ∣∣∣∣∫ ∞

M

1
t2 dt

∣∣∣∣
≤

∣∣∣∣∫ M

0

(
1− e−st)∣∣∣∣+ 1

M
+

1
M

Now pick M very large and then when it is chosen in an auspicious manner, let
s→ 0+ and show the first term on the right converges to 0 as this happens.

7. It was shown that L (sin(t)) = 1
1+s2 . Show that it makes sense to take L

( sin t
t

)
.

Show that
∫

∞

0
sin(t)

t e−stdt = π

2 −
∫ s

0
1

1+u2 du. To do this, let F (s) =
∫

∞

0
sin(t)

t e−stdt and
show using Theorem 10.3.5 that F ′ (s) = − 1

1+s2 so F (s) = −arctan(s)+C. Then
argue that as s→ ∞,F (s)→ 0. Use this to determine C. Then when you have done
this, you will have an interesting formula valid for all positive s. To finish it, let s= 0.
From Problem 6 F (0) = lims→0+ F (s) , this gives

∫
∞

0
sinx

x dx, the Dirichlet integral.
Another derivation is given earlier in the chapter.

8. Verify the following short table of Laplace transforms. Here F (s) is L f (s).

f (t) F (s) f (t) F (s) f (t) F (s)
tneat n!

(s−a)n+1 tn,n ∈ N n!
sn+1 eat sinbt b

(s−a)2+b2

eat cosbt s−a
(s−a)2+b2 f ∗g(t) F (s)G(s)

9. Let r be a positive integer. Then if f (x) = 1
Γ(r/2)2r/2 x(r/2)−1e−x/2, this function is

called a chi-squared density, denoted as X 2 (r). Show for each r,
∫

∞

0 f (x)dx = 1.
This particular function is the basis for a large part of mathematical statistics.

10. The Fresnel integrals are
∫ x

0 sin
(
t2
)

dt,
∫ x

0 cos
(
t2
)

dt for x > 0. This problem is on
the limit of these as x→ ∞. In an earlier problem this limit was shown to exist. This
limit is probably most easily done in the context of contour integrals from complex
analysis. However, here is a real analysis way. Justify the following steps. Let

F (x)≡
(∫ x

0 eit2
dt
)2

F ′ (x) = 2
(∫ x

0
eit2

dt
)(

eix2
)
= 2x

(∫ 1

0
eix2t2

dt
)(

eix2
)
= 2x

(∫ 1

0
eix2(t2+1)dt

)

F (x) = 2
∫ x

0

∫ 1

0
yeiy2(t2+1)dtdx =

∫ 1

0

∫ x

0
2yeiy2(t2+1)dxdt

=
∫ 1

0

(
−ieiy2(t2+1)

t2 +1
|x0

)
dt =

∫ 1

0

(
i

1
t2 +1

− i
eix2(t2+1)

t2 +1

)
dt
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Let u = t2 + 1 so t =
√

u−1 and du = 2
√

u−1dt. Then in terms of u, the second

integral is i 1
2
∫ 2

1
eix2u

u(u−1)1/2 du. This converges to 0 as x→ ∞ by the Riemann Lebesgue

lemma and the observation that the improper integral
∫ 2

1
1

u(u−1)1/2 du<∞. Therefore,(
lim
x→∞

∫ x

0
eit2

dt
)2

= i
π

4
= i
∫ 1

0

1
t2 +1

dt

and so
∫

∞

0 eit2
dt =

∫
∞

0 cos
(
t2
)

dt + i
∫

∞

0 sin
(
t2
)

dt =
√

2
2

√
π

2 + i
√

2
2

√
π

2 or −
√

2
2

√
π

2 −
i
√

2
2

√
π

2 .The first of the two alternatives will end up holding. You can see this from ob-
serving that

∫
∞

0 sin
(
t2
)

dt > 0 from numerical experiments. Indeed,
∫ 10

0 sin
(
t2
)

dt =
0.58367 and for t larger than 10, the contributions to the integral will be small be-
cause of the rapid oscillation of the function between −1 and 1.

11. Let a = x0 < x1 < · · ·< xn = b and let yi ∈ [xi−1,xi]≡ Ii. If δ : R→ (0,∞) , then the
collection {(Ii,yi)} is called a “δ fine division” if for each i,

Ii ⊆ (yi−δ (yi) ,yi +δ (yi)) .

Show that for any such function δ , there exists a δ fine division. Hint: If not, then
there would not be one for one of

[
a, a+b

2

]
,
[ a+b

2 ,b
]
. Use nested interval lemma to

get a contradiction.

12. Show directly, using the Weierstrass approximation theorem, that if f is piecewise
continuous on [a,b] , then limn→∞

∫ b
a sin(nx+ c) f (x)dx = 0. Hint: Show it suf-

fices to suppose f is continuous. For f continuous, let g be a polynomial such that
∥ f −g∥ ≡maxx∈[a,b] | f (x)−g(x)|< ε

2(b−a) . Then
∫ b

a sin(nx+ c) f (x)dx =∫ b

a
sin(nx+ c)( f (x)−g(x))dx+

∫ b

a
sin(nx+ c)g(x)dx.

Now the first integral is small. Use integration by parts in the second.

13. Carefully fill in the details of Lemma 10.4.7.

14. Suppose you have f defined, positive, and decreasing on [0,∞). Then show that f is
in L1(0,∞) if and only if ∑

∞
k=1 f (k) is a convergent series. This is called the integral

test.

15. Assume all the integrals make sense as ordinary or improper integrals on (a,b) where
−∞ ≤ a < b ≤ ∞. Also let φ : (a,b)→ R be convex and differentiable. Convexity
here means that φ

′ is an increasing function. Thus the graph of φ “smiles” and φ is
always at least as large as any tangent line. Suppose

∫ b
a f (t)dt = 1. Show that

φ

(∫ b

a
g(t) f (t)dt

)
≤
∫ b

a
φ (g(t)) f (t)dt

This is a case of Jensen’s inequality. Hint: Since φ is convex,

φ (g(t)) ≥ φ

(∫ b

a
g(s) f (s)ds

)
+

φ
′
(∫ b

a
g(s) f (s)ds

)(
φ (g(t))−

∫ b

a
g(s) f (s)ds

)
.
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Now multiply by f (t) and do
∫ b

a dt using
∫ b

a f (t)dt = 1.

16. For n ∈N, Stirling’s formula says limn→∞
Γ(n+1)en

nn+(1/2) =
√

2π . Here Γ(n+1) = n!. The
idea here is to show that you get the same result if you replace n with x ∈ (0,∞). To
do this, show

(a) n→ Γ(n+1)en

nn+(1/2) is decreasing on the positive integers. This follows from the prop-
erties of the Gamma function and a little work.

(b) Show that x→ Γ(x+1)ex

xx+(1/2) is decreasing on (m,m+1) for m ∈ N. This is a little
harder.

Hint: For x ∈ (m,m+1) , ln
(

Γ(x+1)ex

xx+(1/2)

)
=

x+ lnΓ(x+1)−
(

x+
1
2

)
lnx

= x+ ln(x(x−1)(x−2) · · ·(x−m+1)Γ(x−m))−
(

x+
1
2

)
lnx

= x+
m−1

∑
k=0

ln(x− k)+ ln(Γ(x−m))−
(

x+
1
2

)
lnx

Now differentiate and try to show that the derivative is negative for x ∈ (m,m+1).
Thus the desired derivative is(

m−1

∑
k=0

1
x− k

− lnx

)
+

1
Γ(x−m)

∫
∞

0
ln(t) tx−(m+1)e−tdt− 1

2x

The first term is negative from the definition of ln(x) . The derivative being nega-
tive will be shown if it is shown that the integral in the above is negative. Do an
integration by parts on this integral and split the integrals to obtain∫

∞

0
ln(t) tx−(m+1)e−tdt = −

∫ 1

0
tσ e−tdt +

∫ 1

0
(t−σ)e−ttσ ln(t)dt

+
∫

∞

1
tσ e−t (1− (t−σ) ln(t))dt

where σ = (x−m)− 1 ∈ (−1,0) so −σ > 0. The last integral is negative because
(t−σ) = t +(−σ)> 1. The first two integrals on the right are obviously negative.



Chapter 11

Functions of One Complex Variable
In the nineteenth century, complex analysis developed along with real analysis, the latter
being the main topic of this book in which one considers functions of one real variable.
However, many difficult real improper integrals can be best considered using contour in-
tegrals so some introduction to this very important topic is useful. It is not intended to be
a full course on complex analysis, just an introduction to some of the main ideas. Cauchy
was the principal originator of the study of complex analysis in the early 1800’s. His-
torically, the main theorems came from the Cauchy Riemann equations and a version of
Green’s theorem. The Cauchy Riemann equations are considered later in a problem, but
Green’s theorem is part of multivariable calculus which is not being discussed in this book.
However, using the ideas of Goursat (1858-1936) it is possible to present the main theory
in terms of functions of a single variable, this time a single complex variable.

11.1 Contour Integrals
This is about contour integrals in C. First is the definition of an oriented C1 contour.
Contours are sets of points in C. Smooth ones require the notion of the derivative of a
function of one real variable having values inC. There is also the concept of a differentiable
function of a complex variable which is defined on an open set of C.

Definition 11.1.1 The derivative is defined as before. If γ : [a,b]→ C, then γ ′ (t)
is said to exist exactly when γ (t +h)− γ (t) = ah+ o(h) for some a ∈ C and sufficiently
small real h and in this case, a≡ γ ′ (t) . This is not any different than the earlier material on
the derivative other than γ having values in C. Derivatives from right and left are similar
to before. Also, if f is defined on an open subset of C then it is differentiable at z means
f (z+h)− f (z) = ah+o(h) and a≡ f ′ (z) . Here h ∈ C since the derivative is on an open
subset of C rather than a subset of R. This has already been dealt with in Theorem 8.2.1
on Page 159. f ′ (z)≡ limh→0

f (z+h)− f (z)
h exactly as in the case of a real variable.

All properties of Theorem 7.5.1 continue to apply for the derivative just defined. The
proofs are exactly the same. In particular, the chain rule holds. You just have to use C
rather than R for values of the function. The necessary complex arithmetic is in Section
2.13.

Next is the idea of an oriented C1 curve.

Definition 11.1.2 A set of points γ∗ in C is called an oriented C1 curve or contour
if the following conditions hold.

1. There exists γ a continuous function mapping some interval [a,b] to C such that
γ∗ ≡ γ ([a,b]).

2. This γ is one to one on [a,b) and the derivative γ ′ is continuous and exists on [a,b] ,
being defined in terms of right or left derivatives at the end points. When γ (a) = γ (b)
this is a closed curve.

3. If γ : [a,b] → γ∗ and γ̂ :
[
â, b̂
]
→ γ∗ are two parametrizations, then γ̂

−1 ◦ γ is a
continuous function which is one to one and so by Lemma 6.4.3 it is either strictly
increasing or strictly decreasing on [a,b]. Two parametrizations γ̂,γ are said to

251
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have the same orientation and γ ∼ γ̂ if and only if γ̂
−1 ◦ γ is increasing. Then ∼ is

easily seen to be an equivalence relation and γ∗ together with all C1 parametrizations
having the same orientation is called an oriented C1 curve.

4. The curve is called smooth if it has a C1 parametrization γ : [a,b]→ C such that
γ ′ (t) ̸= 0 for all t ∈ (a,b).

To see that ∼ is an equivalence relation say γ1 ∼ γ2 and γ2 ∼ γ3. Then γ
−1
2 ◦ γ1 is

increasing and also γ
−1
3 ◦ γ2 is increasing. Hence

(
γ
−1
3 ◦ γ2

)
◦
(
γ
−1
2 ◦ γ1

)
= γ

−1
3 ◦ γ1 is in-

creasing. Thus ∼ is transitive. It is symmetric because a function is increasing on an
interval is equivalent to its inverse being increasing. Clearly γ ∼ γ .

Definition 11.1.3 An ordered partition of [p,q] will be a sequence of intermediate
points, α0,α1, · · · ,αn, p = α0 < α1 < · · · < αn = q. A set of points γ∗ ⊆ C is an ori-
ented piecewise smooth curve means there is a parametrization γ which is one to one and
continuous on [p,q), such that γ restricted to (α i−1,α i) is C1, and γ ′ (t) ̸= 0 on this open
interval, and the right and left derivatives exist at the endpoints. Thus γ ([α i−1,α i]) is a
smooth curve.

Here is a picture of such a thing. The idea is that it has finitely many pointy places.

The above is fussy and technical, We can ignore it because it is included in the case of
C1 curves. Suppose you have a < b < c and γ ′1 (t) ̸= 0 on (a,b) ,γ ′2 (t) ̸= 0 on (b,c) but
γ ′1 (b) ̸= γ ′2 (b) although γ1 = γ2 at b. Then consider

γ̂ (t) =

 γ1

(
b+(t−b)3 1

(b−a)2

)
, t ∈ [a,b]

γ2

(
b+(t−b)3 1

(c−b)2

)
, t ∈ [b,c]

Then γ̂ (t) moves from γ1 (a) to γ̂ (b) in the same direction as γ1 and γ2 and is differentiable
on all of (a,c) although γ̂ ′ (b) = 0. Thus this piecewise smooth curve can be expressed as
a C1 curve, not smooth because of the vanishing of the derivative at b. If you wanted, you
could define and draw the same conclusions for a piecewise smooth C2 curve. You would
simply feature (t−b)5 1

(b−a)4 ,(t−b)5 1
(c−b)4 instead. This shows that a piecewise smooth

curve, has a C1 parametrization which gives the same oriented piecewise smooth curve, so
one might as well just consider curves which have C1 parametrizations without insisting
they are smooth and forget about the fussy details.

Definition 11.1.4 A piecewise smooth curve γ∗ is an oriented C1 curve having a
C1 parametrization γ : [a,b] → γ∗ such that there exists an ordered partition of [a,b] ,
α0,α1, · · · ,αn for which γ ′ (t) ̸= 0 on (α i−1,α i) and right and left derivatives exist at the
endpoints of this interval. More generally, a C1 curve is one which has a C1 parametriza-
tion as above. Also define−γ∗ as follows. If γ∗ = γ ([a,b]) then let η : [a,b]→ γ∗ be defined
by η (t) ≡ γ (a+b− t). This amounts to going over γ∗ in the opposite direction. Then η

will be a parametrization for −γ∗.

Also, I will define the contour integral for a C1 curve as follows:
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Definition 11.1.5 Let γ∗ be an oriented C1 curve having a C1 parametrization γ :
[a,b]→ γ∗, then

∫
γ∗

f (z)dz ≡
∫ b

a
f (γ (t))γ

′ (t)dt ≡
∫ b

a
Re
(

f (γ (t))γ
′ (t)
)

dt

+i
∫ b

a
Im
(

f (γ (t))γ
′ (t)
)

dt

This is well defined because all the functions are continuous. Then
∫

γ∗ f (z)dz is called a
contour integral.

Proposition 11.1.6 The above contour integral is well defined and for γ∗ an oriented
curve, f →

∫
γ∗ f (z)dz is a complex linear map meaning that for a,b ∈ C,

∫
γ∗
(a f (z)+bg(z))dz = a

∫
γ∗

f (z)dz+b
∫

γ∗
g(z)dz

Also
∫

γ∗ f (z)dz = −
∫
−γ∗ f (z)dz. In addition to this, if M ≥ max{| f (z)| : z ∈ γ∗} , one

obtains the estimate
∣∣∣∫γ∗ f (z)dz

∣∣∣ ≤ML where L is the length of γ∗ defined as
∫ b

a |γ ′ (t)|dt
for γ a parametrization for γ∗. This number L is well defined. If fn converges uniformly to
f on γ∗, then limn→∞

∫
γ

fn (z)dz =
∫

γ
f (z)dz

Proof: The claim about the contour integral being linear is a routine computation from
doing arithmetic for complex numbers and the above definition. This is obvious for a,b
real. In case b = 0 and a = i,

i
∫

γ∗
f (z)dz ≡ i

(∫ b

a
Re
(

f (γ (t))γ
′ (t)
)

dt + i
∫ b

a
Im
(

f (γ (t))γ
′ (t)
)

dt
)

= i
∫ b

a
Re
(

f (γ (t))γ
′ (t)
)

dt−
∫ b

a
Im
(

f (γ (t))γ
′ (t)
)

dt∫
γ∗

i f (z)dz ≡
∫ b

a

(
iRe

(
f (γ (t))γ

′ (t)
)
− Im

(
f (γ (t))γ

′ (t)
))

dt

which is the same thing because it holds for Riemann sums approximating the various
integrals.

From consideration of real and imaginary parts, the usual change of variables for-
mula holds. If γ, γ̂ are two equivalent parametrizations giving the same orientation, γ :
[a,b] → γ∗ and γ̂ : [c,d] → γ∗. I need to show these give the same thing for the con-

tour integral. Let s = γ̂
−1 ◦ γ (t) so ds =

(
γ̂
−1 ◦ γ

)′
(t)dt. Also γ (t) = γ̂

(
γ̂
−1 ◦ γ (t)

)
so γ ′ (t) = γ̂

′
(

γ̂
−1 ◦ γ (t)

)(
γ̂
−1 ◦ γ

)′
(t)

∫ d

c
f (γ̂ (s)) γ̂

′ (s)ds =
∫ b

a
f
(

γ̂

(
γ̂
−1 ◦ γ (t)

))
γ̂
′
(

γ̂
−1 ◦ γ (t)

)(
γ̂
−1 ◦ γ

)′
(t)dt

=
∫ b

a
f (γ (t))γ

′ (t)dt
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Now if η is the above parametrization corresponding to−γ∗,η ′ (t) =−γ ′ (a+b− t) . Thus
letting s = a+b− t∫ b

a
f (η (t))η

′ (t)dt = −
∫ b

a
f (γ (a+b− t))γ

′ (a+b− t)dt

=
∫ a

b
f (γ (s))γ

′ (s)dt =−
∫ b

a
f (γ (t))γ

′ (t)dt

As to the estimate.
∣∣∣∫ b

a f (γ (t))γ ′ (t)dt
∣∣∣ = ω

∫ b
a f (γ (t))γ ′ (t)dt for a suitable complex

number, |ω|= 1 and the last expression must be
∫ b

a Re(ω f (γ (t))γ ′ (t))dt ≤
∫ b

a M |γ ′ (t)|=
ML.

Why is the length well defined? Say γ, γ̂ are two parametrizations yielding the same
orientation γ : [a,b]→ γ∗ and γ̂ : [c,d]→ γ∗. Then let s = γ̂

−1 ◦ γ (t) then by the same
change of variables result,∫ d

c

∣∣γ̂ ′ (s)∣∣ds =
∫ b

a

∣∣∣γ̂ (γ̂
−1 ◦ γ (t)

)∣∣∣(γ̂
−1 ◦ γ

)′
(t)dt

=
∫ b

a

∣∣∣γ̂ (γ̂
−1 ◦ γ (t)

)∣∣∣(γ̂
−1 ◦ γ

)′
(t)dt

=
∫ b

a

∣∣∣∣γ̂(γ̂
−1 ◦ γ (t)

(
γ̂
−1 ◦ γ

)′
(t)
)∣∣∣∣dt =

∫ b

a

∣∣γ ′ (t)∣∣dt

The last claim follows right away from the estimate. If fn→ f uniformly on γ∗, then∣∣∣∣∫
γ∗

fn (z)dz−
∫

γ∗
f (z)dz

∣∣∣∣≤ εL

whenever n is large enough that max{| fn (z)− f (z)| : z ∈ γ∗}< ε . ■
I will sometimes write

∫
γ

f (z)dz instead of
∫

γ∗ f (z)dz where it is understood that γ

symbolizes any of the similar parametrizations of γ∗ for one of the two orientations.

11.2 Cauchy Goursat, Cauchy Integral Theorem
In calculus, every continuous function has an antiderivative thanks to the fundamental the-
orem of calculus. However, the situation is not at all the same for functions of a complex
variable. This is why we have the following definition using a different word.

Definition 11.2.1 A function F with F ′ = f is called a primitive of f .

So what if a function has a primitive? It turns out that it becomes very easy to compute
the contour integrals.

Theorem 11.2.2 Suppose γ∗ is an oriented C1 curve Suppose f : γ∗ → C is con-
tinuous and has a primitive F. Thus F ′ (z) = f (z) for some Ω ⊇ γ∗. Then

∫
γ

f (z)dz =
F (γ (b))−F (γ (a)) .

Proof: By definition and the chain rule for derivatives,∫
γ

f (z)dz =
∫ b

a
f (γ (t))γ

′ (t)dt =
∫ b

a

d
dt

(F (γ (t)))dt = F (γ (b))−F (γ (a)) ■



11.2. CAUCHY GOURSAT, CAUCHY INTEGRAL THEOREM 255

Many of these theorems in this section were first done by Cauchy using a version of
Green’s theorem which is not discussed in this book because it is on functions of one
variable. Later, this other approach presented here was formulated by Goursat.

If you have two points in C, z1 and z2, you can consider γ (t) ≡ z1 + t (z2− z1) for
t ∈ [0,1] to obtain a smooth curve from z1 to z2. More generally, if z1, · · · ,zm are points in
C you can obtain a piecewise smooth curve from z1 to zm which consists of first going from
z1 to z2 and then from z2 to z3 and so on, till in the end one goes from zm−1 to zm provided
it does not intersect itself. Denote this piecewise linear curve as γ (z1, · · · ,zm) . Now let T
be a triangle with vertices z1,z2 and z3 encountered in the counter clockwise direction as
shown.

z1 z2

z3

Denote by
∫

∂T f (z)dz, the expression,
∫

γ(z1,z2,z3,z1)
f (z)dz. Consider the following pic-

ture.

TT 1
1

T 1
2T 1

3 T 1
4z1 z2

z3

Thus ∫
∂T

f (z)dz =
4

∑
k=1

∫
∂T 1

k

f (z)dz. (11.1)

On the “inside lines” the integrals cancel because there are two integrals going in opposite
directions for each of these inside lines.

Theorem 11.2.3 (Cauchy Goursat) Let f : Ω→C, where Ω is an open subset of C
have the property that f ′ (z) exists for all z ∈Ω and let T be a triangle contained in Ω with
the inside of the triangle also contained in Ω. Then

∫
∂T f (w)dw = 0.

Proof: Suppose not. Then
∣∣∫

∂T f (w)dw
∣∣= α ̸= 0. From 11.1 it follows

α ≤
4

∑
k=1

∣∣∣∣∫
∂T 1

k

f (w)dw
∣∣∣∣

and so for at least one of these T 1
k , denoted from now on as T1,

∣∣∣∫∂T1
f (w)dw

∣∣∣ ≥ α

4 . Now
let T1 play the same role as T . Subdivide as in the above picture, and obtain T2 such that∣∣∣∫∂T2

f (w)dw
∣∣∣ ≥ α

42 . Continue in this way, obtaining a sequence of triangles, diam means
diameter. It would be the length of the longest side.

Tk ⊇ Tk+1,diam(Tk)≤ diam(T )2−k,

and
∣∣∣∫∂Tk

f (w)dw
∣∣∣≥ α

4k .

If you pick zk ∈ Tk, then {zk} is a Cauchy sequence converging to some z∈C. However,
each of these triangles is a closed set so z∈ Tk for each k. Thus z∈∩∞

k=1Tk. By assumption,
f ′ (z) exists. Therefore, for all k large enough,∫

∂Tk

f (w)dw =
∫

∂Tk

(
f (z)+ f ′ (z)(w− z)+o(w− z)

)
dw
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where |o(w− z)| < ε |w− z| . Now observe that w → f (z) + f ′ (z)(w− z) has a primi-
tive, namely, F (w) = f (z)w+ f ′ (z)(w− z)2 /2. Then, by Theorem 11.2.2,

∫
∂Tk

f (w)dw =∫
∂Tk

o(w− z)dw. From Theorem 11.1.6,

α

4k ≤
∣∣∣∣∫

∂Tk

o(w− z)dw
∣∣∣∣≤ εdiam(Tk)(length of ∂Tk)

≤ ε2−k (length of ∂T )diam(T )2−k,

and so α ≤ ε (length of ∂T )diam(T ) . Since ε is arbitrary, this shows α = 0, a contradic-
tion. Thus

∫
∂T f (w)dw = 0 as claimed. ■

Now we use this to construct a primitive.

Definition 11.2.4 A set Ω⊆ C is convex if, whenever z,w ∈Ω, it follows that tz+
(1− t)w ∈ Ω for all t ∈ [0,1]. In other words, if two points are in Ω then so is the line
segment joining them.

Lemma 11.2.5 Suppose Ω is a convex set. Then so is the open set Ω+B(0,δ ) . Here
Ω+B(0,δ )≡ ∪z∈Ω {z+B(0,δ )}= ∪z∈ΩB(z,δ ) .

Proof: First note that z+B(0,δ ) = B(z,δ ) because z+ y is in the left if and only if
z+ y− z ∈ B(0,δ ) if and only if z+ y ∈ B(z,δ ) and if w ∈ B(z,δ ) , then letting y = w− z,
it follows that z+ y = w ∈ z+B(0,δ ). Thus Ω+B(0,δ ) is an open set because it is the
union of open sets. If z+ y, ẑ+ ŷ are in this set with y, ŷ in B(0,δ ) , and z, ẑ ∈ Ω, then if
t ∈ [0,1] ,

t (z+ y)+(1− t)(ẑ+ ŷ) = (tz+(1− t) ẑ)+(ty+(1− t) ŷ)

The first term is in Ω and the second is in B(0,δ ) because both sets are convex. ■

Theorem 11.2.6 (Morera1) Let Ω be a convex open set and let f ′ (z) exist for all
z ∈Ω. Then f has a primitive on Ω

Proof: Pick z0 ∈Ω. Define F (w)≡
∫

γ(z0,w) f (u)du. Then by the Cauchy Goursat the-
orem, and w ∈Ω, it follows that for |h| small enough,

F (w+h)−F (w)
h

=
1
h

∫
γ(w,w+h)

f (u)du =
1
h

∫ 1

0
f (w+ th)hdt

=
∫ 1

0
f (w+ th)dt

which converges to f (w) due to the continuity of f at w. ■
You can get by with less rather easily.

Definition 11.2.7 An open set U is star shaped if there is a point p ∈U called the
star center such that if z ∈U is any other point, then the line segment t→ p+ t (z− p) for
t ∈ [0,1] is contained in U.

1Giancinto Morera 1856-1909. This theorem or one like it dates from around 1886
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The following picture is to illustrate the arguments which follow. z is the point in the
center of the triangle.

B

C

A

γR

−γr

z0

The following corollary follows right away from Theorem 11.2.6. You just repeat the
proof, but this time, you use the given star center rather than having the freedom to pick
any point in the set.

Corollary 11.2.8 Let Ω be a star shaped open set and suppose f ′ (z) exists on Ω. Then
f has a primitive on Ω.

The above is a picture of piecewise smooth curves smashed together as shown in the
picture. Also suppose f ′ (z) exists for all z ∈ Ω, an open convex set containing the large
circle along with its inside, possibly Ω = C. γR corresponds to the large circle and −γr is
the parametrization for the small circle centered at z. The large circle is oriented counter
clockwise and the small one is oriented clockwise. Thus γr would be oriented counter
clockwise.

There are three contours sharing sides which are straight lines. Orient each of these
three contours in the counter clockwise orientation as suggested by the arrows. Thus the
integrals over the horizontal and vertical lines will cancel because they have opposite ori-
entations. Now there are three regions labelled with A,B,C these are convex and bounded
by the line segments consisting of the vertical and horizontal lines which are extended in-
definitely, along with those line segments which, taken together, form the small triangle
that encloses the point z. Thus these are convex sets of points. Letting 0 < δ so that the
distance from each of these convex sets to z is more than δ , Consider the open regions

A+B(0,δ ) ,B+B(0,δ ) ,C+B(0,δ )

where the notation E +F means {x+ y : x ∈ E,y ∈ F}. I have illustrated A+B(0,δ ) in the
above picture. The three contours are contained in the open convex sets

(A+B(0,δ ))∩Ω,(B+B(0,δ ))∩Ω,(C+B(0,δ ))∩Ω

Thus f ′ (z) exists in each of these convex open sets. Hence, w→ f (w)
w−z ≡ g(w) has a primi-

tive in each of these convex open sets. Just use the quotient rule which holds for the same
reason as it does for functions of a real variable. The only place there is a problem is where
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w = z and this is avoided. Since g has a primitive, each contour integral is 0. Since the
integrals over the straight lines cancel, this reduces to∫

γR

f (w)
w− z

dw+
∫
−γr

f (w)
w− z

dw = 0

or more conveniently, ∫
γR

f (w)
w− z

dw =
∫

γr

f (w)
w− z

dw.

Now the integral on the right equals∫ 2π

0

f
(
z+ reiθ

)
reiθ rieiθ dθ = i

∫ 2π

0
f
(

z+ reiθ
)

dθ

By continuity of f at z, the limit of this last integral as r→ 0 is

i
∫ 2π

0
f (z)dθ = 2πi f (z)

This proves the most important theorem in complex analysis in the case of a circle, the
Cauchy integral formula.

Theorem 11.2.9 Suppose f ′ (z) exists on an open set in C containing D(z0,R) ≡
{z ∈ C such that |z− z0| ≤ R} . Then if z ∈ B(z0,R) , and γR is the oriented curve around
the boundary of B(z0,R) oriented counter clockwise, then

1
2πi

∫
γR

f (w)
w− z

dw = f (z)

Remember how in Theorem 8.2.1 a function given by a power series had a derivative
for all z in some open disk. With Theorem 11.2.9 it follows that if a function has a single
complex derivative in an open set, then it has all of them because it is given by a power
series. This is shown next.

Definition 11.2.10 A function is called analytic on U an open subset of C if it has
a derivative on U. This is also referred to as holomorphic.

This definition is equivalent to the earlier use of the word “analytic” having to do with
being representable with a power series which is the content of the following corollary.

Corollary 11.2.11 Suppose f has a derivative on an open set containing the closed
disk D

(
z0, R̃

)
. Then there are ak such that f (z) = ∑

∞
k=0 ak (z− z0)

k for all z in this disk.
Furthermore, convergence is absolute and uniform. Also,

1
2πi

∫
γR

f (w)

(w− z0)
k+1 dw =

f (k) (z0)

k!
= ak (11.2)

Proof: By assumption, there is δ > 0 such that f ′ (z) exists if |z− z0| ≤ δ . Let R =
R̃+ δ . From Theorem 11.2.9, if γR is the circle of radius R which is centered at z0, and if
z ∈ D

(
z0, R̃

)
f (z) =

1
2πi

∫
γR

f (w)
w− z

dw =
1

2πi

∫
γR

f (w)

(w− z0)
(

1− z−z0
w−z0

)dw
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=
1

2πi

∫
γR

∞

∑
k=0

f (w)(z− z0)
k

(w− z0)
k+1 dw

The series converges uniformly by the Weierstrass M test and also absolutely because∣∣∣∣∣ f (w)(z− z0)
k

(w− z0)
k+1

∣∣∣∣∣≤M
R̃k(

R̃+δ
)k+1

where M is as large as the maximum value of | f | on the compact set D(z0,R) . It follows
from Theorem 11.1.6, that one can interchange the integral with the sum. This yields

f (z) =
∞

∑
k=0

(
1

2πi

∫
γR

f (w)

(w− z0)
k+1 dw

)
(z− z0)

k

Then a use of Theorem 11.1.6 again and the Weierstrass M test shows the series converges
uniformly and absolutely for all |z− z0| ≤ R̃. Corollary 8.2.2 shows that

1
2πi

∫
γR

f (w)

(w− z0)
k+1 dw =

f (k) (z0)

k!
.■

In summary, this shows that for f : U → C for U an open set in C, it follows that
if f ′ exists on U then near z0 ∈ U, f is given by a power series and has infinitely many
derivatives. As to primitives, if F is one, then F ′ = f and so F and hence f have all
derivatives. Thus there is no such thing in this subject as a primitive of a function which is
only continuous. It also shows that such differentiable functions of a complex variable are
really glorified polynomials and you find eventually that in every way they behave just like
polynomials. This was partially observed earlier in the material on power series. The above
argument also shows that the power series for a function will converge on increasing disks
until the circle bounding the disk encounters a point where the derivative of the function
does not exist. This follows from Theorem 8.1.3 and Corollary 8.2.2. This completes the
discussion of power series and shows that they are only understandable in the complex
plane.

The two kinds of functions of greatest interest in algebra are polynomials and rational
functions. The two kinds of interest in complex analysis are analytic functions and mero-
morphic functions, the latter being a generalization of rational functions just as analytic
functions are generalizations of polynomials.

There was nothing in the above argument for the Cauchy integral formula which de-
pended on γ∗R being a circle.

Corollary 11.2.12 Suppose γ∗ is a C1 closed curve as described above in Definition
11.1.2. Assume it divides the plane into two open sets such that γ∗ is the boundary of each,
the inside being the bounded open set. Assume γ∗ along with its inside is contained in a
convex open set on which a function f is differentiable. Then the conclusion of Theorem
11.2.9 is still valid for a suitable orientation of γ∗. This orientation will be called the
counter clockwise orientation.

Proof: Letting z be the point on the inside of γ∗, consider a small circle as shown above
containing z. Orient this small circle in the clockwise direction. Obtain the four contours
as in the proof of Theorem 11.2.9 by extending the straight lines till they intersect γ∗ for
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the first time. Then this determines the desired orientation on each of the contours similar
to the ones in Theorem 11.2.9. The rest of the argument is the same. There is a primitive
for f on each of these contours because f ′ exists on a convex set containing the contour
and its inside, so the integral over the contour is zero. Then adding these together, it is a
repeat of the proof of Theorem 11.2.9. ■

Obviously these theorems are not the best possible. For general versions of this, see
Rudin’s book Real and Complex Analysis or my on line book Calculus of Real and Com-
plex Variables. The latter treatment depends on a very general Green’s theorem and uses
the Jordan curve theorem. What is given here is sufficient for the applications of interest in
this book.

11.3 Isolated Singularities
This is about functions which are analytic near a point z0 but possibly not analytic at the
point. This point z0 is called an isolated singularity.

Lemma 11.3.1 Suppose f is analytic on B̂≡B(z0,r)\{z0}. Then f can be defined at z0
such that the resulting function is analytic on B(z0,r) if and only if limz→z0 (z− z0) f (z) =
0. Such a z0 is called a removable singularity.

Proof: It is clear that if f (z0) can be chosen to make the function analytic then it follows
that limz→z0 (z− z0) f (z) = 0.

Suppose then that this limit condition holds. Consider h(z)≡ (z− z0)
2 f (z) ,h(z0)≡ 0.

Then

h′ (z0)≡ lim
z→0

h(z)
z− z0

= lim
z→0

(z− z0)
2 f (z)

(z− z0)
= lim

z→0
(z− z0) f (z) = 0

Thus h(z) is analytic near z0 with a power series of the form ∑
∞
k=2 ak (z− z0)

k and so
f (z) = ∑

∞
k=2 ak (z− z0)

k−2 for all z ̸= z0 and hence we can take f (z0) ≡ a2 and the re-
sulting function is given by a power series and is therefore, analytic by Theorem 8.2.1.
■

Theorem 11.3.2 (Casorati Weierstrass) Suppose f is analytic near z0 and for B̂≡
B(z0,r) \ {z0} , f

(
B̂
)
is NOT dense in C. This means there is w where B(w,δ ) has no

points of f
(
B̂
)
. Then near z0 there is an analytic function g(z) such that for z near z0,

f (z) = g(z)+∑
m
k=1

bk
(z−z0)

k . In words, this says that f has a pole at z0 or else is equal to an

analytic function near z0 unless f
(
B̂
)

is dense in C.

Proof: It is clearly true if limz→z0 (z− z0) f (z) = 0 from the above lemma. This is the
case where z0 is removable, and in this case, there is no sum ∑

m
k=1

bk
(z−z0)

k , just an analytic

function g(z).
Now suppose B(w,r) contains no points of f

(
B̂
)
. Then consider 1

f (z)−w which is an-
alytic near z0. For z close enough to z0, | f (z)−w| is larger than some δ since otherwise,
there would be zn→ z0, f (zn)→ w so from Lemma f (zn) ∈ B(w,r) if n sufficiently large.
Hence limz→z0 (z− z0)

1
f (z)−w = 0 and so from Lemma 11.3.1, 1

f (z)−w = h(z) where h is

analytic near z0. Say h(z) = ∑
∞
k=0 ak (z− z0)

k.
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Case 1. a0 ̸= 0. Then for z close to z0,h(z)
−1 = 1

a0
+∑

∞
k=1 bk (z− z0)

k since h(z)−1 has
a derivative, so

f (z) = w+
1
a0

+
∞

∑
k=1

bk (z− z0)
k = g(z) analytic

which shows the result in this case.
Case 2. h(z) = ∑

∞
k=m ak (z− z0)

k ,m > 1 where am is the first nonzero a j. Then in this
case,

h(z)
(z− z0)

m =
∞

∑
k=m

ak (z− z0)
k−m ,

(z− z0)
m

h(z)
= (z− z0)

m ( f (z)−w) =
1

am
+

∞

∑
k=1

ck (z− z0)
k ,

for some ck. Thus f (z)−w = 1
(z−z0)

m

(
1

am
+∑

∞
k=1 ck (z− z0)

k
)
= g(z)+∑

m
k=1

bk
(z−z0)

k for

some analytic function g(z). ■
This shows that if z0 is an isolated singularity, then unless something really bizarre

happens, ( f
(
B̂
)

dense in C) the function has a pole at the singularity or is equal to an
analytic function. How bizarre? If the isolated singularity is not a pole, then f−1 (β )∩ B̂
is infinite for every β ∈ C with maybe one exception. This is Picard’s theorem and is
an interesting known result but to see this proved see a more advanced book on complex
analysis like Conway [12], Page 300.

11.4 The Logarithm
First of all, we define for z = x+ iy,ez ≡ ex (cos(y)+ isin(y)) . This agrees with ex when
y = 0. Then it is routine to verify that the usual rules of exponents apply. That d

dz (e
z) = ez,

let h = h1 + ih2 and using the power series for cos,sin,

ez+h− ez = ez
(

eh1 (cos(h2)+ isin(h2))−1
)
= ez

(
eh1 −1

)
+ iezeh1h2 +o(h)

= ezh1 + iezeh1h2 +o(h) = ezh+o(h)

Next I want to define a logarithm which is the inverse of this function. You want to have
elog(z) = z = |z|(cosθ + isinθ) where θ is the angle of z. Now log(z) should be a complex
number and so it will have a real and imaginary part. Thus

eRe(log(z))+i Im(log(z)) = |z|(cosθ + isinθ) (11.3)

where θ is the angle of z. The magnitude of the left side needs to equal the magnitude
of the right side. Hence, eRe(log(z)) = |z| and so it is clear that Re(log(z)) = ln |z|. Note
that we must exclude z = 0 just as in the real case. What about Im(log(z))? Having found
Re(log(z)) , 11.3 is

|z|(cos(Im(logz))+ isin(Im(logz))) = |z|(cosθ + isinθ) (11.4)

which happens if and only if
Im(logz) = θ +2kπ (11.5)

for k an integer. Thus there are many solutions for Im(logz) to the above problem. A
branch of the logarithm is determined by picking one of them. The idea is that there is only
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one possible solution for Im(logz) in any open interval of length 2π because if you have
two different k in 11.5, the two values of Im(logz) would differ by at least 2π so they could
not both be in an open interval of length 2π .

What is done is to consider ez where if z = |z|eiθ , then θ ∈ (a−π,a+π) for some a.
In other words, you consider the ray coming from 0 in the complex plane and including 0
which has angle a. Then regard ez as being defined for all of C other than this ray.

a

This involves restricting the domain of the function to an open set so that it has an
inverse. It is like what was done for arctan and other trig. functions, except here we are
careful to have the domain be an open set. Then if this restriction is made, there is exactly
one solution Im(logz) to 11.4. The most common assignment of a is π, so we leave out the
negative real axis. However, one could leave out any other ray. If the usual one is left out,
this shows that we need to have log(z) = ln(|z|)+ iarg(z) where arg(z) is the angle of z
which is in (−π,π). It is called the principal branch of the logarithm when this is done. If
you left out some other ray, then arg(z) would refer to an angle in some other open interval
of length 2π .

Now the above geometric description shows that z→ log(z) is continuous. Indeed, if
zn→ z, then by the triangle inequality,

||zn|− |z|| ≤ |zn− z|

and so by continuity of ln, you get ln(|zn|)→ ln(|z|). As to convergence of arg(zn) to
arg(z) , just note that saying one is close to another is the same as saying that arg(zn) is in
any open set determined by two rays emanating from 0 which include z. This happens if
zn→ z. Is z→ log(z) differentiable? First recall that (ez)′ = ez and so

h = elog(z+h)− elog(z) = elog(z) (log(z+h)− log(z))+o(log(z+h)− log(z)) (11.6)

h
z
= log(z+h)− log(z)+o(log(z+h)− log(z)) (11.7)

By continuity, if h is small enough,

|o(log(z+h)− log(z))|< 1
2
|log(z+h)− log(z)|

Hence
∣∣ h

z

∣∣≥ 1
2 |log(z+h)− log(z)|. This shows that |log(z+h)−log(z)|

|h| ≤ 2
|z| . Now

|o(|log(z+h)− log(z)|)|
|h|

=
o(|log(z+h)− log(z)|)
|log(z+h)− log(z)|

|log(z+h)− log(z)|
|h|

and the second term on the right is bounded while the first converges to 0 as h→ 0. There-
fore, o(log(z+h)− log(z)) = o(h) and so it follows from 11.7,

log(z+h)− log(z) =
(

1
z

)
h+o(h)

which shows that, just as in the real variable case log′ (z) = 1
z .
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Definition 11.4.1 For a ∈ R, let l be the ray from 0 in the complex plane which
includes 0 and consider all complex numbers Da whose angle is in (a−π,a+π) and not
0.

log(z) = ln(|z|)+ iarg(z)

where arg(z) is the angle for z which is in (a−π,a+π). This function is one to one and
analytic on Da and elog(z) = z . This is called a branch of the logarithm. It is called the
principal branch if the ray defining Da consists of 0 along with the negative real axis.

Note that log(Da) , is the open set in C defined by Imz ∈ (a−π,a+π) . Thus there is
a one to one and onto analytic map which maps Da onto

{z ∈ C : Imz ∈ (a−π,a+π)} .

This book is not about a detailed study of such conformal maps, (analytic functions with
values in C are called this) but this is an interesting example. Some people find these
kind of mappings very useful and they are certainly beautiful when you keep track of level
curves of real and imaginary parts. You can have lots of fun by having Matlab graph real
and imaginary parts, but this is about functions of two variables so is outside the scope of
this book.

11.5 The Method of Residues
Next is a consideration of various improper and difficult integrals using contour integrals.
To do this in maximal generality you should develop the winding number and the Cauchy
integral formula for cycles. However, when I do it this way, I sometimes end up wondering
what exactly has been shown and how it relates to specific examples. Ultimately in this
book, the consideration of examples is of interest more than the most general formulation
of the theory.

Here the thing of interest is a function analytic in some open connected set except for
finitely many points. The following picture will describe the kind of thing which is meant.
The various piecewise smooth closed curves will satisfy the conclusion of the Cauchy in-
tegral theorem. Recall that this will be so if the closed curve is contained in a star shaped
set on which the function has a derivative. Consider the following pictures which are a
paradigm of what is being considered.

A CB

You can see from the picture that if you fattened up the contours around the regions
A,B,C you would have star shaped open sets containing these contours. Thus, if f ′ (z) exists
for z in some open set containing these contours, then the contour integrals over these three
would be 0 and the integrals over the straight vertical lines cancel, so the contour integral
over the curve consisting of horizontal lines and half circles with an elliptical curve on top
is also 0. Now consider two of these pasted together as shown below.
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•a1

γ1

•a2

γ2

γ0

Assume f ′ (z) exists for all z in some open set which includes all the contours and their
insides other than at the two points shown, a1 and a2. Then applying the above to the
second piecewise smooth closed curve, we find that on adding the contour integrals over
the top and the bottom, yields that the contour integrals over the straight lines cancel and
so what finally results is∫

γ0

f (z)dz+
∫
−γ1

f (z)dz+
∫
−γ2

f (z)dz = 0

In other words, ∫
γ0

f (z)dz =
∫

γ1

f (z)dz+
∫

γ2

f (z)dz

where γ i for i = 1,2 are oriented counter clockwise.
Obviously you could have many more exceptional points ai and small circular contours

surrounding these, and the same argument would work. This example and its obvious
generalizations is a paradigm for the procedure of evaluating contour integrals with the
method of residues. First is a definition of what is meant by a pole and a residue.

Definition 11.5.1 A function f has a pole at a if

f (z) = g(z)+
n

∑
k=1

bk

(z−a)k

where bn ̸= 0 and g is analytic near a. The order of the pole is n. Denote by S (a,z) the term
described by the sum. It is called the singular part of f at a. The residue at a is defined to
be b1 and is denoted as res( f ,a). See Theorem 11.3.2 to see how this takes place.

How can we find it? Multiply by (z−a)n. This gives

f (z)(z−a)n = g(z)(z−a)n +b1 (z−a)n−1 +
n

∑
k=2

bk (z−a)n−k

Now take the derivative n−1 times and then take a limit as z→ a. The differentiation will
zero out all the terms in the sum on the right. Then the limit will zero out all other terms
except the b1 term which will be (n−1)!b1. This justifies the following procedure.

Procedure 11.5.2 When f has a pole at a of order n, to find the residue, multiply
by (z−a)n , take n−1 derivatives, and finally take the limit as z→ a. The residue will be
this number b divided by (n−1)!. Thus

res( f ,a) =
1

(n−1)!
lim
z→a

dn−1

dzn−1 ( f (z)(z−a)n)
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In taking the limit, you can use L’Hospital’s rule provided you have an indeterminate form
because you know the limit exists. Thus you could take a limit along a one dimensional line
a+ t as t → 0 and you can apply L’Hospital’s rule to the real and imaginary parts. Thus,
you can get the answer by pretending z is a real variable and using the usual techniques
for functions of a real variable.

I want to consider contours like the above and functions which are of the form

f (z) = g(z)+
m

∑
j=1

S (a j,z) (11.8)

where g(z) is analytic and the S (a j,z) are the terms which yield a pole at a j. Consider γ

centered at a with radius r ∫
γ

S (a j,z)dz =
p

∑
k=1

∫
γ

bk

(z−a j)
k dz.

One of these terms is∫
γ

bk

(z−a j)
k dz = bk

∫ 2π

0

1
rkeikt ireitdt =

{
0 if k > 1
b1i
∫ 2π

0 dt = b12πi if k = 1

Thus, if the (z−a j)
−1 coefficient in 11.8 is b j

1,∫
γ0

f (z)dz =
m

∑
j=1

∫
γ j

g(z)dz+
m

∑
j=1

∫
γ j

S (a j,z)dz

=
m

∑
j=1

∫
γ j

b j
1

z−a j
dz = 2πi res( f ,a j)

This is the residue method. You can use it to compute very obnoxious improper integrals
and this is illustrated next.

Letting p(x) ,q(x) be polynomials, you can use the above method of residues to evalu-
ate obnoxious integrals of the form∫

∞

−∞

p(x)
q(x)

dx≡ lim
R→∞

∫ R

−R

p(x)
q(x)

dx

provided the degree of p(x) is two less than the degree of q(x) and the zeros of q(z) involve
Im(z) > 0. Of course if the degree of p(x) is larger than that of q(x) , you would do long
division. The contour to use for such problems is γR which goes from (−R,0) to (R,0)
along the real line and then on the semicircle of radius R from (R,0) to (−R,0).

x

y

Letting CR be the circular part of this contour, for large R,∣∣∣∣∫CR

p(z)
q(z)

dz
∣∣∣∣≤ πR

CRk

Rk+2
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which converges to 0 as R→ ∞. Therefore, it is only a matter of taking large enough R to
enclose all the roots of q(z) which are in the upper half plane, finding the residues at these
points and then computing the contour integral. Then you would let R→ ∞ and the part
of the contour on the semicircle will disappear leaving the Cauchy principal value integral
which is desired. There are other situations which will work just as well. You simply need
to have the case where the integral over the curved part of the contour converges to 0 as
R→ ∞.

Here is an easy example.

Example 11.5.3 Find
∫

∞

−∞

1
x2+1 dx

You know from calculus that the answer is π . Lets use the method of residues to find
this. The function 1

z2+1 has poles at i and −i. We don’t need to consider −i. It seems clear
that the pole at i is of order 1 and so all we have to do is take

lim
z→i

x− i
1+ x2 =

1
(x− i)(x+ i)

(x− i) =
1
2i

Then the integral equals 2πi
( 1

2i

)
= π .

That one is easy. Now here is a genuinely obnoxious integral.

Example 11.5.4 Find
∫

∞

−∞

1
1+x4 dx

It will have poles at the roots of 1+ x4. These roots are(
1
2
− 1

2
i
)√

2,−
(

1
2
+

1
2

i
)√

2,−
(

1
2
− 1

2
i
)√

2,
(

1
2
+

1
2

i
)√

2

Using the above contour, we only need consider

−
(

1
2
− 1

2
i
)√

2,
(

1
2
+

1
2

i
)√

2

Since they are all distinct, the poles at these two will be of order 1. To find the residues at
these points, you would need to take

lim
z→−( 1

2+
1
2 i)
√

2

(
z−
(
−
( 1

2 −
1
2 i
)√

2
))

1+ z4 , lim
z→( 1

2+
1
2 i)
√

2

(
z−
(( 1

2 +
1
2 i
)√

2
))

1+ z4

factoring 1+x4 and computing the limit, you could get the answer. However, it is easier to
apply L’Hospital’s rule to identify the limit you know is there,

lim
z→−( 1

2+
1
2 i)
√

2

1
4z3 =

(
1
8
− 1

8
i
)√

2, lim
z→( 1

2+
1
2 i)
√

2

1
4z3 =−

(
1
8
+

1
8

i
)√

2

Then the contour integral is

2πi
((

1
8
− 1

8
i
)√

2
)
+2πi

(
−
(

1
8
+

1
8

i
)√

2
)
=

1
2

√
2π

You might observe that this is a lot easier than doing the usual partial fractions and trig
substitutions etc. Now here is another tedious example.
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Example 11.5.5 Find
∫

∞

−∞

x+2

(x2+1)(x2+4)
2 dx

The poles of interest are located at i,2i. The pole at 2i is of order 2 and the one at i is
of order 1. In this case, the partial fractions expansion is

1
9 x+ 2

9
x2 +1

−
1
3 x+ 2

3

(x2 +4)2 −
1
9 x+ 2

9
x2 +4

You could do these integrals by elementary methods. However, I will consider the original
problem by finding 2πi times the sum of the residues.

The pole at i would be

lim
z→i

( 1
9 z+ 2

9

)
(z− i)

(z+ i)(z− i)
=

( 1
9 i+ 2

9

)
(i+ i)

=
1
18
− 1

9
i

Now consider the pole at 2i which is a pole of order 2. Using Procedure 11.5.2, it is

lim
z→2i

d
dz

(
(z−2i)2 (z+2)

(z2 +1)(z2 +4)2

)
= lim

z→2i

d
dz

(
(z+2)

(z2 +1)(z+2i)2

)

= lim
z→2i

(
− 1

(z2 +1)2 (z+2i)3

(
3z3 +(8+2i)z2 +(1+8i)z+4−2i

))

= − 1
18

+
11

144
i

Integral over a large semicircle is

2πi
(
− 1

18
+

11
144

i
)
+2πi

(
1
18
− 1

9
i
)
=

5
72

π

Letting R→ ∞, this is the desired improper integral. More precisely, it is the Cauchy
principal value integral, limR→∞

∫ R
−R

x+2

(x2+1)(x2+4)
2 dx . In this case, it is a genuine improper

integral.
Sometimes you don’t blow up the curves and take limits. Sometimes the problem of

interest reduces directly to a complex integral over a closed curve. The integral of rational
functions of cosines and sines lead to this kind of thing. Here is an example of this.

Example 11.5.6 The integral is
∫

π

0
cosθ

2+cosθ
dθ .

This integrand is even and so it equals 1
2
∫

π

−π
cosθ

2+cosθ
dθ . For z ousn the unit circle, z =

eiθ , z = 1
z and therefore, cosθ = 1

2

(
z+ 1

z

)
. Thus dz = ieiθ dθ and so dθ = dz

iz . Note that
this is done in order to get a contour integral which reduces to the one of interest. It follows
that a contour integral which reduces to the integral of interest is

1
2i

∫
γ

1
2

(
z+ 1

z

)
2+ 1

2

(
z+ 1

z

) dz
z

=
1
2i

∫
γ

z2 +1
z(4z+ z2 +1)

dz
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where γ is the unit circle oriented counter clockwise. Now the integrand has poles of order
1 at those points where z

(
4z+ z2 +1

)
= 0. These points are

0,−2+
√

3,−2−
√

3.

Only the first two are inside the unit circle. It is also clear the function has simple poles at
these points. Therefore,

res( f ,0) = lim
z→0

z
(

z2 +1
z(4z+ z2 +1)

)
= 1.

res
(

f ,−2+
√

3
)
=

lim
z→−2+

√
3

(
z−
(
−2+

√
3
)) z2 +1

z(4z+ z2 +1)
=−2

3

√
3.

It follows ∫
π

0

cosθ

2+ cosθ
dθ =

1
2i

∫
γ

z2 +1
z(4z+ z2 +1)

dz =
1
2i

2πi
(

1− 2
3

√
3
)

= π

(
1− 2

3

√
3
)
.

Other rational functions of the trig functions will work out by this method also.
Sometimes you have to be clever about which version of an analytic function you wish

to use. The following is such an example.

Example 11.5.7 The integral here is
∫

∞

0
lnx

1+x4 dx.

It is natural to try and use the contour in the following picture in which the small circle
has radius r and the large one has radius R.

x

y

However, this will create problems with the log since the usual version of the log is not
defined on the negative real axis. This difficulty may be eliminated by simply using another
branch of the logarithm as discussed above. Leave out the ray from 0 along the negative
y axis and use this example to define L(z) on this set. Thus L(z) = ln |z|+ iarg1 (z) where
arg1 (z) will be the angle θ , between −π

2 and 3π

2 such that z = |z|eiθ . Of course, with
this contour, this will end up finding the integral

∫
∞

−∞

ln|x|
1+x4 dx. Then the function used is

f (z)≡ L(z)
1+z4 . Now the only singularities contained in this contour are

1
2

√
2+

1
2

i
√

2,−1
2

√
2+

1
2

i
√

2

and the integrand f has simple poles at these points. Thus res
(

f , 1
2

√
2+ 1

2 i
√

2
)
=

lim
z→ 1

2
√

2+ 1
2 i
√

2

(
z−
(

1
2

√
2+ 1

2 i
√

2
))

(ln |z|+ iarg1 (z))

1+ z4
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= lim
z→ 1

2
√

2+ 1
2 i
√

2

(ln |z|+ iarg1 (z))+
(

z−
(

1
2

√
2+ 1

2 i
√

2
))

(1/z)

4z3

=

ln
(√

1
2 +

1
2

)
+ i π

4

4
(

1
2

√
2+ 1

2 i
√

2
)3 =

(
1

32
− 1

32
i
)√

2π

Similarly

res
(

f ,
−1
2

√
2+

1
2

i
√

2
)
=

ln
(√

1
2 +

1
2

)
+ i 3π

4

4
(
− 1

2

√
2+ 1

2 i
√

2
)3 =

3
32

√
2π +

3
32

i
√

2π.

Of course it is necessary to consider the integral along the small semicircle of radius r. This
reduces to ∫ 0

π

ln |r|+ it

1+(reit)4

(
rieit)dt

which clearly converges to zero as r→ 0 because r lnr→ 0. Therefore, taking the limit as
r→ 0, ∫

large semicircle

L(z)
1+ z4 dz+ lim

r→0+

∫ −r

−R

ln(−t)+ iπ
1+ t4 dt+

lim
r→0+

∫ R

r

ln t
1+ t4 dt = 2πi

(
3
32

√
2π +

3
32

i
√

2π +
1

32

√
2π− 1

32
i
√

2π

)
.

Observing that
∫

large semicircle
L(z)
1+z4 dz→ 0 as R→ ∞,

e(R)+2 lim
r→0+

∫ R

r

ln t
1+ t4 dt + iπ

∫ 0

−∞

1
1+ t4 dt =

(
−1

8
+

1
4

i
)

π
2
√

2

where e(R)→ 0 as R→ ∞. This becomes

e(R)+2 lim
r→0+

∫ R

r

ln t
1+ t4 dt + iπ

(√
2

4
π

)
=

(
−1

8
+

1
4

i
)

π
2
√

2.

Now letting r→ 0+ and R→ ∞,

2
∫

∞

0

ln t
1+ t4 dt =

(
−1

8
+

1
4

i
)

π
2
√

2− iπ

(√
2

4
π

)
=−1

8

√
2π

2,

and so
∫

∞

0
ln t

1+t4 dt = − 1
16

√
2π2, which is probably not the first thing you would thing of.

You might try to imagine how this could be obtained using only real analysis. I don’t have
any idea how to get this one from standard methods of calculus. Perhaps some sort of
partial fractions might do the job but even if so, it would be very involved.
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11.6 Counting Zeros, Open Mapping Theorem
The open mapping theorem is perhaps a little digression from the main emphasis of this
book, but it is such a marvelous result, that it seems a shame not to include it. It comes
from a remarkable formula which counts the number of zeros of an analytic function inside
a ball.

Definition 11.6.1 Let U be a nonempty open set in C. Then it is called connected
if for any z,w ∈U, there exists a continuous one to one piecewise linear γ : [0,1]→U such
that γ (0) = z and γ (1) = w. A connected open set will be called a region in this section.

By Theorem 6.5.8 the above implies the usual definition of a connected set. To go the
other way, suppose the usual definition and let z ∈U be given. Let S denote those points
reachable by a continuous one to one piecewise linear curve from z. Show S is open. Now
show that those points of U which are not reachable by such a curve is also open. Thus U
is the disjoint union of open sets. One of them must be empty if U is connected according
to the usual definition. This is really very easy if you use convexity of balls. It is not the
purpose of this book to belabor higher dimensional considerations and the above definition
is sufficiently descriptive.

Here is a very useful equivalence.

Proposition 11.6.2 Let U be a region as just defined and suppose f is an analytic
function defined on U. Then the following are equivalent

1. There exists z ∈U such that f (n) (z) = 0 for all n = 0,1,2, ....

2. f (z) = 0 for all z ∈U.

Proof: 1.⇒ 2. Let z be as in 1. Then, since U is open, B(z,r) ⊆U for small enough
positive r. It follows from Corollary 11.2.11 that for w in this ball,

f (w) =
∞

∑
k=0

f (k) (z)
k!

(w− z)k = 0

and so f is zero on B(z,r). This shows that near z, f (n) (w) = 0 for all n an integer larger
than or equal to 0. Letting S denote z ∈U such that f (n) (z) = 0 for all n, this shows that
S is an open subset of U . If S is all of U then this was what was to be shown. Oth-
erwise, let z ∈ S and w ∈ U \ S. Let γ (t) go from z to w,γ (0) = z,γ (1) = w. Then let
T ≡ sup{t ∈ [0,1] : γ (s) ∈ S for s≤ t} and suppose T < 1. Then let tn be an increasing se-
quence converging to T, 0 = f (γ (tn))→ f (γ (T )) and so f (γ (T )) = 0. However, each
derivative of f is continuous also and so the same reasoning shows that f (n) (γ (T )) = 0 for
each n ≥ 1. Hence γ (T ) ∈ S. But this violates the definition of T because γ (t) ∈ S for all
t ∈ [T,T + ε] for suitably small ε due to what was just shown that S is open. Hence T = 1
and so w ∈ S. Thus U \S = /0.

2.⇒ 1. This is obvious. If f (z) = 0 for all z, then all derivatives are also 0 on the open
set U . ■

Next is one more equivalence.

Theorem 11.6.3 Suppose f is analytic on a region U (open and connected). The
following are equivalent.
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1. There exists z ∈U where f (n) (z) = 0 for all n.

2. f is 0 on U.

3. The set of zeros of f has a limit point in U

Proof: 1.⇐⇒ 2. The first two are equivalent by Proposition 11.6.2.
2.)⇒ 3.) This is obvious. Since f is 0 everywhere, all derivatives at every point are 0

so every point of B(z0,R) is a limit point of the set of zeros.
3.)⇒ 1.)Suppose there exists a limit point z ∈U of the set of zeros. I will show that

f (n) (z) = 0 for all n. By continuity f (z) = 0. Since z is in U , there exists r > 0 such that
B(z,r)⊆U. By Corollary 11.2.11, there are complex numbers ak such that for w∈ B(z,r) ,

f (w) =
∞

∑
k=1

ak (w− z)k .

If each ak = 0, then at this z, all derivatives of f equal 0. Otherwise,

f (w) = (w− z)m g(w) = (w− z)m
∞

∑
k=m

ak (w− z)k−m , m > 0

where am ̸= 0. I will show this does not happen. From the above, there exists a sequence of
distinct zn converging to z where f (zn) = 0. Then 0= f (zn) = (zn− z)m g(zn) so g(zn) = 0.
By continuity, g(z) = limn→∞ g(zn) = 0 which requires am = 0 after all. Thus all ak = 0
after all, a contradiction. It follows that all three conditions are equivalent. ■

The counting zeros theorem is as follows:

Theorem 11.6.4 Let f be analytic in an open set containing the closed disk

D(z0,r)≡ {z : |z− z0| ≤ r}

and suppose f has no zeros on the circle C (z0,r) , the boundary of D(z0,r). Then the
number of zeros of f counted according to multiplicity which are contained in D(z0,r) is

1
2πi
∫

C(z0,r)
f ′(z)
f (z) dz where C (z0,r) is oriented in the counter clockwise direction.

Proof: There are only finitely many zeros in D(z0,r) . Otherwise, there would exist
a limit point of the set of zeros z. If z is in B(z0,r) , then by Theorem 11.6.3, f = 0 on
D(z0,r). If it is on C (z0,r) , this would contradict having no zeros on the boundary.

Let these zeros be
{

z1, ...,zp
}

. Consider zk and suppose it is a zero of multiplicity m so
f (z) = (z− zk)

m g(z) where g(zk) ̸= 0,m≥ 1. Then

f ′ (z)
f (z)

=
m(z− zk)

m−1 g(z)+(z− zk)
m g′ (z)

(z− zk)
m g(z)

=
m

(z− zk)
+

g′ (z)
g(z)

The second term is analytic near zk and so the residue of f ′(z)
f (z) is m the number of times

zk is repeated in the list of zeros. Hence doing this for each of the zeros, gives 2πi(p) =∫
C(z0,r)

f ′(z)
f (z) dz and so p = 1

2πi
∫

C(z0,r)
f ′(z)
f (z) dz. ■

Obviously the above theorem applies to more general regions than disks, but the main
interest tends to be for balls. Also it generalizes to the situation where there are no poles or
zeros on C (z0,r) and finitely many zeros and poles in B(z0,r). In this case, you get a count
of the number of zeros minus the number of poles. This more general theorem is called
Rouche’s theorem.
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Lemma 11.6.5 Suppose U is a region and g : U → N is continuous. Then g is constant
on U.

Proof: Let z,w ∈U . Let h(t) = g(γ (t)) for t ∈ [0,1] where γ is a smooth curve with
γ (0) = z and γ (1) = z. Then by the intermediate value theorem, h can have only one value.
Thus g(z) = g(w). ■

Theorem 11.6.6 (Open mapping theorem) Let Ω be a region (open connected set)
in C and suppose f : Ω→ C is analytic. Then f (Ω) is either a point or a region. In the
case where f (Ω) is a region, it follows that for each z0 ∈ Ω, there exists an open set V
containing z0 and m ∈ N such that for all z ∈V,

f (z) = f (z0)+φ (z)m (11.9)

where φ : V → B(0,δ ) is one to one, analytic and onto, φ (z0) = 0, φ
′ (z) ̸= 0 on V.

Proof: Suppose f (Ω) is not a point. Then for z0 ∈Ω it follows there exists r > 0 such
that f (z) ̸= f (z0) for all z ∈ B(z0,r)\{z0} . Otherwise, z0 would be a limit point of the set,

{z ∈Ω : f (z)− f (z0) = 0}

which would imply from Theorem 11.6.3 that f (z) = f (z0) for all z ∈Ω. Therefore, mak-
ing r smaller if necessary, and using the power series of f ,

f (z) = f (z0)+(z− z0)
m g(z) ?

= ( f (z0)+
(
(z− z0)g(z)1/m

)m
)

where g is analytic near z0 and g(z0) ̸= 0. Does an analytic g(z)1/m exist? By continuity,
g(B(z0,r)) ⊆ B(g(z0) ,ε) where ε is small enough that 0 /∈ B(g(z0) ,ε), so there exists a
branch of the logarithm on C⧹B(g(z0) ,ε). Call it log even though it might not be the
principle branch. Then consider e(1/m) log(g(z)) ≡ g(z)1/m and so we can obtain an analytic
function denoted by g(z)1/m as in the above formula. Let φ (z) = (z− z0)g(z)1/m . Then
φ (z0) = 0 and

φ
′ (z) = e(1/m) log(g(z))+(z− z0)e(1/m) log(g(z)) 1

g(z)
g′ (z)

so φ
′ (z0) = e(1/m) log(g(z0)) ̸= 0. Shrinking r some more if necessary, assume φ

′ (z) ̸= 0 for
all z ∈ B(z0,r). The representation

f (z) = f (z0)+φ (z)m ,z ∈ B(z0,r)

where φ
′ (z) ̸= 0 for all z ∈ B(z0,r) and φ (z0) = 0 has been obtained.

Let δ be small enough that the only zero of φ (z)−φ (z0) is z0 in B(z0,δ ). If no such
small positive δ exists, then the zeroes of φ (z)−φ (z0) would have a limit point and so φ

would be a constant. This would force f to be constant also. Then φ (z0) /∈ φ (C (z0,δ ))

and so if |w−φ (z0)| is small enough, then w /∈ φ (C (z0,δ )) either. Thus there is ε > 0
with B(φ (z0) ,ε)∩φ (C (z0,δ )) = /0. Consider for w ∈ B(φ (z0) ,ε) = B(0,ε) the formula
for counting zeroes.

1
2πi

∫
C(z0,δ )

φ
′ (z)

φ (z)−w
dz
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It is a continuous function of w and equals 1 at 0 = φ (z0) so, since it is integer valued, it
equals 1 on all of B(0,ε) , but this is the number of zeroes of φ (z)−w. Thus φ (B(z0,δ )) =
B(0,ε). Hence, φ

m (B(z0,δ )) = B(0,εm). It follows that

f (B(z0,δ )) = f (z0)+B(0,εm) = B( f (z0) ,ε
m)

and so this shows that f maps small open balls to open balls. Thus f (Ω) is a connected
open set. ■

11.7 Exercises
1. A fractional linear transformation is one of the form f (z) = az+b

cz+d where ad−bc ̸= 0
where a,b,c,d are in a field, say R,Q,C. Let M denote the 2× 2 invertible ma-
trices having entries in the same field. Denote by F these fractional linear trans-

formations. For A =

(
a b
c d

)
∈ M, let φ (A)(z) ≡ az+b

cz+d . Show that φ (AB)(z) =

φ (A)◦φ (B)(z). Show that φ (I)(z) = z and that φ : M→ F is onto. Show φ (A)−1 =
φ
(
A−1

)
so there is an easy way to invert such a fractional linear transformation. This

problem is best for those who have had a beginning course in linear algebra.

2. The modular group consists of functions f (z) = az+b
cz+d where a,b,c,d are integers and

ad−bc = 1. Surprisingly, each of these has an inverse. f−1 (z) = dz−b
−cz+a . Verify that

this is the case. This means f−1 ◦ f (z) = z. Show also that if f ,g are two of these,
then f ◦ g is another one. This last part might be a little tedious without the above
problem.

3. Suppose U is an open set in C and f : U → C is analytic, ( f ′ (z) exists for z ∈U).
For z = x + iy, f (z) = f (x+ iy) = u(x,y) + iv(x,y), u, and v having real values.
These are the real and imaginary parts of f . The partial derivative, ux is defined by
fixing y and considering only the variable x. ux (x,y) ≡ limh→0

u(x+h,y)−u(x,y)
h . Other

versions of this notation are similar. Thus partial derivatives are a one variable con-
sideration. Show that the existence of f ′ (z) implies the Cauchy Riemann equations.
ux = vy,uy =−vx. Hint: In the difference quotient for finding f ′ (z) , use h→ 0 and
then ih→ 0 for h real.

4. Suppose t→ z(t) = x(t)+ iy(t) and t→ w(t) = x̂(t)+ iŷ(t) are two smooth curves
which intersect when t = 0. Then consider the two curves t → f (z(t)) and t →
f (w(t)) where f is analytic near z(0) = w(0) . Show the cosine of the angle between
the resulting two curves is the same as the cosine of the angle of the original two
curves when t = 0. Hint: You should write f (z) = u(x,y) + iv(x,y) and use the
Cauchy Riemann equations and the chain rule. This problem is really dependent on
knowing a little bit about functions of more than one variable so does not exactly fit
in this book. It depends on remembering some elementary multivariable calculus.
Also recall that the cosine of the angle between two vectors u,v is (u ·v)/ |u| |v|.
That analytic mappings preserve angles is very important to some people.

5. Suppose f : C→ C has a derivative at every point and f ′ (z) = 0 for all z. Show
that, as in the case of a real variable, f (z) is a constant. Generalize to an arbitrary
open connected set. Hint. Pick z0 and for arbitrary z, consider z0 + t (z− z0) where
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t ∈ [0,1] . Now consider the function of a real variable f (z0 + t (z− z0)) and consider
real and imaginary parts. You could apply the mean value theorem to these.

6. ↑ Suppose f : C→ C and f ′ exists on C. Such a function is called entire. Suppose
f is bounded. Then show f must be constant. This is Liouville’s theorem. Note
how different this is than what we see for functions of a real variable. Hint: Pick
z. Use formula 11.2 to describe f ′ (z) where γ∗R is a large circle including z on its
inside. Thus, f ′ (z) = 1

2πi
∫

γR

f (w)
(w−z)2 dw. Now use Theorem 11.1.6 to get an estimate

for | f ′ (z)| which is a constant times 1/R. However, R is arbitrary. Hence f ′ (z) = 0.
Now use the above problem.

7. ↑ Show that if p(z) is a non-constant polynomial, then there exists z0 such that
p(z0) = 0. Hint: If not, then 1/p(z) is entire. Just use the quotient rule to see it
has a derivative. Explain why it is bounded and use Liouville’s theorem to assert that
then it is a constant which it obviously isn’t. This is the shortest known proof of the
fundamental theorem of algebra.

8. Let f : C→ C be entire (has a derivative on all of C) and suppose that

max{| f (z)| : |z| ≤ R} ≤CRk.

Then show that f (z) is actually a polynomial of degree k. Hint: Recall the formula
for the derivative in terms of the Cauchy integral.

9. Let D(0,1) be the closed unit disk and let fn be analytic on and near D. Suppose also
that fn → f uniformly on D(0,1). Show that f is also analytic on B(0,1). If f is
an arbitrary continuous function defined on D(0,1), does it follow that there exists a
sequence of polynomials which converges uniformly to f on D(0,1)? In other words,
does the Weierstrass approximation theorem hold in this setting?

10. Suppose you have a sequence of functions { fn} analytic on an open set U . If they
converge uniformly to a function f , show that f is also analytic on U .

11. For n = 1,2, ... and an complex numbers, the Dirichlet series is ∑
∞
n=1

an
ns . Here s is a

complex number. Thus ns ≡ exp(s log(n)) where this refers to the principal branch
of the logarithm. Show 1

ns =
1

nRes ei ln(n) Im(s). Then show that if the an are uniformly
bounded, the Weierstrass M test applies and the Dirichlet series converges absolutely
and uniformly for Res ≥ 1+ ε for any positive ε . Explain why the function of s
is analytic for Re(s) > 1. Obtain more delicate results using the Dirichlet partial
summation formula in case ∑n |an|< ∞. Note that if all an = 1, this function is ξ (s)
the Riemann zeta function whose zeros are a great mystery.

12. Suppose f ′ exists on C and f (zn) = 0 with zn→ z where the zn are distinct complex
numbers. Show that then f (z) = 0 on C. Hint: If not, then explain why f (w) =
(w− z)m g(w) where g(z) ̸= 0. Then 0 = f (zn) = (zn− z)m g(zn) . Hence g(z) =
0, a contradiction. Thus argue the power series of f expanded about z is 0 and it
converges to f on all of C.

13. The power series for sinz,cosz converge for all z ∈ C. Using the above problem,
explain why the usual trig. identities valid for z,w real continue to hold for all com-
plex z,w. For example, sin(z+w) = sin(z)cos(w)+ cos(z)sin(w). If you allow z
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complex, explain why sin(z) cannot be bounded. Hint: Use the theorem about the
zero set having a limit point on a connected open set.

14. The functions z→ sin
(
z2
)
,z→ cos

(
z2
)
, and z→ eiz2

are all analytic functions since
the chain rule continues to hold for functions of a complex variable. This problem is
on the Fresnel integrals using contour integrals. In this case, there is no singular part
of the function. The contour to use is

x

y

Then using this contour and the integral
∫

∞

0 e−t2
dt =

√
π

2 , explain why

0 =
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
∫ r

0
ei
(

t
(

1+i√
2

))2(1+ i√
2

)
dt

=
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
∫ r

0
e−t2

(
1+ i√

2

)
dt

=
∫

γr

eiz2
dz+

∫ r

0
eix2

dx−
√

π

2

(
1+ i√

2

)
+ e(r)

Where limr→0 e(r) = 0. Now examine the first integral. Explain the following steps
and why this integral converges to 0 as r→ ∞.∣∣∣∣∫

γr

eiz2
dz
∣∣∣∣= ∣∣∣∣∫ π

4

0
ei(reit)

2
rieitdt

∣∣∣∣≤ r
∫ π

4

0
e−r2 sin2tdt =

r
2

∫ 1

0

e−r2u
√

1−u2
du

=
r
2

∫ r−(3/2)

0

1√
1−u2

du+
r
2

(∫ 1

0

1√
1−u2

)
e−(r1/2)

15. If γ : C→ C is a parametrization of a curve with γ being differentiable, one to one
on (a,b) ,a < b with continuous derivative, the length of C is defined as

sup

{
∑
P
|γ (ti)− γ (ti−1)| ,P a partition of [a,b]

}
Show this is independent of equivalent smooth parametrization and that in every case,
it equals

∫ b
a |γ ′ (t)|dt, the integral of the absolute value of the derivative.

16. Consider the following contour consisting of the orientation shown by the arrows.

γr

γR

There is a large semicircle on the top of radius R and a small one of radius r. If γ refers
to the piecewise smooth, oriented contour consisting of the two straight lines and two
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semicircles, find, using the method of residues
∫

γ
eiz

z dz. The result should depend on r
and R. Show the contour integral over γR converges to 0 as R→∞. Then find the limit
of the contour integral over γr and show it is πi in the limit as r→ 0. Then obtain
limits as r→ 0 and R→ ∞ and show that 2i

∫
∞

−∞

sinx
x ≡ 2i limR→∞

∫ R
−R

sinx
x dx = πi.

This is another way to get
∫

∞

0
sinx

x dx = π

2 .

17. Find the following improper integral.
∫

∞

−∞

cosx
1+x4 dx Hint: Use upper semicircle con-

tour and consider instead
∫

∞

−∞

eix

1+x4 dx. This is because the integral over the semicircle
will converge to 0 as R→∞ if you have eiz but this won’t happen if you use cosz be-
cause cosz will be unbounded. Just write down and check and you will see why this
happens. Thus you should use eiz

1+z4 and take real part. I think the standard calculus
techniques will not work for this horrible integral.

18. Find
∫

∞

−∞

cos(x)

(1+x2)
2 dx. Hint: Do the same as above replacing cosx with eix.

19. Consider the following contour.

x

The small semicircle has radius r and is centered at (1,0). The large semicircle has
radius R and is centered at (0,0). Use the method of residues to compute

lim
r→0

(
lim

R→∞

∫ R

r

x
1− x3 dx+

∫ r

−R

x
1− x3 dx

)
This is called the Cauchy principal value for

∫
∞

−∞

x
1−x3 dx. The integral makes no

sense in terms of a real honest integral. The function has a pole on the x axis. How-
ever, you can define such a Cauchy principal value. Rather than belabor this issue,
I will illustrate with this example. These principal value integrals occur because of
cancelation. They depend on a particular way of taking a limit. They are not as
mathematically respectable but are certainly important. They are in that general area
of finding something by taking a certain kind of symmetric limit.

20. Find
∫ 2π

0
cos(θ)

1+sin2(θ)
dθ .

21. Find
∫ 2π

0
dθ

2−sinθ
.

22. Find
∫ π/2
−π/2

dθ

2−sinθ
.

23. Suppose you have a function f (z) which is the quotient of two polynomials in which
the degree of the top is two less than the degree of the bottom and all zeros of the
denominator have imaginary part nonzero, and you consider the contour.

x
Then define

∫
γR

f (z)eiszdz in which s is real and positive. Explain why the integral
makes sense and why the part of it on the semicircle converges to 0 as R→ ∞. Use
this to find

∫
∞

−∞

eisx

k2+x2 dx, k > 0.
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24. Show using methods from real analysis that for b≥ 0,
∫

∞

0 e−x2
cos(2bx)dx =

√
π

2 e−b2

Hint: Let F (b)≡
∫

∞

0 e−x2
cos(2bx)dx−

√
π

2 e−b2
. Show F (0) = 0. Recall that∫

∞

0
e−x2

dx =
1
2
√

π.

Explain using a modification of Problem 48 on Page 226 why

F ′ (b) =
∫

∞

0
−2xe−x2

sin(2bx)dx+2b
√

π

2
e−b2

F ′ (b) = 2b
(∫

∞

0
e−x2

cos(2bx)dx+
√

π

2
e−b2

)

= 2b
(

F (b)+
√

π

2
e−b2

+

√
π

2
e−b2

)
= 2bF (b)+

√
π2be−b2

Now use the integrating factor method for solving linear differential equations from
beginning differential equations to solve the ordinary differential equation. If you
have not seen this method, it is just this. To solve y′+ f (x)y = g(x) , multiply both
sides by eF(x) where F ′ (x) = f (x) . This reduces the left side to d

dx

(
eF(x)y

)
. Thus

d
db

(
e−b2

F (b)
)
=
√

π2be−2b2
Then do

∫
db to both sides and use that F (0) = 1

2
√

π .

25. You can do the same problem as above using contour integration. For b > 0, use the
contour which goes from −a to a to a+ ib to −a+ ib to −a. Then let a→ ∞ and
show that the integral of e−z2

over the vertical parts of this contour converge to 0.
Hint: For z = x+ ib,e−z2

= e−(x2−b2+2ixb) = eb2
e−x2

(cos(2xb)+ isin(2xb)) .

26. Consider the circle of radius 1 oriented counter clockwise.
∫

γ
z−6 cos(z)dz =?

27. The circle of radius 1 is oriented counter clockwise. Evaluate
∫

γ
z−7 cos(z)dz.

28. Find
∫

∞

0
2+x2

1+x4 dx.

29. Find
∫

∞

0
x1/3

1+x2 dx.

30. Suppose f is analytic on an open set U and α ∈U. Define

g(z)≡
{ f (z)− f (α)

z−α
if z ̸= α

f ′ (α) if z = α

show that g is analytic on U .

31. Let γ∗ be a C1 oriented closed curve and let α /∈ γ∗ Then

n(γ,α)≡ 1
2πi

∫
γ∗

1
z−α

dz = m ∈ N

This is called the winding number. Hint: Now let g(t) ≡
∫ t

a1

γ ′(s)
γ(s)−α

dt. Show that
d
dt

(
e−g(t) (γ (t)−α)

)
= 0. Explain why this requires e−g(t) (γ (t)−α) is a constant.

Since γ parametrizes a closed curve, argue that g(bk) = 2mπi for an integer m.
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32. Use Problem 30 to state a theorem whose conclusion is that

f (α)n(γ∗,α) =
1

2πi

∫
γ∗

f (z)
z−α

dz.

Here γ∗ is a closed curve. This is a case of a general Cauchy integral formula for
cycles.

33. Using the open mapping theorem, show that if U is an open connected set and f is
analytic and | f | has a maximum on U , then this maximum occurs on the boundary
of U . This is called the maximum modulus theorem.

34. Use the counting zeros theorem, get an estimate for a ball centered at 0 which will
contain all zeros of p(z) = z7 + 5z5− 3z2 + z+ 5. Hint: You might compare with
q(z) = z7. You know all of its zeros. For |z| = r large enough, consider λ z7 +
(1−λ ) p(z) and λ ∈ [0,1].

35. Use the counting zeros theorem to give another proof of the fundamental theorem of
algebra. This one is even easier than the earlier one based on Liouville’s theorem,
but it uses the harder theorem about counting zeros.

36. As in the Liouville proof of the fundamental theorem of algebra, if p(z) is a non-
constant polynomial with no zero, then lim|z|→∞ (1/ |p(z)|) = 0. Then 1/ |p(z)| has
a maximum on C, say it has such a maximum at z0. Now exploit the maximum
modulus theorem of Problem 33 on balls containing z0 at the center to obtain a con-
tradiction. Provide details.

37. Rouche’s theorem considers the case where there are no poles or zeros on C (z0,r) ,
the counter clockwise oriented circle bounding B(z0,r) and finitely many zeros and
poles in B(z0,r). Such a function is called meromorphic. Rouche’s theorem says that
in the situation just described and f such a meromorphic function 1

2πi
∫

C(z0,r)
f ′(z)
f (z) dz=

N−P where N is the number of zeros counted according to multiplicity and P the
number of poles, also counted according to something which will be apparent when
this is proved. Use the proof given above for counting zeros to verify this more
general theorem. It just involves finding the residues of f ′/ f at the zeros and poles.

38. If U is an open connected subset of C and f : U → R is analytic, what can you say
about f ? Hint: You might consider the open mapping theorem.

39. Using the fundamental theorem of algebra and the partial fractions theorem of Prob-
lem 19 on Page 40, show that the result of Theorem 11.3.2 is always obtained for
rational functions. Give an example where Theorem 11.3.2 is better.

40. Show that if U is an open connected set in C and f : U → C is one to one and
analytic, then f−1 : f (U)→ U is also analytic. Really? What about f (z) = z3?
Hint: Do something like in Theorem 7.10.1. Here it may be easier because by the
open mapping theorem, you know f (U) is open so there are no endpoints to worry
about.



Chapter 12

Series and Transforms
12.1 Fourier Series

A Fourier series is an expression of the form ∑
∞
k=−∞

ckeikx where this infinite sum is un-
derstood to mean limn→∞ ∑

n
k=−n ckeikx. Obviously such a sequence of partial sums may or

may not converge at a particular value of x.
These series have been important in applied math since the time of Fourier who was an

officer in Napoleon’s army. He was interested in studying the flow of heat in cannons and
invented the concept to aid him in his study. Since that time, Fourier series and the mathe-
matical problems related to their convergence have motivated the development of modern
methods in analysis.1 From the very beginning, the fundamental question has been related
to the nature of convergence of these series. Dirichlet was the first to prove significant the-
orems on this in 1829, but questions lingered till the mid 1960’s when a problem involving
convergence of Fourier series was solved for the first time and the solution of this problem
was a big surprise.2 This chapter is on the classical theory of convergence of Fourier series
studied by Dirichlet, Riemann, and Fejer.

If you can approximate a function f with an expression of the form ∑
∞
k=−∞

ckeikx then
the function must have the property f (x+2π) = f (x) because this is true of every term in
the above series. More generally, here is a definition.

Definition 12.1.1 A function f defined on R is a periodic function of period T if
f (x+T ) = f (x) for all x.

As just explained, Fourier series are useful for representing periodic functions and no
other kind of function.There is no loss of generality in studying only functions which are
periodic of period 2π . Indeed, if f is a function which has period T , you can study this
function in terms of the function g(x)≡ f

(T x
2π

)
where g is periodic of period 2π .

Definition 12.1.2 For f ∈ R([−π,π]) and f periodic on R, define the Fourier se-
ries of f as

∞

∑
k=−∞

ckeikx, (12.1)

where
ck ≡

1
2π

∫
π

−π

f (y)e−ikydy. (12.2)

Also define the nth partial sum of the Fourier series of f by

Sn ( f )(x)≡
n

∑
k=−n

ckeikx. (12.3)

1Fourier was with Napoleon in Egypt when the Rosetta Stone was discovered and wrote about Egypt in De-
scription de l’Égypte. He was a teacher of Champollion who eventually made it possible to read Egyptian by
using the Rosetta Stone, discovered at this time. This expedition of Napoleon caused great interest in all things
Egyptian in the first part of the nineteenth century.

2The question was whether the Fourier series of a function in L2 converged almost everywhere to the function
where the term “almost everywhere” has a precise meaning. (L2 means the square of the function is integrable.)
It turned out that it did, to the surprise of many because it was known that the Fourier series of a function in L1

does not necessarily converge to the function almost everywhere, this from an example given by Kolmogorov in
the 1920’s. The problem was solved by Carleson in 1965.

279
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It may be interesting to see where this formula came from. Suppose then that f (x) =
∑

∞
k=−∞

ckeikx, multiply both sides by e−imx and take the integral
∫

π

−π
, so that∫

π

−π

f (x)e−imxdx =
∫

π

−π

∞

∑
k=−∞

ckeikxe−imxdx.

Now switch the sum and the integral on the right side even though there is absolutely no rea-
son to believe this makes any sense. Then

∫
π

−π
f (x)e−imxdx = ∑

∞
k=−∞

ck
∫

π

−π
eikxe−imxdx =

cm
∫

π

−π
1dx = 2πcm because

∫
π

−π
eikxe−imxdx = 0 if k ̸= m. It is formal manipulations of the

sort just presented which suggest that Definition 12.1.2 might be interesting.
In case f is real valued, ck = c−k and so

Sn f (x) =
1

2π

∫
π

−π

f (y)dy+
n

∑
k=1

2Re
(

ckeikx
)
.

Letting ck ≡ αk + iβ k

Sn f (x) =
1

2π

∫
π

−π

f (y)dy+
n

∑
k=1

2 [αk coskx−β k sinkx]

where ck =
1

2π

∫
π

−π
f (y)e−ikydy = 1

2π

∫
π

−π
f (y)(cosky− isinky)dy which shows that

αk =
1

2π

∫
π

−π

f (y)cos(ky)dy, β k =
−1
2π

∫
π

−π

f (y)sin(ky)dy

Therefore, letting ak = 2αk and bk =−2β k,

ak =
1
π

∫
π

−π

f (y)cos(ky)dy, bk =
1
π

∫
π

−π

f (y)sin(ky)dy

and

Sn f (x) =
a0

2
+

n

∑
k=1

ak coskx+bk sinkx (12.4)

This is often the way Fourier series are presented in elementary courses where it is only
real functions which are to be approximated. However it is easier to stick with Definition
12.1.2.

The partial sums of a Fourier series can be written in a particularly simple form which
is presented next.

Sn f (x) =
n

∑
k=−n

ckeikx =
n

∑
k=−n

(
1

2π

∫
π

−π

f (y)e−ikydy
)

eikx

=
∫

π

−π

Dn(x−y)︷ ︸︸ ︷
1

2π

n

∑
k=−n

(
eik(x−y)

)
f (y)dy≡

∫
π

−π

Dn (x− y) f (y)dy.

The function Dn (t)≡ 1
2π ∑

n
k=−n eikt is called the Dirichlet Kernel.

Theorem 12.1.3 The function Dn satisfies the following:
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1.
∫

π

−π
Dn (t)dt = 1

2. Dn is periodic of period 2π

3. Dn (t) = (2π)−1 sin(n+ 1
2 )t

sin( t
2 )

.

Proof: Part 1 is obvious because 1
2π

∫
π

−π
e−ikydy = 0 whenever k ̸= 0 and it equals 1 if

k = 0. Part 2 is also obvious because t→ eikt is periodic of period 2π since

eik(t+2π) = cos(kt +2πk)+ isin(kt +2πk) = cos(kt)+ isin(kt) = eikt

It remains to verify Part 3. Note 2πDn (t) = ∑
n
k=−n eikt = 1+2∑

n
k=1 cos(kt) . Therefore,

2πDn (t)sin
( t

2

)
= sin

( t
2

)
+2

n

∑
k=1

sin
( t

2

)
cos(kt)

= sin
( t

2

)
+

n

∑
k=1

sin
((

k+
1
2

)
t
)
− sin

((
k− 1

2

)
t
)
= sin

((
n+

1
2

)
t
)

where the easily verified trig. identity cos(a)sin(b) = 1
2 (sin(a+b)− sin(a−b)) is used

to get to the second line. This proves 3 and proves the theorem. ■
Here is a picture of the Dirichlet kernels for n = 1,2,3 and 4

-4 -2 0 2 4

0

0.5

1

1.5

Note they are not nonnegative but there is a large central positive bump which gets
larger as n gets larger.

It is not reasonable to expect a Fourier series to converge to the function at every point.
To see this, change the value of the function at a single point in (−π,π) and extend to keep
the modified function periodic. Then the Fourier series of the modified function is the same
as the Fourier series of the original function and so if pointwise convergence did take place,
it no longer does. However, it is possible to prove an interesting theorem about pointwise
convergence of Fourier series. This is done next.

12.2 Criteria for Convergence
Fourier series like to converge to the midpoint of the jump of a function under suitable
conditions. This was first shown by Dirichlet in 1829 after others had tried unsuccessfully
to prove such a result. The condition given for convergence in the following theorem is
due to Dini. [3] It is a generalization of the usual theorem presented in elementary books
on Fourier series methods. Fourier did not appreciate the difficulty of this question and
was happy to believe that the series did converge to the function in some useable sense
despite the doubts of people like Lagrange and Laplace. For over 150 years they studied
this question and major results appeared as recently as the mid 1960’s.
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It may be that the study of Fourier series and their convergence drove the development
of real analysis during the nineteenth century as much as any other topic. Dirichlet did his
work before Riemann gave the best description of the integral and it was Riemann who
gave a general theory of integration including piecewise continuous functions. Cauchy’s
integral for continuous functions was the current state of the art at the time of Dirichlet.
Thus the theorem about to be presented uses a more sophisticated theory of integration
than that which was available then.

Recall limt→x+ f (t)≡ f (x+) , and limt→x− f (t)≡ f (x−).

Theorem 12.2.1 Let f be periodic of period 2π which is in R([−π,π]). Suppose at
some x, f (x+) and f (x−) both exist and that the Dini conditions hold which are that for
small positive y,

| f (x− y)− f (x−)| ≤ Kyθ ,0 < θ ≤ 1, | f (x+ y)− f (x+)| ≤ Kyθ ,0 < θ ≤ 1

for 0 < y≤ δ , δ > 0. Then

lim
n→∞

Sn f (x) =
f (x+)+ f (x−)

2
. (12.5)

Proof: Sn f (x) =
∫

π

−π
Dn (x− y) f (y)dy. Change variables x− y→ y and use the peri-

odicity of f and Dn along with the formula for Dn (y) to write this as

Sn f (x) =
∫

π

−π

Dn (y) f (x− y)dy =
∫

π

0
Dn (y) f (x− y)dy+

∫ 0

−π

Dn (y) f (x− y)dy

=
∫

π

0
Dn (y) [ f (x− y)+ f (x+ y)]dy

=
∫

π

0

1
π

sin
((

n+ 1
2

)
y
)

sin
( y

2

) [
f (x− y)+ f (x+ y)

2

]
dy. (12.6)

since
∫

π

−π
Dn (y)dy = 1,Sn f (x)− f (x+)+ f (x−)

2 =

∫
π

0

1
π

sin
((

n+ 1
2

)
y
)

sin
( y

2

) [
f (x− y)+ f (x+ y)

2
− f (x+)+ f (x−)

2

]
dy

=
∫

π

δ

1
π

sin
((

n+
1
2

)
y
)[

f (x− y)− f (x−)+ f (x+ y)− f (x+)

2sin
( y

2

) ]
dy

+
∫

δ

0

2
π

sin
((

n+
1
2

)
y
)

y/2
sin
( y

2

) [ f (x− y)− f (x−)+ f (x+ y)− f (x+)

2y

]
dy (12.7)

In the first integral of 12.7, the function in [ ] is in L1 ([δ ,π]) because sin(y/2) is
bounded away from 0. Therefore, the first of these integrals converges to 0 by the Riemann
Lebesgue theorem. In the second integral, |[ ]| ≤ Ky1−θ and y/2

sin( y
2 )

is bounded on [0,δ ] so

this function multiplying sin
((

n+ 1
2

)
y
)

is in L1 (0,δ ) . Therefore, the second integral also
converges to 0. ■

The following corollary is obtained immediately from the above proof with minor mod-
ifications.
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Corollary 12.2.2 Let f be a periodic function of period 2π which is an element of
R([−π,π]). Suppose at some x, the function

y→
∣∣∣∣ f (x− y)+ f (x+ y)−2s

y

∣∣∣∣ (12.8)

is in R((0,π]). Then limn→∞ Sn f (x) = s.

As pointed out by Apostol [3], this is a very remarkable result because even though the
Fourier coeficients depend on the values of the function on all of [−π,π], the convergence
properties depend in this theorem on very local behavior of the function. There are whole
books based on Fourier series such as Trigonometric Series by Zygmund [27] which ap-
peared first in 1935 and there is a lot more in this book than the short introduction to the
topic presented here.

There is another easy to check condition which implies convergence to the midpoint of
the jump. It was shown above that∣∣∣∣Sn f (x)− f (x+)+ f (x−)

2

∣∣∣∣=∣∣∣∣∣
∫

π

0

1
π

sin
((

n+ 1
2

)
y
)

sin
( y

2

) [
f (x− y)− f (x−)+ f (x+ y)− f (x+)

2

]
dy

∣∣∣∣∣
=
∫

δ

0

2
π

sin
((

n+ 1
2

)
y
)

y
y/2

sin(y/2)

[
f (x− y)− f (x−)+ f (x+ y)− f (x+)

2

]
dy+

∫
π

δ

1
π

sin
((

n+
1
2

)
y
)[

f (x− y)− f (x−)+ f (x+ y)− f (x+)

2sin
( y

2

) ]
dy

In the second integral, the expression in [ ] is in L1 ([δ ,π]) and so, by the Riemann
Lebesgue lemma, this integral converges to 0.

If you know that f has finite total variation in [x−δ ,x+δ ] , then you could use Lemma
10.2.7 to conclude that the first integral converges, as n→ ∞, to g(0+) where g(y) =

y/2
sin(y/2)

f (x−y)− f (x−)+ f (x+y)− f (x+)
2 so that g(0+) = 0. Thus, there is another corollary.

Corollary 12.2.3 Let f be a periodic function of period 2π which is an element of
R([−π,π]). Suppose at some x, f (x+) and f (x−) both exist and f is of bounded variation
on [x−δ ,x+δ ] for some δ > 0. Then

lim
n→∞

Sn f (x) =
f (x+)+ f (x−)

2
. (12.9)

There are essentially two conditions which yield convergence to the mid point of the
jump, the Dini conditions and the Jordan condition which is on finite total variation. You
have to have something of this sort. If you only know you have continuity from the right
and the left, you don’t necessarily get convergence to the midpoint of the jump. At least
this is so for the Fourier series. If you use the Ceasaro means, this kind of convergence
takes place without either of these two technical conditions. The study of Ceasaro means
is associated with Fejer whose work came much later in early 1900’s. This is considered
later.
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It might be of interest to note that in the argument for convergence given earlier in
Lemma 10.2.7, h was determined by |g(t)−g(0+)| small enough. If you have the case
of a continuous function defined on a closed and bounded interval, |g(t)−g(s)| would be
small enough whenever |t− s| is suitably small independent of the choice of s thanks to
uniform continuity. When the above corollary is applied to convergence of Fourier series,
one massages things as above to reduce to the kind of thing given in Lemma 10.2.7 as
shown above and a single h will then suffice for all the points at once. Once h has been
determined, the convergence of the other terms in Lemma 10.2.7 for such a continuous
periodic function of bounded variation will not depend on the point and so this argument
ends up showing that one has uniform convergence of the Fourier series to the function if
the periodic function is of bounded variation and continuous on every interval.

12.3 Integrating and Differentiating Fourier Series
First here is a review of what it means for a function to be piecewise continuous.

Definition 12.3.1 Let f be a function defined on [a,b] . It is called piecewise contin-
uous if there is a partition of [a,b] ,{x0, · · · ,xn} such that on [xk−1,xk] there is a continuous
function gk such that f (x) = gk (x) for all x ∈ (xk−1,xk).

You can typically integrate Fourier series term by term and things will work out accord-
ing to your expectations. More precisely, if the Fourier series of f is ∑

∞
k=−∞

akeikx then it
will be true that

F (x)≡
∫ x

−π

f (t)dt = lim
n→∞

n

∑
k=−n

ak

∫ x

−π

eiktdt

= a0 (x+π)+ lim
n→∞

n

∑
k=−n,k ̸=0

ak

(
eikx

ik
− (−1)k

ik

)
.

I shall show this is true for the case where f is an arbitrary 2π periodic function which is
piecewise continuous according to the above definition. However, with a better theory of
integration, it all works for much more general functions than these. It is limited here to
a simpler case because we don’t have a very sophisticated theory of integration. With the
Lebesgue theory of integration, all restrictions vanish. It suffices to consider very general
functions with no assumptions of continuity. This is still a remarkable result however, even
with the restriction to piecewise continuous functions.

Note that it is not necessary to assume anything about the function f being the limit of
its Fourier series. Let

G(x)≡ F (x)−a0 (x+π) =
∫ x

−π

( f (t)−a0)dt

Then G equals 0 at−π and π because 2πa0 =
∫

π

−π
f (t)dt. Therefore, the periodic extension

of G, still denoted as G, is continuous. Also

|G(x)−G(x1)| ≤
∣∣∣∣∫ x

x1

Mdt
∣∣∣∣≤M |x− x1|

where M is an upper bound for | f (t)−a0|. Thus the Dini condition of Corollary 12.2.1
holds. Therefore for all x ∈ R,

G(x) =
∞

∑
k=−∞

Akeikx (12.10)
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where Ak =
1

2π

∫
π

−π
G(y)eikydy. Now from 12.10 and the definition of the Fourier coeffi-

cients for f ,

G(π) = F (π)−a02π = 0 = A0 + lim
n→∞

n

∑
k=−n,k ̸=0

Ak (−1)k (12.11)

and so

A0 =− lim
n→∞

n

∑
k=−n,k ̸=0

Ak (−1)k ≡−
∞

∑
k=−∞,k ̸=0

Ak (−1)k (12.12)

Next consider Ak for k ̸= 0.

Ak ≡ 1
2π

∫
π

−π

G(x)e−ikxdx≡ 1
2π

∫
π

−π

∫ x

−π

( f (t)−a0)dte−ikxdx

=
1

2π

∫
π

−π

e−ikx
∫ x

−π

( f (t)−a0)dtdx

Now let ψ (x) ≡
∫ x
−π

( f (t)−a0)dt and φ k (x) =
e−ikx

−ik . Then the above integral is of the
form 1

2π

∫
π

−π
ψ (x)dφ k (x) . Since ψ (π)φ k (π) = 0 = ψ (−π)φ k (−π) , integration by parts,

Theorem 9.4.1, says that the above equals

− 1
2π

∫
π

−π

φ k (x)dψ (x) =
1

2π

∫
π

−π

e−ikx

ik
dψ (x)

Use Corollary 9.3.18 to write as a sum of finitely many integrals

n

∑
k=1

∫ xk

xk−1

e−ikx

ik
dψ (x) .

It follows from Proposition 9.4.3 that this is

Ak =
1

2π

∫
π

−π

e−ikx

ik
( f (x)−a0)dx =

1
ik

1
2π

∫
π

−π

f (x)e−ikxdx≡ ak

ik

Thus this shows from 12.12, that for all x,

G(x) =
∞

∑
k=−∞,k ̸=0

ak

ik
eikx +A0, A0 =−

∞

∑
k=−∞,k ̸=0

Ak (−1)k

and so, ∫ x

−π

f (t)dt−
∫ x

−π

a0 =
∞

∑
k=−∞,k ̸=0

ak

ik
eikx− ak

ik
eik(−π)

which shows that ∫ x

−π

f (t)dt =
∫ x

−π

a0 +
∞

∑
k=−∞,k ̸=0

ak

∫ x

−π

eiktdt

This proves the following theorem.

Theorem 12.3.2 Let f be 2π periodic and piecewise continuous. Then∫ x

−π

f (t)dt =
∫ x

−π

a0dt + lim
n→∞

n

∑
k=−n,k ̸=0

ak

∫ x

−π

eiktdt

where ak are the Fourier coefficients of f . This holds for all x ∈ R.
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Example 12.3.3 Let f (x) = x for x ∈ [−π,π) and extend f to make it 2π periodic. Then

the Fourier coefficients of f are a0 = 0, ak =
(−1)ki

k . Therefore,

1
2π

∫
π

−π

te−ikt =
i
k

cosπk,
∫ x

−π

tdt =
1
2

x2− 1
2

π
2 = lim

n→∞

n

∑
k=−n,k ̸=0

(−1)k i
k

∫ x

−π

eiktdt

= lim
n→∞

n

∑
k=−n,k ̸=0

(−1)k i
k

(
sinxk

k
+ i
−cosxk+(−1)k

k

)
For fun, let x = 0 and conclude − 1

2 π2 =

lim
n→∞

n

∑
k=−n,k ̸=0

(−1)k i
k

(
i
−1+(−1)k

k

)
= lim

n→∞

n

∑
k=−n,k ̸=0

(−1)k+1

k

(
−1+(−1)k

k

)

= lim
n→∞

2
n

∑
k=1

(−1)k +(−1)
k2 =

∞

∑
k=1

−4

(2k−1)2

and so π2

8 = ∑
∞
k=1

1
(2k−1)2

Of course it is not reasonable to suppose that you can differentiate a Fourier series term
by term and get good results.

Consider the series for f (x) = 1 if x ∈ (0,π] and f (x) = −1 on (−π,0) with f (0) =
0. In this case a0 = 0. ak =

1
2π

(∫
π

0 e−iktdt−
∫ 0
−π

e−iktdt
)
= i

π

cosπk−1
k so the Fourier se-

ries is ∑k ̸=0

(
(−1)k−1

πk

)
ieikx.What happens if you differentiate it term by term? It gives

∑k ̸=0−
(−1)k−1

π
eikx which fails to converge anywhere because the kth term fails to converge

to 0. This is in spite of the fact that f has a derivative away from 0.
However, it is possible to prove some theorems which let you differentiate a Fourier

series term by term. Here is one such theorem.

Theorem 12.3.4 Suppose for x ∈ [−π,π] f (x) =
∫ x
−π

f ′ (t)dt + f (−π) and f ′ (t)
is piecewise continuous. Denoting by f the periodic extension of the above, then if f (x) =
∑

∞
k=−∞

akeikx it follows the Fourier series of f ′ is ∑
∞
k=−∞

akikeikx.

Proof: Since f ′ is piecewise continuous, 2π periodic it follows from Theorem 12.3.2

f (x)− f (−π) =
∞

∑
k=−∞

bk

(∫ x

−π

eiktdt
)

where bk is the kth Fourier coefficient of f ′. Thus bk =
1

2π

∫
π

−π
f ′ (t)e−iktdt. Breaking the

integral into pieces if necessary, and integrating these by parts yields finally

bk =
1

2π

[
f (t)e−ikt |π−π + ik

∫
π

−π

f (t)e−iktdt
]
= ik

1
2π

∫
π

−π

f (t)e−iktdt = ikak

where ak is the Fourier coefficient of f . Since f is periodic of period 2π, the boundary term
vanishes. It follows the Fourier series for f ′ is ∑

∞
k=−∞

ikakeikx as claimed. ■
Note the conclusion of this theorem is only about the Fourier series of f ′. It does not say

the Fourier series of f ′ converges pointwise to f ′. However, if f ′ satisfies a Dini condition,
then this will also occur. For example, if f ′ has a bounded derivative at every point, then by
the mean value theorem | f ′ (x)− f ′ (y)| ≤ K |x− y| and this is enough to show the Fourier
series converges to f ′ (x) thanks to Corollary 12.2.1.
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12.4 Ways of Approximating Functions
Given above is a theorem about Fourier series converging pointwise to a periodic function
or more generally to the mid point of the jump of the function. Notice that some sort of
smoothness of the function approximated was required, the Dini condition. It can be shown
that if this sort of thing is not present, the Fourier series of a continuous periodic function
may fail to converge to it in a very spectacular manner. In fact, Fourier series don’t do
very well at converging pointwise. However, there is another way of converging at which
Fourier series cannot be beat. It is mean square convergence.

Definition 12.4.1 Let f be a function defined on an interval, [a,b] . Then a se-
quence, {gn} of functions is said to converge uniformly to f on [a,b] if

lim
n→∞

sup{| f (x)−gn (x)| : x ∈ [a,b]}= 0.

The expression sup{| f (x)−gn (x)| : x ∈ [a,b]} is sometimes written3 as || f −gn||0 . More
generally, if f is a function,

∥ f∥0 ≡ sup{| f (x)| : x ∈ [a,b]}

The sequence is said to converge mean square to f if

lim
n→∞
∥ f −gn∥2 ≡ lim

n→∞

(∫ b

a
| f −gn|2 dx

)1/2

= 0

12.5 Uniform Approximation with Trig. Polynomials
It turns out that if you don’t insist the ak be the Fourier coefficients, then every continuous
2π periodic function θ → f (θ) can be approximated uniformly with a Trig. polynomial
of the form pn (θ)≡ ∑

n
k=−n akeikθ . This means that for all ε > 0 there exists a pn (θ) such

that ∥ f − pn∥0 < ε . Here ∥ f∥0 ≡max{| f (x)| : x ∈ R} .

Definition 12.5.1 Recall the nth partial sum of the Fourier series Sn f (x) is given
by

Sn f (x) =
∫

π

−π

Dn (x− y) f (y)dy =
∫

π

−π

Dn (t) f (x− t)dt

where Dn (t) is the Dirichlet kernel, Dn (t) = (2π)−1 sin(n+ 1
2 )t

sin( t
2 )

The nth Fejer mean, σn f (x)

is the average of the first n of the Sn f (x). Thus

σn+1 f (x)≡ 1
n+1

n

∑
k=0

Sk f (x) =
∫

π

−π

(
1

n+1

n

∑
k=0

Dk (t)

)
f (x− t)dt

The Fejer kernel is Fn+1 (t)≡ 1
n+1 ∑

n
k=0 Dk (t) .

As was the case with the Dirichlet kernel, the Fejer kernel has some properties.

3There is absolutely no consistency in this notation. It is often the case that ||·||0 is what is referred to in this
definition as ||·||2 . Also ||·||0 here is sometimes referred to as ||·||

∞
. Sometimes ||·||2 referrs to a norm which

involves derivatives of the function.



288 CHAPTER 12. SERIES AND TRANSFORMS

Lemma 12.5.2 The Fejer kernel has the following properties.

1. Fn+1 (t) = Fn+1 (t +2π)

2.
∫

π

−π
Fn+1 (t)dt = 1

3.
∫

π

−π
Fn+1 (t) f (x− t)dt = ∑

n
k=−n bkeikθ for a suitable choice of bk.

4. Fn+1 (t) =
1−cos((n+1)t)

4π(n+1)sin2( t
2 )
, Fn+1 (t)≥ 0,Fn (t) = Fn (−t) .

5. For every δ > 0, limn→∞ sup{Fn+1 (t) : π ≥ |t| ≥ δ}= 0. In fact, for

|t| ≥ δ ,Fn+1 (t)≤
2

(n+1)sin2
(

δ

2

)
4π

.

Proof: Part 1.) is obvious because Fn+1 is the average of functions for which this is
true.

Part 2.) is also obvious for the same reason as Part 1.). Part 3.) is obvious because it is
true for Dn in place of Fn+1 and then taking the average yields the same sort of sum.

The last statements in 4.) are obvious from the formula which is the only hard part of
4.).

Fn+1 (t) =
1

(n+1)sin
( t

2

)
2π

n

∑
k=0

sin
((

k+
1
2

)
t
)

=
1

(n+1)sin2 ( t
2

)
2π

n

∑
k=0

sin
((

k+
1
2

)
t
)

sin
( t

2

)
Using the identity sin(a)sin(b) = cos(a−b)−cos(a+b) with a =

(
k+ 1

2

)
t and b = t

2 , it
follows

Fn+1 (t) =
1

(n+1)sin2 ( t
2

)
4π

n

∑
k=0

(cos(kt)− cos(k+1) t) =
1− cos((n+1) t)
(n+1)sin2 ( t

2

)
4π

which completes the demonstration of 4.).
Next consider 5.). Since Fn+1 is even it suffices to show

lim
n→∞

sup{Fn+1 (t) : π ≥ t ≥ δ}= 0.

For the given t,

Fn+1 (t)≤
1− cos((n+1) t)

(n+1)sin2
(

δ

2

)
4π

≤ 2

(n+1)sin2
(

δ

2

)
4π

which shows 5.). This proves the lemma.
Here is a picture of the Fejer kernels Fn+1(t) for n = 1,2,3,4.
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Note how these kernels are nonnegative, unlike the Dirichlet kernels. Also there is
a large bump in the center which gets increasingly large as n gets larger. The fact these
kernels are nonnegative is what is responsible for the superior ability of the Fejer means to
approximate a continuous function.

Theorem 12.5.3 Let f be a continuous and 2π periodic function. Then

lim
n→∞
|| f −σn+1 f ||0 = 0.

Proof: Let ε > 0 be given. Then by part 2. of Lemma 12.5.2,

| f (x)−σn+1 f (x)|=
∣∣∣∣∫ π

−π

f (x)Fn+1 (y)dy−
∫

π

−π

Fn+1 (y) f (x− y)dy
∣∣∣∣

=

∣∣∣∣∫ π

−π

( f (x)− f (x− y))Fn+1 (y)dy
∣∣∣∣≤ ∫ π

−π

| f (x)− f (x− y)|Fn+1 (y)dy

=
∫

δ

−δ

| f (x)− f (x− y)|Fn+1 (y)dy+
∫

π

δ

| f (x)− f (x− y)|Fn+1 (y)dy

+
∫ −δ

−π

| f (x)− f (x− y)|Fn+1 (y)dy

Since Fn+1 is even and | f | is continuous and periodic, hence bounded by some constant M
the above is dominated by

≤
∫

δ

−δ

| f (x)− f (x− y)|Fn+1 (y)dy+4M
∫

π

δ

Fn+1 (y)dy

Now choose δ such that for all x, it follows that if |y| < δ then | f (x)− f (x− y)| < ε/2.
This can be done because f is uniformly continuous on [−π,π] by Theorem 6.7.2 on Page
114. Since it is periodic, it must also be uniformly continuous on R. (why?) Therefore, for
this δ , this has shown that for all x, | f (x)−σn+1 f (x)| ≤ ε/2+4M

∫
π

δ
Fn+1 (y)dy and now

by Lemma 12.5.2 it follows

|| f −σn+1 f ||0 ≤ ε/2+
8Mπ

(n+1)sin2
(

δ

2

)
4π

< ε

provided n is large enough. ■

12.6 Mean Square Approximation
The partial sums of the Fourier series of f do a better job approximating f in the mean
square sense than any other linear combination of the functions, eikθ for |k| ≤ n. This will
be shown next. It is nothing but a simple computation. Recall the Fourier coefficients are

ak =
1

2π

∫
π

−π

f (θ)e−ikθ dθ

Also recall that ∫
π

−π

eikθ e−ilθ dθ =

{
2π if l = k
0 if l ̸= k
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Then using this fact as needed, consider the following computation in which I will try to
choose bk to make ∫

π

−π

∣∣∣∣∣ f (θ)− n

∑
k=−n

bkeikθ

∣∣∣∣∣
2

dθ (12.13)

as small as possible. Remember that |z|2 = zz̄ whenever z is a complex number. Using this
and doing routine computations,∫

π

−π

∣∣∣∣∣ f (θ)− n

∑
k=−n

bkeikθ

∣∣∣∣∣
2

dθ

=
∫

π

−π

| f (θ)|2 dθ −2Re
∫

π

−π

n

∑
k=−n

f (θ)bkeiθ dθ +2π

n

∑
k=−n
|bk|2

=
∫

π

−π

| f (θ)|2 dθ −2(2π)Re
n

∑
k=−n

akbk +2π

n

∑
k=−n
|bk|2

Note that if bk = ak, this would equal∫
π

−π

| f (θ)|2 dθ −2(2π)
n

∑
k=−n
|ak|2 +2π

n

∑
k=−n
|ak|2 =

∫
π

−π

| f (θ)|2 dθ −2π

n

∑
k=−n
|ak|2

In the general case, it follows from the Cauchy Schwarz inequality,

≥
∫

π

−π

| f (θ)|2 dθ −2(2π)

(
n

∑
k=−n
|ak|2

)1/2( n

∑
k=−n
|bk|2

)1/2

+2π

n

∑
k=−n
|bk|2

≥
∫

π

−π

| f (θ)|2 dθ −2π

(
n

∑
k=−n
|ak|2 +

n

∑
k=−n
|bk|2

)
+2π

n

∑
k=−n
|bk|2

=
∫

π

−π

| f (θ)|2 dθ −2π

n

∑
k=−n
|ak|2

Therefore, the expression in 12.13 is minimized when bk = ak. We also observe the fol-
lowing fundamental inequality. For ak the Fourier coefficients,∫

π

−π

∣∣∣∣∣ f (θ)− n

∑
k=−n

akeikθ

∣∣∣∣∣
2

dθ ≡
∫

π

−π

| f (θ)−Sn f (θ)|2 dθ

=
∫

π

−π

| f (θ)|2 dθ −2π

n

∑
k=−n
|ak|2 ≥ 0

so this yields Parseval’s inequality, an important inequality involving the Fourier coeffi-
cients, 1

2π

∫
π

−π
| f (θ)|2 dθ ≥ ∑

n
k=−n |ak|2. This has proved most of the following approxi-

mation theorem.

Theorem 12.6.1 Let αn f (x) denote any linear combination of the functions θ →
eikθ for −n≤ k ≤ n. Then∫

π

−π

| f −αn f |2 dx≥
∫

π

−π

| f −Sn f |2 dx

Also,
∫

π

−π
|Sn f |2 dx≤

∫
π

−π
| f |2 dx.
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Proof: It only remains to verify the last inequality. However, a short computation shows
that

∫
π

−π
|Sn f |2 dx = 2π ∑

n
k=−n |ak|2 ≤

∫
π

−π
| f (θ)|2 dθ . ■

Now it is easy to prove the following fundamental theorem.

Theorem 12.6.2 Let f ∈ R([−π,π]) and it is periodic of period 2π . Then

lim
n→∞

∫
π

−π

| f −Sn f |2 dx = 0.

Proof: First assume f is continuous and 2π periodic. Then by Theorem 12.6.1,∫
π

−π

| f −Sn f |2 dx ≤
∫

π

−π

| f −σn+1 f |2 dx

≤
∫

π

−π

∥ f −σn+1 f∥2
0 dx = 2π ∥ f −σn+1 f∥2

0

and the last expression converges to 0 by Theorem 12.5.3. Here σn+1 f is the Ceasaro mean
of f .

Next suppose f ∈ R([−π,π]). By Lemma 10.1.2, there is h with |h| ≤ | f |, h continuous
and h equal to 0 at the ±π and

∫
π

−π
| f −h|2 dx < ε. Since h vanishes at the endpoints, if

h is extended off [−π,π] to be 2π periodic, it follows the resulting function, still denoted
by h, is continuous. Then using the inequality (For a better inequality, see Problem 2.)
(a+b+ c)2 ≤ 4

(
a2 +b2 + c2

)
,∫

π

−π

| f −Sn f |2 dx =
∫

π

−π

(| f −h|+ |h−Snh|+ |Snh−Sn f |)2 dx

≤ 4
∫

π

−π

(
| f −h|2 + |h−Snh|2 + |Snh−Sn f |2

)
dx

≤ 4ε +4
∫

π

−π

|h−Snh|2 dx+4
∫

π

−π

|Sn (h− f )|2 dx

By Theorem 12.6.1, this is dominated by ≤ 8ε + 4
∫

π

−π
|h−Snh|2 dx and by the first part,

the last term converges to 0. Since ε is arbitrary, this proves the theorem. ■

12.7 Exercises
1. Suppose f has infinitely many derivatives and is also periodic with period 2π . Let

the Fourier series of f be ∑
∞
k=−∞

akeikθ . Show that

lim
k→∞

kmak = lim
k→∞

kma−k = 0

for every m ∈ N.

2. The proof of Theorem 12.6.2 used the inequality (a+b+ c)2 ≤ 4
(
a2 +b2 + c2

)
whenever a,b and c are nonnegative numbers. In fact the 4 can be replaced with
3. Show this is true.

3. Let f be a continuous function defined on [−π,π]. Show there exists a polynomial
p such that ||p− f || < ε where ∥g∥ ≡ sup{|g(x)| : x ∈ [−π,π]} . Extend this result



292 CHAPTER 12. SERIES AND TRANSFORMS

to an arbitrary interval. This is another approach to the Weierstrass approximation
theorem. Hint: First find a linear function ax+b = y such that f −y has the property
that it has the same value at both ends of [−π,π]. Therefore, you may consider this
as the restriction to [−π,π] of a continuous periodic function F . Now find a trig
polynomial, σ (x) ≡ a0 +∑

n
k=1 ak coskx+ bk sinkx such that ∥σ −F∥ < ε

3 . Recall
12.4. Now consider the power series of the trig functions making use of the error
estimate for the remainder after m terms.

4. The inequality established above,

2π

n

∑
k=−n
|ak|2 ≤

∫
π

−π

|Sn f (θ)|2 dθ ≤
∫

π

−π

| f (θ)|2 dθ

is called Bessel’s inequality. Use this inequality to give an easy proof that for all
f ∈ R([−π,π]) , limn→∞

∫
π

−π
f (x)einxdx = 0. Recall that in the Riemann Lebesgue

lemma | f | ∈ R((a,b]) so while this exercise is easier, it lacks the generality of the
earlier proof.

5. Let f (x) = x for x ∈ (−π,π) and extend to make the resulting function defined on
R and periodic of period 2π . Find the Fourier series of f . Verify the Fourier series
converges to the midpoint of the jump and use this series to find a nice formula for
π

4 . Hint: For the last part consider x = π

2 .

6. Let f (x) = x2 on (−π,π) and extend to form a 2π periodic function defined on R.
Find the Fourier series of f . Now obtain a famous formula for π2

6 by letting x = π .

7. Let f (x) = cosx for x∈ (0,π) and define f (x)≡−cosx for x∈ (−π,0). Now extend
this function to make it 2π periodic. Find the Fourier series of f .

8. Suppose f ,g ∈ R([−π,π]). Show 1
2π

∫
π

−π
f gdx = ∑

∞
k=−∞

αkβ k, where αk are the
Fourier coefficients of f and β k are the Fourier coefficients of g.

9. Suppose f (x) = ∑
∞
k=1 ak sinkx and that the convergence is uniform. Recall some-

thing like this holds for power series. Is it reasonable to suppose that f ′ (x) =
∑

∞
k=1 akk coskx? Explain.

10. Suppose |uk (x)| ≤ Kk for all x ∈ D where

∞

∑
k=−∞

Kk = lim
n→∞

n

∑
k=−n

Kk < ∞.

Show that ∑
∞
k=−∞

uk (x) converges converges uniformly on D in the sense that for all
ε > 0, there exists N such that whenever n > N,∣∣∣∣∣ ∞

∑
k=−∞

uk (x)−
n

∑
k=−n

uk (x)

∣∣∣∣∣< ε

for all x ∈ D. This is called the Weierstrass M test. The earlier version only dealt
with sums in one direction.
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11. Suppose f is a differentiable function of period 2π and suppose that both f and f ′

are in R([−π,π]) such that for all x ∈ (−π,π) and y sufficiently small,

f (x+ y)− f (x) =
∫ x+y

x
f ′ (t)dt.

Show that the Fourier series of f converges uniformly to f . Hint: First show using
the Dini criterion that Sn f (x)→ f (x) for all x. Next let ∑

∞
k=−∞

akeikx be the Fourier
series for f . Then from the definition of ak, show that for k ̸= 0,ak =

1
ik a′k where

a′k is the Fourier coefficient of f ′. Now use the Bessel’s inequality to argue that

∑
∞
k=−∞

∣∣a′k∣∣2 < ∞ and then show this implies ∑ |ak| < ∞. You might want to use
the Cauchy Schwarz inequality in Theorem 2.15.1 to do this part. Then using the
version of the Weierstrass M test given in Problem 10 obtain uniform convergence
of the Fourier series to f .

12. Let f be a function defined on R. Then f is even if f (θ) = f (−θ) for all θ ∈ R.
Also f is called odd if for all θ ∈ R, − f (θ) = f (−θ). Now using the Weier-
strass approximation theorem show directly that if h is a continuous even 2π periodic
function, then for every ε > 0 there exists an m and constants, a0, · · · ,am such that∣∣h(θ)−∑

m
k=0 ak cosk (θ)

∣∣ < ε for all θ ∈ R. Hint: Note the function arccos is con-
tinuous and maps [−1,1] onto [0,π] . Using this show you can define g a continuous
function on [−1,1] by g(cosθ) = h(θ) for θ on [0,π]. Now use the Weierstrass
approximation theorem on [−1,1].

13. Show that if f is any odd 2π periodic function, then its Fourier series can be simpli-
fied to an expression of the form ∑

∞
n=1 bn sin(nx) and also f (mπ) = 0 for all m ∈ N.

14. Consider the symbol ∑
∞
k=1 an. The infinite sum might not converge. Summability

methods are systematic ways of assigning a number to such a symbol. The nth

Ceasaro mean σn is defined as the average of the first n partial sums of the se-
ries. Thus σn ≡ 1

n ∑
n
k=1 Sk where Sk ≡ ∑

k
j=1 a j. Show that if ∑

∞
k=1 an converges then

limn→∞ σn also exists and equals the same thing. Next find an example where, al-
though ∑

∞
k=1 an fails to converge, limn→∞ σn does exist. This summability method is

called Ceasaro summability. Recall the Fejer means were obtained in just this way.

15. Modify Theorem 12.5.3 to consider the case of a piecewise continuous function f .
Show that at every x, σn+1 ( f )(x)→ f (x+)− f (x−)

2 . This requires no extra conditions.
Piecewise continuous is enough.

16. Let 0 < r < 1 and for f a periodic function of period 2π where f ∈ R([−π,π]) ,
consider Ar f (θ) ≡ ∑

∞
k=−∞

r|k|akeikθ where the ak are the Fourier coefficients of f .
Show that if f is continuous, then limr→1−Ar f (θ) = f (θ) . Hint: You need to find
a kernel and write as the integral of the kernel convolved with f . Then consider
properties of this kernel as was done with the Fejer kernel. In carrying out the details,
you need to verify the convergence of the series is uniform in some sense in order to
switch the sum with an integral.

17. In the above problem, if f is piecewise continuous, can you show that convergence
happens to the midpoint of the jump?
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18. In the formula for the Bernstein polynomials, suppose f (0) = f (1) = 0. Show that
pn (0) = pn (1) = 0. Now if f is continuous on R, 2π periodic, and f (−π) = f (π) ,
show there is a sequence of periodic continuous functions fn such that fn is a polyno-
mial on (−π,π) and fn (−π) = f (π) such that limn→∞ ∥ f − fn∥∞

= 0. Explain why
fn satisfies an appropriate Dini condition at every point and hence limm→∞ Sm fn (x) =
fn (x) where Sm fn is the mth partial sum for the Fourier series of fn.

12.8 The Fourier Transform
The Fourier transform is very useful in applications. It is essentially a characteristic func-
tion in probability for example. These completely characterize probability measures. It is
used in many other places also. To do it right, you really ought to be using the Lebesgue
integral, but this has not been discussed yet so the presentation ends up being a little fussier
than it would be if it were based on a better integral.

Definition 12.8.1 For f Riemann integrable on finite intervals, the Fourier trans-
form is defined by

F f (t)≡ lim
R→∞

1√
2π

∫ R

−R
e−itx f (x)dx

whenever this limit exists. Of course this happens if f ∈ L1 (R) thanks to Lemma 10.0.4.
The inverse Fourier transform is defined the same way except you delete the minus sign in
the complex exponential.

F−1 f (t)≡ lim
R→∞

1√
2π

∫ R

−R
eitx f (x)dx

Does it deserve to be called the “inverse” Fourier transform? This question will be
explored somewhat below.

The next theorem justifies the terminology above which defines F−1 and calls it the
inverse Fourier transform. Roughly it says that the inverse Fourier transform of the Fourier
transform equals the mid point of the jump. Thus if the original function is continuous, it
restores the original value of this function. Surely this is what you would want by calling
something the inverse Fourier transform.

Now for certain special kinds of functions, the Fourier transform is indeed in L1 and
one can show that it maps this special kind of function to another function of the same
sort. This can be used as the basis for a general theory of Fourier transforms. However, the
following does indeed give adequate justification for the terminology that F−1 is called the
inverse Fourier transform.

Theorem 12.8.2 Let g ∈ L1 (R) and suppose g is locally Holder continuous from
the right and from the left at x as in 10.8 and 10.9, or the Jordan condition which says that
g is of finite total variation on [x−δ ,x+δ ] for some δ > 0. Then

lim
R→∞

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt =
g(x+)+g(x−)

2
.

Proof: Note that∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt =
∫

∞

−∞

e−ityg(y)dy
∫ R

−R
eixtdt

=
∫

∞

−∞

e−ityg(y)
∫ R

−R
eixtdydt
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One merely takes a constant outside the integral and then moves a constant inside an inte-
gral. Consider the following manipulations.

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt =

1
2π

∫
∞

−∞

∫ R

−R
eixte−ityg(y)dtdy =

1
2π

∫
∞

−∞

∫ R

−R
ei(x−y)tg(y)dtdy

=
1

2π

∫
∞

−∞

g(y)
(∫ R

0
ei(x−y)tdt +

∫ R

0
e−i(x−y)tdt

)
dy

=
1

2π

∫
∞

−∞

g(y)
(∫ R

0
2cos((x− y) t)dt

)
dy

=
1
π

∫
∞

−∞

g(y)
sinR(x− y)

x− y
dy =

1
π

∫
∞

−∞

g(x− y)
sinRy

y
dy

=
1
π

∫
∞

0
(g(x− y)+g(x+ y))

sinRy
y

dy

=
2
π

∫
∞

0

(
g(x− y)+g(x+ y)

2

)
sinRy

y
dy

From Theorem 10.2.5 or Corollary 10.2.8,

lim
R→∞

1
2π

∫ R

−R
eixt
∫

∞

−∞

e−ityg(y)dydt

= lim
R→∞

2
π

∫
∞

0

(
g(x− y)+g(x+ y)

2

)
sinRy

y
dy =

g(x+)+g(x−)
2

.■

Also we have the Fourier cosine formula. This is interesting because you might have a
function which is not periodic so there would be no hope of representing the function as a
Fourier series but this next theorem says you can represent it in terms of a Fourier integral.
It is the Fourier integral theorem.

Theorem 12.8.3 Let f be piecewise continuous on every finite interval and∫
∞

−∞

| f (y)|dy < ∞

and let x ∈ (−∞,∞) satisfy the conditions 10.8 and 10.9 or the Jordan condition that f is
of finite total variation on [x−δ ,x+δ ] for some δ > 0. Then

lim
R→∞

1
π

∫ R

0

∫
∞

−∞

cos(t (x− y)) f (y)dydt =
f (x+)+ f (x−)

2
(12.14)

Proof: Consider the following:

1
π

∫ R

0

∫
∞

−∞

cos(t (x− y)) f (y)dydt =
1
π

∫
∞

−∞

∫ R

0
cos(t (x− y)) f (y)dtdy
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The justification for this interchange of integration follows as earlier. You can discount∫
|y|>M | f (y)|dy for M large enough and then use Fubini’s theorem from Theorem 9.9.3 on

Page 216 to interchange the order. It is the same argument in Lemma 10.1.1.

=
1
π

∫
∞

−∞

∫ R

0
cos(t (x− y)) f (y)dtdy =

1
π

∫
∞

−∞

f (y)
∫ R

0
cos(t (x− y))dtdy

=
1
π

∫
∞

−∞

f (y)
sin(R(x− y))

x− y
dy =

1
π

∫
∞

−∞

f (x−u)
sin(Ru)

u
dy

=
1
π

∫
∞

0
f (x−u)

sin(Ru)
u

dy+
1
π

∫ 0

−∞

f (x−u)
sin(Ru)

u
dy

=
1
π

∫
∞

0
f (x−u)

sin(Ru)
u

dy+
1
π

∫
∞

0
f (x+u)

sin(Ru)
u

dy

=
1

2π

∫
∞

0

f (x−u)+ f (x+u)
2u

sin(Ru)du

Also, from Theorem 10.2.5 or Corollary 10.2.8, the limit of this as R→ ∞ is

f (x−)+ f (x+)

2

This verifies 12.14. ■
You can come up with lots of enigmatic integration formulas using this representation

theorem. You start with a function you want to represent and then use this formula to repre-
sent it. The representation in terms of the formula yields strange and wonderful integration
facts. Two cases which are nice to note are the case that f is even and the case that f is
odd. If you are only interested in the function on the nonnegative real numbers, you could
consider it either way as part of an odd function or part of an even function. This will
change what happens at 0. First suppose it is even. Then

lim
R→∞

1
π

∫ R

0

∫
∞

−∞

cos(t (x− y)) f (y)dydt

= lim
R→∞

1
π

∫ R

0

∫
∞

−∞

(cos txcos ty+ sin txsin ty) f (y)dydt

= lim
R→∞

1
π

∫ R

0
cos tx

∫
∞

−∞

cos ty f (y)dydt

because y→ sin(ty) is odd. Thus you get

f (x+)+ f (x−)
2

= lim
R→∞

1
π

∫ R

0
cos(tx)

∫
∞

−∞

cos(ty) f (y)dydt

= lim
R→∞

2
π

∫ R

0
cos(tx)

∫
∞

0
cos(ty) f (y)dydt (12.15)

In case f is odd, you get

f (x+)+ f (x−)
2

= lim
R→∞

1
π

∫ R

0
sin(tx)

∫
∞

−∞

sin(ty) f (y)dydt

= lim
R→∞

2
π

∫ R

0
sin(tx)

∫
∞

0
sin(ty) f (y)dydt (12.16)
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Lets see what this formula says for certain choices of f . We need to have f be in L1 (R)
but this is easy to arrange. Just let it vanish off some interval. First suppose f (y) = y for
y ∈ [−1,1] and let it be 0 if |y|> 1. Of course this function has a jump at −1 and 1. Then
from 12.16,

lim
R→∞

2
π

∫ R

0
sin(tx)

∫ 1

0
sin(ty)ydydt

= lim
R→∞

2
π

∫ R

0
sin(tx)

(
1
t2 (sin t− t cos t)

)
dt

Thus

lim
R→∞

2
π

∫ R

0
sin(tx)

(
1
t2 (sin t− t cos t)

)
dt =

 x if |x|< 1
1/2 if |x|= 1
0 if |x|> 1

It might not be the first thing you would think of. I am not sure whether the integrand is
even in L1 (R) although the above limit does exist.

Now suppose that f (y) = e−|y|. This is an even function. From 12.15

e−|x| = lim
R→∞

2
π

∫ R

0
cos(tx)

∫
∞

0
cos(ty)e−ydydt = lim

R→∞

2
π

∫ R

0

cos(tx)
t2 +1

dt

I think this is a pretty amazing formula. Obviously you can make these up all day, amazing
formulas which none of the usual tools will allow you to compute.

Definition 12.8.4 Let f ∈ L1 (R) . The Fourier cosine and sine transforms are de-
fined respectively as g(x)≡√

2
π

∫
∞

0
f (t)cos(xt)dt,

√
2
π

∫
∞

0
f (t)sin(xt)dt

Note that 12.15, 12.16 sort of say that if you take the cosine transform of the cosine
transform, you get the function back, a similar assertion holding for the Fourier sine trans-
form.

12.9 The Inversion of Laplace Transforms
How does the Fourier transform relate to the Laplace transform? This is considered next.
Recall that from Theorem 10.3.5 if g has exponential growth |g(t)| ≤Ceλ t , then if Re(s)>
λ , one can define L g(s) as

L g(s)≡
∫

∞

0
e−sug(u)du

and also s→L g(s) is differentiable on Re(s) > λ in the sense that if h ∈ C and G(s) ≡
L g(s) , then

lim
h→0

G(s+h)−G(s)
h

= G′ (s) =−
∫

∞

0
ue−sug(u)du

Thus G is analytic and has all derivatives. Then the next theorem shows how to invert the
Laplace transform. It is another one of those results which says that you get the mid point
of the jump when you do a certain process. It is like what happens in Fourier series where
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the Fourier series converges to the midpoint of the jump under suitable conditions and like
what was just shown for the inverse Laplace transform.

The next theorem gives a more specific version of what is contained in Theorem 10.4.8.
However, this theorem does assume a Holder continuity condition which is not needed for
Theorem 10.4.8. I think that it is usually the case that the needed Holder condition will be
available.

Theorem 12.9.1 Let g be a piecewise continuous function defined on (0,∞) which
has exponential growth |g(t)| ≤Ceλ t for some real λ and g(t) is Holder continuous from
the right and left as in 10.8 and 10.9. For Re(s)> λ

L g(s)≡
∫

∞

0
e−sug(u)du

Then for any γ > λ ,

lim
R→∞

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy =

g(t+)+g(t−)
2

(12.17)

Proof: This follows from plugging in the formula for the Laplace transform of g and
then using the above. Thus

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy =

1
2π

∫ R

−R
e(γ+iy)t

∫
∞

−∞

e−(γ+iy)ug(u)dudy

=
1

2π

∫ R

−R
eγteiyt

∫
∞

−∞

e−(γ+iy)ug(u)dudy

= eγt 1
2π

∫ R

−R
eiyt
∫

∞

−∞

e−iyue−γug(u)dudy

Now apply Theorem 12.8.2 to conclude that

lim
R→∞

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy = eγt lim

R→∞

1
2π

∫ R

−R
eiyt
∫

∞

−∞

e−iyue−γug(u)dudy

= eγt g(t+)e−γt++g(t−)e−γt−

2
=

g(t+)+g(t−)
2

.■

In particular, this shows that if L g(s) = L h(s) for all s large enough, both g,h having
exponential growth, then f ,g must be equal except for jumps and in fact, at any point
where they are both Holder continuous from right and left, the mid point of their jumps is
the same. That integral is called the Bromwich integral.

This answers the question raised earlier about whether the Laplace transform method
even makes sense to use because it shows that if two functions have the same Laplace
transform, then they are the same function except at jumps where the midpoint of the jumps
coincide.

Using the method of residues, one can actually compute the inverse Laplace transform
using this Bromwich integral. I will give an easy example, leaving out the technical details
relative to estimates. These are in my book on my web site Calculus of Real and Complex
Variables.

Example 12.9.2 Find the inverse Laplace transform of 1
1+s2 .
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The idea is that this is (hopefully) of the form L ( f (t)) and your task is to find f (t) . To
do this, you use the following contour and write the above Bromwich integral as a contour
integral. In this example, let γ > 0. You should verify that∫ R

−R
e(γ+iy)tL g(γ + iy)dy =−i

∫
γ∗R

ezt 1
1+ z2 dz−

(
−i
∫

CR

ezt 1
1+ z2 dz

)

x

x = γy It turns out that in this example, and many other examples, the cir-
cular part of the contour integral, denoted here with

∫
CR
, will converge

to 0 as R→ ∞ and so

lim
R→∞

1
2π

∫ R

−R
e(γ+iy)tL g(γ + iy)dy

=
1

2π
2πi(−i)(sum of residues) = sum of residues

In this example,

lim
z→i

ezt

z+ i
=

1
2i

eit , lim
z→−i

ezt

(z− i)
= e−it 1

−2i

Thus, these add to
1
2i

eti +

(
e−it 1
−2i

)
=

1
2

ie−it − 1
2

ieit = sin t

Thus the Bromwich improper integral is 1
2π

2π sin t = sin t. We just found an inverse Laplace
transform. In general, this illustrates the following procedure which works under fairly
general conditions.

Procedure 12.9.3 Let F (s) satisfy |F (z)|<C/ |z|α for some α > 0 for all |z| large
enough with F (z) analytic except for finitely many poles. To find f (t) such that L f = F,

f (t) =
(

sum of residues at the poles of F (z)etz)
12.10 Exercises
1. Generalize the Riemann Lebesgue lemma to show that if f is piecewise continuous

on finite intervals and in L1 (R) , then limn→∞

∫
∞

−∞
f (t)sin(nt + k)dt = 0. Here k is

any constant.

2. Show that if f is in L1 (R) , then limn→∞

∫
∞

−∞
f (t)cos(nt + k)dt = 0.

3. In fact, all you need in the above problems is to assume that f is Riemann integrable
on finite intervals and that limR→∞

∫ R
−R f (t)dt exists. Show this. Hint: This mainly

requires fussing over whether you end up with something Riemann integrable given
that f is when you do certain things. I have presented it for piecewise continuous
functions because that is where the interesting application resides and it is obvious
that everything stays piecewise continuous. If you want to do these things right, you
need to be using the Lebesgue integral anyway.

4. limR→∞

∫ R
−R

t
1+t2 dt = 0 but limn→∞

∫ R2

−R
t

1+t2 dt = ∞. Show this.
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5. Here are some functions which are either even or odd. Use 12.15, 12.16 to represent
these functions and thereby obtain amazing integration formulas. Be sure to deal
with the situation at jumps.

(a) f (x) = X[−1,1] (x). Thus f (x) = 1 on [−1,1] and is 0 elsewhere. Show that

lim
R→∞

2
π

∫ R

0
cos(tx)

(
1
t

sin t
)

dt =

 1 if x ∈ (−1,1)
1/2 if |x|= 1
0 if |x|> 1

Isn’t this an amazing result?

(b) f (x) = cos(x) on
(
−π

2 ,
π

2

)
and 0 if |x|> π

2 .

(c) f (x) = sin(x) on (−2π,2π) and 0 if |x|> 2π.

(d) f (x) = cos(x) on (−π,π) and 0 if |x|> π.

(e) f (x) = e−x if x > 0,−e−|x| if x < 0.

6. Find limR→∞

∫ 1
−1

sin(πt)sin(Rt)
t2 dt. Hint: Consider the following steps. Using the ver-

sion of Fubini’s theorem from Theorem 9.9.3 on Page 216∫ 1

−1

sin(πt)sin(Rt)
t2 = 2

∫ 1

0

sin(πt)sin(Rt)
t2 dt

= 2
∫ 1

0

sin(πt)
t

∫ R

0
cos(yt)dydt = 2

∫ R

0

∫ 1

0

sin(πt)
t

cos(yt)dtdy

Now the Fourier cosine transform for the even function x→ sin(πx)
x X[−1,1] ≡ f (x) is

lim
R→∞

2
π

∫ R

0
cos(xy)

∫ 1

0

sin(πt)
t

cos(yt)dtdy = f (x)

This equals the value of this function at x. It looks like what this problem is asking
is π f (0) . What is f (0)?

7. Do something similar to the above problem in order to compute

lim
R→∞

∫ 1

0

sin(Rx)√
x

dx

Hint:
∫ 1

0
sin(Ry)√

y dy =
∫ 1

0
√

y
∫ R

0 cos(ty)dtdy =
∫ R

0
∫ 1

0
√

ycos(ty)dydt. Isn’t this a case

of the Fourier cosine transform for the even function x→
√
|x|?

8. In example 12.9.2, verify the details. In particular, show that the contour integral
over the circular part of the contour converges to 0 as R→ ∞. Explain why γ could
be any positive number in this case. In general, you just need γ to be large enough
so that the contour encloses all the poles and the function for which you are trying to
find the inverse Laplace transform, needs to be dominated by C/ |z|α for some α > 0
for all |z| large enough. Try to show this. It is a little technical but only involves
elementary considerations. Thus verify Procedure 12.9.3 is valid by showing that
the part of the contour integral over the circular part converges to 0 if the assumed
estimate holds.
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9. Find inverse Laplace transforms using the method of residues in Procedure 12.9.3
for b

(s−a)2+b2 , s−a
(s−a)2+b2 , and the other entries of the table in Problem 8 on Page 248.

10. Let f (x) be the odd 2π periodic extension of f (x) = X[0,π] (x) . Explain why its
Fourier series is of the form ∑

∞
k=1 an sin(nx). Doing minimal computations, why can

you say that nan cannot converge to 0 as n→∞. Hint: See Problem 55 on Page 228.

11. Find the Fourier series expansion for the above function and use it to find interesting

summation formulas, for example ∑
∞
n=1

(−1)n−1

2n−1 = π

4 .

12. This and the remaining problems will require a beginning course in linear alge-
bra. All that is needed is in any of my linear algebra books. Fill in the details.
A fundamental matrix for the n× n matrix A is an n× n matrix Φ(t) having func-
tions as entries such that Φ′ (t) = AΦ(t) ,Φ(0) = I. That is, you have a differen-
tial equation involving a dependent variable which is a matrix along with an initial
condition Φ(0) = I, the identity matrix. Using the properties of the Laplace trans-
form, we can take the Laplace transform of both sides and get sF (s)− I = AF (s)
so (sI−A)F (s) = I and so the Laplace transform of Φ(t) denoted here as F (s) is
F (s) = (sI−A)−1. Now from linear algebra, there is a formula for this inverse valid
for all s large enough which comes as 1

det(sI−A) (cofactor matrix )T . If |s| is large
enough, the inverse does indeed exist because there are only finitely many eigenval-
ues. Now each term in (sI−A)−1 is a rational function for which the degree of the
numerator is at least one more than the degree of the denominator. Thus it satisfies
the necessary conditions for the Bromwich integral and thus there exists a unique
such Φ(t).

13. Next show that AΦ(t) = Φ(t)A. Fill in the details. To do this, let Ψ(t) ≡ AΦ(t)−
Φ(t)A. Thus Ψ(0) = 0. Also

Ψ
′ (t) = AΦ

′ (t)−Φ
′ (t)A = A2

Φ(t)−AΦ(t)A = A(AΦ(t)−Φ(t)A) = AΨ(t)

In short, Ψ′ (t) = AΨ(t) ,Ψ(0) = 0. Use the Laplace transform method to show that
Ψ(t) = 0. Also show that Φ(−t)Φ(t) = I. To do this last one, define the function
Ψ(t)≡Φ(−t)Φ(t) ,

Ψ
′ (t) = −Φ

′ (−t)Φ(t)+Φ(−t)Φ
′ (t) =−AΦ(−t)Φ(t)+Φ(−t)AΦ(t)

= −Φ(−t)AΦ(t)+Φ(−t)AΦ(t) = 0

thus Ψ(0) = I and Ψ′ (0) = 0 so each entry of Ψ(t) is a constant from the mean value
theorem. Thus Ψ(t) = I for all t. Also show that Φ(t)Φ(s) = Φ(t + s) using similar
considerations using Laplace transforms.

14. All linear equations in an undergraduate differential equations course, which includes
the vast majority of what is discussed in these courses, can be written as x′ (t) =
Ax(t)+ f(t) ,x(0) = x0. Fill in details. x′−Ax = f(t) . Multiply by Φ(−t) and you
get d

dt (Φ(−t)x(t)) = Φ(−t) f(t). Note that the left side equals the following by the
product and chain rule.

−Φ
′ (−t)x+Φ(−t)x′ = Φ(−t)x′−AΦ(−t)x = Φ(−t)

(
x′−Ax

)
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Now it follows from considering the individual entries of the matrices and vectors
that

Φ(−t)x(t)−x0 =
∫ t

0
Φ(−s) f(s)ds,

x(t) = Φ(t)x0 +Φ(t)
∫ t

0
Φ(−s) f(s)ds

x(t) = Φ(t)x0 +
∫ t

0
Φ(t− s) f(s)ds

This is the variation of constants formula for the unique solution to the initial value
problem. This has shown that if there is a solution, then it is the above. Next verify
that the above does solve the initial value problem applying fundamental theorem of
calculus to the entries of the matrices. This completes somewhat more than what is
accomplished in an entire undergraduate differential equations course. Furthermore,
unlike what is done in these wretched busy work courses, this leads somewhere.



Chapter 13

The Generalized Riemann Integral
The preceding part of the book is essentially devoted to nineteenth century analysis. The
generalized Riemann integral is a relatively recent development from around 1957. How-
ever, it is very close to the Riemann integral. One replaces the norm of the partition which
is a single number with a gauge function.

13.1 Definitions and Basic Properties
This chapter is on the generalized Riemann integral. The Riemann Darboux integral pre-
sented earlier has been obsolete for over 100 years. The integral of this chapter is certainly
not obsolete and is in certain important ways the very best integral currently known. This
integral is called the generalized Riemann integral, also the Henstock Kurzweil integral
after the two people who invented it and sometimes the gauge integral. Other books which
discuss this integral are the books by Bartle [7], Bartle and Sherbert, [8], Henstock [16],
or McLeod [22]. Considerably more is presented in some of these references. In what
follows, F will be an increasing function, the most important example being F (x) = x. In
the Stieltjes integral, we featured ∥P∥< δ . One does the same thing here except here δ is
not a positive number but a positive function.

Definition 13.1.1 Let [a,b] be a closed and bounded interval. A tagged division1

of [a,b] = I is a set of the form P ≡ {(Ii, ti)}n
i=1 where ti ∈ Ii = [xi−1,xi], and a = xi−1 <

· · · < xn = b. Let the ti be referred to as the tags. A function δ : R→ (0,∞) is called a
gauge function or simply gauge for short. A tagged division P is called δ fine if

Ii ⊆ (ti−δ (ti) , ti +δ (ti)) .

A δ fine division, is understood to be tagged. More generally, a collection, {(Ii, ti)}p
i=1 is δ

fine if the above inclusion holds for each of these intervals and their interiors are disjoint
even if their union is not equal to the whole interval, [a,b]. In this definition, one often
requires that Ii ⊆ [ti−δ (ti) , ti +δ (ti)] rather than the open interval above. It appears to
not matter much in what is presented here.

The following fundamental result is essential.

Proposition 13.1.2 Let [a,b] be an interval and let δ be a gauge function on [a,b].
Then there exists a δ fine tagged division of [a,b].

Proof: Suppose not. Then one of
[
a, a+b

2

]
or
[ a+b

2 ,b
]

must fail to have a δ fine tagged
division because if they both had such a δ fine division, the union of the two δ fine divi-
sions would be a δ fine division of [a,b]. Denote by I1 the interval which does not have a
δ fine division. Then repeat the above argument, dividing I1 into two equal intervals and
pick the one, I2 which fails to have a δ fine division. Continue this way to get a nested
sequence of closed intervals, {Ii} having the property that each interval in the set fails to
have a δ fine division and diam(Ii)→ 0. Therefore, ∩∞

i=1Ii = {x} where x ∈ [a,b]. Now
(x−δ (x) ,x+δ (x)) must contain some Ik because the diameters of these intervals con-
verge to zero. It follows that {(Ik,x)} is a δ fine division of Ik, contrary to the construction
which required that none of these intervals had a δ fine division. ■

1In beginning calculus books, this is often called a partition and I followed this convention earlier. The word,
division is a much better word to use. What the xi do is to “divide” the interval into little subintervals.
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With this proposition and definition, it is time to define the generalized Riemann inte-
gral. The functions being integrated typically have values inR orC but there is no reason to
restrict to this situation and so in the following definition, X will denote the space in which
f has its values. For example, X could be Rp which becomes important in multivariable
calculus. For now, just think C. It will be assumed Cauchy sequences converge and there
is a norm although it is likely possible to generalize even further.

Definition 13.1.3 For a = xi−1 < · · · < xn = b, and F an increasing function, ∆Fi
will be defined as F (xi)−F (xi−1). Let X be a complete normed vector space. (For exam-
ple, X = R or X = C or X = Rp.) Then f : [a,b]→ X is generalized Riemann integrable,
written as f ∈ R∗ [a,b] if there exists R ∈ X such that for all ε > 0, there exists a gauge δ ,
such that if P≡ {(Ii, ti)}n

i=1 is δ fine, then defining S (P, f ) by

S (P, f )≡
n

∑
i=1

f (ti)∆Fi,

it follows |S (P, f )−R|< ε. If such an R exists, then the integral is defined as follows.∫
I

f dF ≡
∫ b

a
f dF ≡ R.

Here |·| refers to the norm on X . For R, this is just the absolute value.

Note that if P is δ 1 fine and δ 1 ≤ δ then it follows P is also δ fine. Because of this, it
follows that the generalized integral is unique if it exists.

Proposition 13.1.4 If R, R̂ both work in the above definition of the generalized Rie-
mann integral, then R̂ = R.

Proof: Let ε > 0 and let δ correspond to R and δ̂ correspond to R̂ in the above defini-
tion. Then let δ 0 = min

(
δ , δ̂

)
. Let P be δ 0 fine. Then P is both δ and δ̂ fine. Hence,∣∣R− R̂
∣∣≤ |R−S (P, f )|+

∣∣S (P, f )− R̂
∣∣< 2ε

Since ε is arbitrary, it follows that R = R̂. ■
Is there a simple way to tell whether a given function is in R∗ [a,b]? The following

Cauchy criterion is useful to make this determination. It looks just like a similar condition
for Riemann Stieltjes integration.

Proposition 13.1.5 A function f : [a,b]→ X is in R∗ [a,b] if and only if for every ε > 0,
there exists a gauge function δ ε such that if P and Q are any two divisions which are δ ε

fine, then |S (P, f )−S (Q, f )|< ε.

Proof: Suppose first that f ∈ R∗ [a,b]. Then there exists a gauge, δ ε , and an element of
X , R, such that if P is δ ε fine, then |R−S (P, f )| < ε/2. Now let P,Q be two such δ ε fine
divisions. Then

|S (P, f )−S (Q, f )| ≤ |S (P, f )−R|+ |R−S (Q, f )|< ε

2
+

ε

2
= ε.

Conversely, suppose the condition of the proposition holds. Let εn→ 0+ as n→∞ and
let δ εn denote the gauge which goes with εn. Without loss of generality, assume that δ εn
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is decreasing in n. (If not, replace it with the minimum of itself and earlier gauges.) Let
Rεn denote the closure of all the sums, S (P, f ) where P is δ εn fine. From the condition,
it follows diam(Rεn) ≤ εn and that these closed sets are nested in the sense that Rεn ⊇
Rεn+1 because δ εn is decreasing in n. Therefore, there exists a unique, R ∈ ∩∞

n=1Rεn . To
see this, let rn ∈ Rεn . Then since the diameters of the Rεn are converging to 0, {rn} is
a Cauchy sequence which must converge to some R ∈ X . Since Rεn is closed, it follows
R ∈ Rεn for each n. Letting ε > 0 be given, there exists εn < ε and for P a δ εn fine division,
|S (P, f )−R| ≤ εn < ε.Therefore, R =

∫
I f . ■

Are there examples of functions which are in R∗ [a,b]? Are there examples of functions
which are not? It turns out the second question is harder than the first although it is very
easy to answer this question in the case of the obsolete Riemann integral. The generalized
Riemann integral is a vastly superior integral which can integrate a very impressive collec-
tion of functions. Consider the first question. It turns out that R [a,b]⊆ R∗ [a,b]. Recall the
definition of the Riemann integral given above which is listed here for convenience.

Definition 13.1.6 A bounded function f defined on [a,b] is said to be Riemann
Stieltjes integrable if there exists a number I with the property that for every ε > 0, there
exists δ > 0 such that if

P≡ {x0,x1, · · · ,xn}

is any partition having ∥P∥< δ , and zi ∈ [xi−1,xi] ,∣∣∣∣∣I− n

∑
i=1

f (zi)(F (xi)−F (xi−1))

∣∣∣∣∣< ε.

The number
∫ b

a f (x) dFis defined as I.

First note that if δ > 0 is a number and if every interval in a division has length less than
δ then the division is δ fine. In fact, you could pick the tags as any point in the intervals.
Then the following theorem follows immediately.

Theorem 13.1.7 Suppose that f is Riemann Stieltjes integrable according to Defin-
ition 13.1.6. Then f is generalized Riemann integrable and the integrals are the same.

Proof: Just let the gauge functions be constant functions. ■
In particular, the following important theorem follows from Theorem 9.3.7.

Theorem 13.1.8 Let f be continuous on [a,b] and let F be any increasing integra-
tor. Then f ∈ R∗ [a,b] .

This integral can integrate almost anything you can imagine, including the function
which equals 1 on the rationals and 0 on the irrationals which is not Riemann integrable.
This will be shown later.

The integral is linear. This will be shown next.

Theorem 13.1.9 Suppose α and β are constants and that f and g are in R∗ [a,b].
Then α f +βg ∈ R∗ [a,b] and∫

I
(α f +βg)dF = α

∫
I

f dF +β

∫
I
gdF.



306 CHAPTER 13. THE GENERALIZED RIEMANN INTEGRAL

Proof: Let η = ε

|β |+|α|+1 and choose gauges, δ g and δ f such that if P is δ g fine,∣∣∣∣S (P,g)−∫I
gdF

∣∣∣∣< η

and that if P is δ f fine, ∣∣∣∣S (P, f )−
∫

I
f dF

∣∣∣∣< η .

Now let δ = min
(
δ g,δ f

)
. Then if P is δ fine the above inequalities both hold. Therefore,

from the definition of S (P, f ),

S (P,α f +βg) = αS (P, f )+βS (P,g)

and so ∣∣∣∣S (P,α f +βg)−
(

β

∫
I
gdF +α

∫
I

f dF
)∣∣∣∣≤ ∣∣∣∣βS (P,g)−β

∫
I
gdF

∣∣∣∣
+

∣∣∣∣αS (P, f )−α

∫
I

f dF
∣∣∣∣≤ |β |η + |α|η < ε.

Since ε > 0 is arbitrary, this shows the number β
∫

I gdF +α
∫

I f dF qualifies in the defini-
tion of the generalized Riemann integral and so α f +βg ∈ R∗ [a,b] and∫

I
(α f +βg)dF = β

∫
I
gdF +α

∫
I

f dF.■

The following lemma is also very easy to establish from the definition.

Lemma 13.1.10 If f ≥ 0 and f ∈ R∗ [a,b], then
∫

I f dF ≥ 0. Also, if f has complex
values and is in R∗ [I], then both Re f and Im f are in R∗ [I].

Proof: To show the first part, let ε > 0 be given and let δ be a gauge function such that
if P is δ fine then |S ( f ,P)−

∫
I f dF | ≤ ε. Since F is increasing, it is clear that S ( f ,P)≥ 0.

Therefore,
∫

I f dF ≥ S ( f ,P)− ε ≥ −ε and since ε is arbitrary, it follows
∫

I f dF ≥ 0 as
claimed.

To verify the second part, note that by Proposition 13.1.5 there exists a gauge, δ such
that if P,Q are δ fine then |S ( f ,P)−S ( f ,Q)|< ε . But

|S (Re f ,P)−S (Re f ,Q)| = |Re(S ( f ,P))−Re(S ( f ,Q))|
≤ |S ( f ,P)−S ( f ,Q)|

and so the conditions of Proposition 13.1.5 are satisfied and you can conclude Re f ∈ R∗ [I] .
Similar reasoning applies to Im f . ■

Corollary 13.1.11 If | f | , f ∈ R∗ [a,b], where f has values in C, then∣∣∣∣∫I
f dF

∣∣∣∣≤ ∫I
| f |dF.
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Proof: Let |α| = 1 and α
∫

I f dF = |
∫

I f dF |. Then by Theorem 13.1.9 and Lemma
13.1.10, ∣∣∣∣∫I

f dF
∣∣∣∣ =

∫
I
α f dF =

∫
I
(Re(α f )+ i Im(α f ))dF

=
∫

I
Re(α f )dF + i

∫
I
Im(α f )dF

=
∫

I
Re(α f )dF ≤

∫
I
| f |dF ■

Note the assumption that | f | ∈ R∗ [a,b]. I will point out later that you can’t assume | f |
is also generalized Riemann integrable. This is just like the case with series. A series may
converge without converging absolutely.

The following lemma is also fundamental. It is about restricting f to a smaller interval
and concluding that the function is still generalized Riemann integrable on this smaller
interval.

Lemma 13.1.12 If f ∈ R∗ [a,b] and [c,d]⊆ [a,b], then f ∈ R∗ [c,d].

Proof: Let ε > 0 and choose a gauge δ such that if P is a division of [a,b] which is
δ fine, then |S (P, f )−R| < ε/2. Now pick a δ fine division of [c,d] ,{(Ii, ti)}l

i=r and let
{(Ii, ti)}r−1

i=1 , {(Ii, ti)}n
i=l+1 be fixed δ fine divisions on [a,c] and [d,b] respectively.

Now let P1 and Q1 be δ fine divisions of [c,d] and let P and Q be the respective δ fine
divisions of [a,b] just described which are obtained from P1 and Q1 by adding in {(Ii, ti)}r−1

i=1
and {(Ii, ti)}n

i=l+1. Then

ε > |S (P, f )−R|+ |S (Q, f )−R| ≥ |S (Q, f )−S (P, f )|= |S (Q1, f )−S (P1, f )| .

By the above Cauchy criterion, Proposition 13.1.5, f ∈ R∗ [c,d] as claimed. ■

Corollary 13.1.13 Suppose c ∈ [a,b] and that f ∈ R∗ [a,b] . Then f ∈ R∗ [a,c] and f ∈
R∗ [c,b]. Furthermore, ∫

I
f dF =

∫ c

a
f dF +

∫ b

c
f dF.

Here
∫ c

a f dF means
∫
[a,c] f dF.

Proof: Let ε > 0. Let δ 1 be a gauge function on [a,c] such that whenever P1 is a δ 1
fine division of [a,c], ∣∣∣∣∫ c

a
f dF−S (P1, f )

∣∣∣∣< ε/3.

Let δ 2 be a gauge function on [c,b] such that whenever P2 is a δ 2 fine division of [c,b],∣∣∣∣∫ b

c
f dF−S (P2, f )

∣∣∣∣< ε/3.

Let δ 3 be a gauge function on [a,b] such that if P is a δ 3 fine division of [a,b] ,∣∣∣∣∫ b

a
f dF−S (P, f )

∣∣∣∣< ε/3.
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Now define a gauge function

δ (x)≡
{

min(δ 1,δ 3) on [a,c]
min(δ 2,δ 3) on [c,b]

Then letting P1 be a δ fine division on [a,c] and P2 be a δ fine division on [c,b] , it follows
that P = P1 ∪P2 is a δ 3 fine division on [a,b] and all the above inequalities hold. Thus
noting that S (P, f ) = S (P1, f )+S (P2, f ) ,∣∣∣∣∫I

f dF−
(∫ c

a
f dF +

∫ b

c
f dF

)∣∣∣∣≤ ∣∣∣∣∫I
f dF− (S (P1, f )+S (P2, f ))

∣∣∣∣
+

∣∣∣∣S (P1, f )+S (P2, f )−
(∫ c

a
f dF +

∫ b

c
f dF

)∣∣∣∣
≤

∣∣∣∣∫I
f dF−S (P, f )

∣∣∣∣+ ∣∣∣∣S (P1, f )−
∫ c

a
f dF

∣∣∣∣+ ∣∣∣∣S (P2, f )−
∫ b

c
f dF

∣∣∣∣
< ε/3+ ε/3+ ε/3 = ε.

Since ε is arbitrary, the conclusion of the corollary follows. ■
The following lemma, sometimes called Henstock’s lemma is of great significance.

When you have a tagged division of [a,b] denoted as {(Ii, ti)}q
i=1 ≡ P with

Ii ⊆ (ti−δ (ti) , ti +δ (ti))

so the division is δ fine, it would make perfect sense to write ∑i∈I f (ti)∆Fi for I ⊆
{1,2, ...,q}. If you know that f ∈ R∗ [a,b] and that∣∣∣∣∣ q

∑
i=1

f (ti)∆Fi−
∫ b

a
f dF

∣∣∣∣∣≤ ε

whenever P is δ fine, then it follows from Corollary 13.1.13 and induction that∣∣∣∣∣ q

∑
i=1

f (ti)∆Fi−
∫ b

a
f dF

∣∣∣∣∣=
∣∣∣∣∣ q

∑
i=1

f (ti)∆Fi−
q

∑
i=1

∫
Ii

f dF

∣∣∣∣∣≤ ε

Henstock’s lemma says that you can replace the sum over all i ∈ {1,2, ...,q} with the sum
over i ∈I ⊆{1,2, ...,q} and preserve the same inequality. That is, you can take the sum
over any subset of the tags. The reason such a remarkable result holds is that δ is a function,
not a single number. Thus you can change it some places and not others.

Lemma 13.1.14 Suppose that f ∈ R∗ [a,b] and that whenever Q is a δ fine division of
I = [a,b], ∣∣∣∣S (Q, f )−

∫
I

f dF
∣∣∣∣< ε.

Then if P = {(Ii, ti)}n
i=1 is any δ fine division of I, meaning that

Ii ⊆ (ti−δ (ti) , ti +δ (ti)) ,

and P′ =
{(

Ii j , ti j

)}r
j=1

is a subset of P, then∣∣∣∣∣ r

∑
j=1

f
(
ti j

)
∆Fi−

r

∑
j=1

∫
Ii j

f dF

∣∣∣∣∣≤ ε.
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Proof: Let (Jk, tk) ∈ P\P′. From Lemma 13.1.12, f ∈ R∗ [Jk]. Therefore, letting Qk be
a suitable δ fine division of Jk, using δ as a generic gauge as small as the original δ ,∣∣∣∣∫Jk

f dF−S (Qk, f )
∣∣∣∣< η

|P\P′|+1

where η > 0 and |P\P′| denotes the number of intervals from P which are not in P′. There
are |P\P′| different values of k. Let P̃ be the division which results from all the Qk along
with P′. We modify the original δ only on the intervals of P\P′ always making it smaller.
Then

ε >

∣∣∣∣S(P̃, f
)
−
∫

I
f dF

∣∣∣∣
=

∣∣∣∣∣∣
(

r

∑
j=1

f
(
ti j

)
∆Fi−

r

∑
j=1

∫
Ii j

f dF

)
+

|P\P′|∑
k=1

S (Qk, f )−
∫

Jk

f dF

∣∣∣∣∣∣
≥

∣∣∣∣∣ r

∑
j=1

f
(
ti j

)
∆Fi−

r

∑
j=1

∫
Ii j

f dF

∣∣∣∣∣− η |P\P′|
|P\P′|+1

>

∣∣∣∣∣ r

∑
j=1

f
(
ti j

)
∆Fi−

r

∑
j=1

∫
Ii j

f dF

∣∣∣∣∣−η

Then
∣∣∣∑r

j=1 f
(
ti j

)
∆Fi−∑

r
j=1
∫

Ii j
f dF

∣∣∣< ε +η and since η is arbitrary,

∣∣∣∣∣ r

∑
j=1

f
(
ti j

)
∆Fi−

r

∑
j=1

∫
Ii j

f dF

∣∣∣∣∣≤ ε ■

Consider
{
(I j, t j)

}p
j=1 a subset of a division of [a,b]. If δ is a gauge and

{
(I j, t j)

}p
j=1 is

δ fine, meaning that I j ⊆ (t j−δ (t j) , t j +δ (t j)) , this can always be considered as a subset
of a δ fine division of the whole interval and so the following corollary is just a rewording
of the above.

Lemma 13.1.15 Suppose that f ∈ R∗ [a,b] and that whenever Q is a δ fine division of
I = [a,b], ∣∣∣∣S (Q, f )−

∫
I

f dF
∣∣∣∣≤ ε.

Then if {(Ii, ti)}p
i=1 is δ fine, maybe not dividing all of I, it follows that∣∣∣∣∣ p

∑
j=1

f (t j)∆F (I j)−
p

∑
j=1

∫
I j

f dF

∣∣∣∣∣≤ ε.

Here is another corollary in the special case where f has real values. In this lemma,
one splits the indices into those for which f (ti)∆Fi ≥

∫
Ii f dF and the ones in which the

inequality is turned around. You can do this because of the above corollary.
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Corollary 13.1.16 Suppose f ∈ R∗ [a,b] has values in R and that∣∣∣∣S (P, f )−
∫

I
f dF

∣∣∣∣≤ ε

for all P which is δ fine. Then if P = {(Ii, ti)}n
i=1 is δ fine,

n

∑
i=1

∣∣∣∣ f (ti)∆Fi−
∫

Ii
f dF

∣∣∣∣≤ 2ε. (13.1)

Proof: Let I ≡
{

i : f (ti)∆Fi ≥
∫

Ii f dF
}

and let I C ≡ {1, · · · ,n}\I . Then by Hen-
stock’s lemma ∣∣∣∣∣∑i∈I f (ti)∆Fi− ∑

i∈I

∫
Ii

f dF

∣∣∣∣∣= ∑
i∈I

∣∣∣∣ f (ti)∆Fi−
∫

Ii
f dF

∣∣∣∣≤ ε

and ∣∣∣∣∣ ∑
i∈I C

f (ti)∆Fi− ∑
i∈I C

∫
Ii

f dF

∣∣∣∣∣= ∑
i∈I C

∣∣∣∣ f (ti)∆Fi−
∫

Ii
f dF

∣∣∣∣≤ ε

so adding these together yields 13.1. ■
This generalizes immediately to the following.

Corollary 13.1.17 Suppose f ∈ R∗ [a,b] has values in C and that∣∣∣∣S (P, f )−
∫

I
f dF

∣∣∣∣≤ ε (13.2)

for all P which is δ fine. Then if P = {(Ii, ti)}n
i=1 is δ fine,

n

∑
i=1

∣∣∣∣ f (ti)∆Fi−
∫

Ii
f dF

∣∣∣∣≤ 4ε. (13.3)

Proof: It is clear that if 13.2 holds, then |S (P,Re f )−Re
∫

I f dF | ≤ ε, which shows
that Re

∫
I f dF =

∫
I Re f dF . Similarly Im

∫
I f dF =

∫
I Im f dF . Therefore, using Corollary

13.1.16, ∑
n
i=1

∣∣∣Re f (ti)∆Fi−
∫

Ii Re f dF
∣∣∣ ≤ 2ε and ∑

n
i=1

∣∣∣i Im f (ti)∆Fi−
∫

Ii i Im f dF
∣∣∣ ≤ 2ε.

Adding and using the triangle inequality, yields 13.3. ■

13.2 Monotone Convergence Theorem
There is nothing like the following theorem in the context of Riemann integration.

Example 13.2.1 Let {rn}∞

m=1 be the rational numbers in [0,1]. Let fn (x) be 1 if x ∈
{r1, · · · ,rn} and 0 elsewhere and F (x) = x. Then fn is Riemann integrable and converges
pointwise to the function f (x) which is 1 on all rationals in [0,1] and zero elsewhere. How-
ever, f is not Riemann integrable. Indeed, there is a gap between the upper and lower
sums. See Theorem 9.3.10 on Page 200.

In contrast to this example, here is the monotone convergence theorem.
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Theorem 13.2.2 Let fn (x) ≥ 0 and suppose fn ∈ R∗ [a,b] ,· · · fn (x) ≤ fn+1 (x) · · ·
and that f (x) = limn→∞ fn (x) for all x and that f (x) has real values. Also suppose that{∫ b

a fndF
}∞

n=1
is a bounded sequence. Then f ∈ R∗ [a,b] and

∫ b

a
f dF = lim

n→∞

∫ b

a
fndF (13.4)

Proof: Let ε > 0 be given. Let η be small enough that 3η +(F (b)−F (a))η < ε .

Since
{∫ b

a fndF
}∞

n=1
is increasing and bounded, there exists I = limn→∞

∫ b
a fndF . There-

fore, there exists N such that
∣∣∣∫ b

a fNdF− I
∣∣∣ < η so for all n ≥ N,

∣∣∣∫ b
a fndF− I

∣∣∣ < η . By

assumption f (x) = lim j→∞ f j (x). Now define for j ≥ N, Fj ≡
{

x :
∣∣ f j (x)− f (x)

∣∣< η
}
.

Since f j (x) is increasing, these Fj are also increasing and since limn→∞ fn (x) = f (x) , the
union of these Fj is all of [a,b]. Let E j+1 ≡ Fj+1 \Fj, and EN ≡ FN so these E j are disjoint
and they partition [a,b]. On E j, E j,

∣∣ f j (x)− f (x)
∣∣< η .

Next is a choice of fineness so that the sum will be close to the integral. Let δ n be such
that when P = {(Ii, ti)}qn

i=1 is δ n fine, then∣∣∣∣∣ qn

∑
i=1

fn (ti)∆Fi−
∫ b

a
fndF

∣∣∣∣∣< η2−(n+1) (13.5)

I will choose a smaller δ in order to use just one instead of one for each n ≥ N. Let δ (x)
be defined by

δ (x)≡min(δ N (x) , · · · ,δ j (x)) for x ∈ E j (13.6)

Since the union of the E j is [a,b] , this defines δ (x) > 0 on [a,b], δ (x) being positive
because it is a minimum of finitely many positive numbers on each E j, j ≥ N. Also for
any n ≥ N,δ (x) ≤ δ n (x) on En ∪En+1 ∪ ·· · because δ n is in the list so δ (x) ≤ δ n (x) on
En ∪En+1 ∪ ·· · . If x ∈ E j for some j < n, then δ (x) ≤ δ j (x) so from Henstock’s lemma,
Lemma 13.1.15, ∣∣∣∣∣ ∑i∈I j

∫
Ii

f jdF− ∑
i∈I j

f j (ti)∆Fi

∣∣∣∣∣≤ η2−( j+1) (13.7)

Let P be δ fine. Modify δ to make δ = δ̂ n ≤ δ n on the rest of [a,b] ,other than the
finitely many intervals containing the tags from En ∪ En+1 ∪ ·· · and consider a δ̂ n fine
division of [a,b] which retains the intervals corresponding to the tags which are in En ∪
En+1∪ ·· · . Then Henstock’s lemma, Lemma 13.1.15 implies the following for I j those i
where the tag ti is in E j, j ≥ n.∣∣∣∣∣ ∞

∑
j=n

∑
i∈I j

fn (ti)∆Fi−
∞

∑
j=n

∑
i∈I j

∫
Ii

fndF

∣∣∣∣∣≤ η2−(n+1) ≤ η (13.8)

This is because the double sum ∑
∞
j=n ∑i∈I j selects intervals which have tags in En∪En+1∪

·· · on which δ ≤ δ n. Also, for δ given as above and N ≤ j ≤ n,δ ≤ δ j on [a,b] from the
construction. Note that P does not depend on the choice of n≥ N.

I want to estimate
∣∣∣S (P, fn)−

∫ b
a fndF

∣∣∣ for n≥ N and this choice of a gauge function δ .
The idea is to estimate in terms of two sums according to which E j contains the tags. Then
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split again according to whether j ≥ n or j < n. Thus∣∣∣∣S (P, fn)−
∫ b

a
fndF

∣∣∣∣=
∣∣∣∣∣ ∞

∑
j=N

∑
i∈I j

fn (ti)∆Fi−
∞

∑
j=N

∑
i∈I j

∫
Ii

fndF

∣∣∣∣∣
Next, split further according to whether j ≥ n.∣∣∣∣S (P, fn)−

∫ b

a
fndF

∣∣∣∣≤
∣∣∣∣∣ ∞

∑
j=n

∑
i∈I j

fn (ti)∆Fi−
∞

∑
j=n

∑
i∈I j

∫
Ii

fndF

∣∣∣∣∣ (13.9)

+

∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

fn (ti)∆Fi−
n−1

∑
j=N

∑
i∈I j

∫
Ii

fndF

∣∣∣∣∣ (13.10)

By 13.8,

≤ η +

∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

∫
Ii

fndF−
n−1

∑
j=N

∑
i∈I j

fn (ti)∆Fi

∣∣∣∣∣ (13.11)

Next split up the last term in 13.11.∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

∫
Ii

fndF−
n−1

∑
j=N

∑
i∈I j

fn (ti)∆Fi

∣∣∣∣∣
≤

∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

∫
Ii

fndF−
n−1

∑
j=N

∑
i∈I j

∫
Ii

f jdF

∣∣∣∣∣ (13.12)

+

∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

∫
Ii

f jdF−
n−1

∑
j=N

∑
i∈I j

f j (ti)∆Fi

∣∣∣∣∣ (13.13)

+

∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

f j (ti)∆Fi−
n−1

∑
j=N

∑
i∈I j

fn (ti)∆Fi

∣∣∣∣∣ (13.14)

Then 13.12 is
∣∣∣∑n−1

j=N ∑i∈I j

∫
Ii fndF−∑

n−1
j=N ∑i∈I j

∫
Ii f jdF

∣∣∣=
n−1

∑
j=N

∑
i=I j

∫
Ii
( fn− f j)dF ≤

∫ b

a
fndF−

∫ b

a
f jdF ≤ I−

∫ b

a
fNdF < η

Next consider 13.13. This term satisfies∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

∫
Ii

f jdF−
n−1

∑
j=N

∑
i∈I j

f j (ti)∆Fi

∣∣∣∣∣≤
∞

∑
j=N

∣∣∣∣∣ ∑i∈I j

∫
Ii

f jdF− ∑
i∈I j

f j (ti)∆Fi

∣∣∣∣∣≤ ∞

∑
j=N

η2−( j+1) ≤ η
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which comes from 13.7. Next consider 13.14. Since ti ∈ E j, this term satisfies∣∣∣∣∣n−1

∑
j=N

∑
i∈I j

f j (ti)∆Fi−
n−1

∑
j=N

∑
i∈I j

fn (ti)∆Fi

∣∣∣∣∣
≤

n−1

∑
j=N

∑
i∈I j

( fn (ti)− f j (ti))∆Fi ≤
n−1

∑
j=N

∑
i∈I j

η∆Fi ≤ η (F (b)−F (a))

Since fn (ti)− f j (ti)≤ f (ti)− f j (ti)< η . It follows that∣∣∣∣S (P, fn)−
∫ b

a
fndF

∣∣∣∣ ≤ η +η +η +η (F (b)−F (a))

< 3η +η (F (b)−F (a))< ε.

Now let n→ ∞ and this yields |S (P, f )− I| =
∣∣∣S (P, f )− limn→∞

∫ b
a fndF

∣∣∣ < ε . Since ε is

arbitrary, it follows that f ∈ R∗ [a,b] and I =
∫ b

a f dF.■

13.3 Computing Generalized Integrals
Here we give some idea of how to compute these generalized Riemann integrals. It turns
out they can integrate many things which the earlier Riemann Stieltjes integral cannot. In
particular, you can have jumps in the integrator function at points of discontinuity of the
function. You can also integrate functions which are continuous nowhere.

Example 13.3.1 Let

f (x) =
{

1 if x ∈Q
0 if x /∈Q

Then f ∈ R∗ [0,1] and for F (x) = x, ∫ 1

0
f dF = 0.

This is obvious. Let fn (x) equal 1 on the first n rational numbers in an enumeration
of the rationals and zero everywhere else. Clearly fn (x) ↑ f (x) for every x and also fn is
Riemann integrable and has integral 0. Now apply the monotone convergence theorem.
Note this example is one which has no Riemann or Darboux integral.

Example 13.3.2 Let F (x) be an integrator function given by

F (x)≡

 0 if x≤ 1
1 if x ∈ (1,2)
2 if x≥ 2

Thus this has a jump at 1 and 2. Let f (x) = X(1,2) (x). We assume x ∈
[
0,3
√

2
]

where the

fact
√

2 is irrational is convenient. Note that here the integrator function and the function
being integrated are both discontinuous at the two points 1,2.
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Suppose
∫ 3
√

2
0 f dF exists, the ordinary Stieltjes integral, and let Pn consist of points{

k 3
√

2
n ,k = 0,1, · · · ,n

}
. Thus all division points are irrational. If this integral exists, then

we would need to have a number I such that

|S (Pn, f )− I|< ε

for all n large enough. However, we can choose the tags in such a way that S (Pn, f ) = 0
and another way such that S (Pn, f ) = 2. Therefore, this Riemann Stieltjes integral does not
exist.

However, consider the following piecewise linear continuous functions. fm is piece-
wise linear, equal to 0 on (−∞,1], 1 on [1+1/m,2−1/m] , and then 0 on [2,∞). Then∫ 3
√

2
0 fmdF does exist and it is clear that the integrals are increasing in m. Using the Proce-

dure 9.7.1, it follows that the Riemann Stieltjes integral
∫ 3
√

2
0 fmdF = 0. By the monotone

convergence theorem, since limm→∞ fm (x) = X(1,2) (x) , it follows that in terms of the gen-
eralized Riemann integral, ∫ 3

√
2

0
X(1,2) (x)dF

is defined and equals 0.
Why do we consider gauges instead of the norm of the partition? The next example will

illustrate this question. Compare with the above in which the Riemann Stieltjes integral
does not exist because of the freedom to pick tags on either side of the jump. A suitable
gauge function can prevent this.

Example 13.3.3 Consider the same example. This time, let

δ (x) =
{

min
( 1

2 |x−1| , 1
2 |x−2|

)
if x /∈ {1,2}

1/2 if x ∈ {1,2}

This gauge function forces 1,2 to be tags because if you have a tagged interval which
contains either 1 or 2, then if t is the tag, and if it is not either 1 or 2, then the interval
is not contained in (t−δ (t) , t +δ (t)). Also 1,2 are both interior points of the interval
containing them. Consequently if the division is δ fine, then the sum equals 0. From the
definition,

∫ 3
√

2
0 fmdF = 0.

As pointed out in Theorem 13.1.7, if the Riemann Stieltjes integral exists, then so does
the generalized Riemann Stieltjes integral and they are the same. Therefore, if you have
F (x) = x, and I is an interval contained in [a,b], then

∫ b
a XI (x)dF is the length of the

interval. In general, we have the following result about the indicator function of intervals.

Proposition 13.3.4 Suppose I is an interval and F (x) = x. Then XI∩[a,b] ∈ R∗ [a,b].

Proof: First suppose I = (p,q) . Then consider the sequence of continuous functions
which are increasing in n and converge pointwise to X(p,q) (x) .

graph of fn

limn→∞ fn(x) = X(p,q)(x)

p qp+ 1
n q− 1

n
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Then fn ∈ R∗ [a,b] and by the monotone convergence theorem, X(p,q)∩[a,b] ∈ R∗ [a,b].
Next suppose I = [p,q]. In any case, [p,q]∩ [a,b] is a closed interval which is con-

tained in [a,b]. There is nothing to show if this intersection is /0 because then X[p,q]∩[a,b]
is 0. Consider the complement, [p,q]C ∩ [a,b]. This equals either the intersection of one
or two open intervals with [a,b]. As shown above, each of these open intervals is the
increasing limit of continuous functions. Hence, by the monotone convergence theorem,
X

[p,q]C∩[a,b] ∈ R∗ [a,b] and so X[p,q]∩[a,b] = 1− X
[p,q]C∩[a,b] ∈ R∗ [a,b] because the sum of

generalized Riemann integrable functions is generalized Riemann integrable. Next suppose
I = (p,q]. Then I ∩ [a,b] = (p,b],(p,q], or [a,q] . The first and last case were just consid-
ered, the first by expressing the indicator function of the interval as the increasing limit of
continuous functions. It is only the second one which maybe is not clear. However, the
complement of this set is [a, p]∪ (q,b]≡U and X(p,q] = 1−XU where XU ∈ R∗ [a,b] and
so, even in this case, X(p,q] ∈ R∗ [a,b]. In case I = [p,q), the situation is exactly similar. ■

Suppose the following conditions.

1. F is continuous and increasing on (a,b) but may have jumps at a and b.

2. Let F̂ (a)≡ F (a+) , F̂ (b)≡ F (b−)

3. Let f ∈ R
(
[a,b] , F̂

)
Is f ∈ R∗ [a,b]? What is

∫ b
a f dF?

Let ηn > 0 be such that if ∥P∥< ηn, then∣∣∣∣S( f ,P, F̂
)
−
∫ b

a
f dF̂

∣∣∣∣< εn, εn→ 0

Now let δ n (x) ≡ min
( 1

2 |x−a| , 1
2 |x−b| ,ηn,

1
2 |b−a| if x /∈ {a,b}

)
,δ (a) = δ (b) = εn.

Then let P = {(Ii, ti)}mn
i=1 be a δ fine division of [a,b]. If a is in some Ii, then the tag

for Ii must be a since if it is t ̸= a, (t−δ (t) , t +δ (t)) cannot contain a. Also, the inter-
val containing a is not just a so in fact, a is the left end point of this interval. Similar
considerations apply to b. Hence P is of the form

a = xn
0 < xn

1 · · ·< xn
mn = b

and the tags for [a,x1] , [xmn−1,b] are a,b. Thus S ( f ,P,F) is of the form

(F (xn
1)−F (a)) f (a)+

mn−1

∑
k=2

f (tk)(F (xk)−F (xk−1))+ f (b)
(
F (b)−F

(
xn

mn−1
))

Since F = F̂ on (a,b) , we can add in some terms on the top and bottom of the sum and see
that this equals

(F (xn
1)−F (a)) f (a)+

mn

∑
k=1

f (tk)
(
F̂ (xk)− F̂ (xk−1)

)
+ f (b)

(
F (b)−F

(
xn

mn−1
))

−
(

f (b)
(
F (b−)−F

(
xn

mn−1
))

+ f (a)(F (xn
1)−F (a+))

)
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As ηn→ 0, that last term f (b)
(

F (b−)−F
(

xn
mn−1

))
+ f (a)(F (xn

1)−F (a+)) converges
to 0 and so the end result is

(F (a+)−F (a)) f (a)+
∫ b

a
f dF̂ + f (b)(F (b)−F (b−))

Thus this must be the generalized Riemann integral.

Procedure 13.3.5 Suppose

1. Suppose F is increasing and may have jumps at a and b but no jumps on (a,b).

2. Let F̂ (a)≡ F (a+) , F̂ (b)≡ F (b−)

3. Let f ∈ R
(
[a,b] , F̂

)
Then f ∈ R∗ [a,b] and∫ b

a
f dF = (F (a+)−F (a)) f (a)+

∫ b

a
f dF̂ + f (b)(F (b)−F (b−))

This says you add the weighted jumps at the end points to the ordinary Riemann inte-
gral taken with respect to F̂ which is continuous on [a,b]. What if you had two intervals
[a,b] , [b,c] and similar conditions holding on each. Then you would obtain∫ c

a
f dF = (F (a+)−F (a)) f (a)+

∫ b

a
f dF̂ + f (b)(F (b+)−F (b−))

+
∫ c

b
f dF̂ + f (c)(F (c)−F (c−))

The details are left to you. Note how you pick up the whole jump at b. You could of course
string together as many of these as you want. In each of the two integrals, F̂ is adjusted to
be continuous on the corresponding closed interval. What is new here? The thing which is
new is that f does not need to be continuous at points where F has a jump. It is not even
clear that the ordinary Rieman Stieltjes integral exists.

13.4 Integrals of Derivatives
Consider the case where F (t) = t. Here I will write dt for dF. The generalized Riemann
integral does something very significant which is far superior to what can be achieved with
other integrals. It can always integrate derivatives. Suppose f is defined on an interval,
[a,b] and that f ′ (x) exists for all x ∈ [a,b], taking the derivative from the right or left at the
endpoints. What about the formula∫ b

a
f ′ (t)dt = f (b)− f (a)? (13.15)

Can one take the integral of f ′? If f ′ is continuous there is no problem of course. However,
sometimes the derivative may exist and yet not be continuous. Here is a simple example.

Example 13.4.1 Let

f (x) =

{
x2 sin

(
1
x2

)
if x ∈ (0,1]

0 if x = 0
.

You can verify that f has a derivative on [0,1] but that this derivative is not continuous.
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The fact that derivatives are generalized Riemann integrable depends on the following
simple lemma called the straddle lemma by McLeod [22].

Lemma 13.4.2 Suppose f : [a,b]→ R is differentiable. Then there exist δ (x)> 0 such
that if u≤ x≤ v and u,v ∈ (x−δ (x) ,x+δ (x)), then∣∣ f (v)− f (u)− f ′ (x)(v−u)

∣∣< ε |v−u| .

Proof: Consider the following picture.
u x v

From the definition of the derivative, there exists δ (x)> 0 such that if |v− x|, |x−u|<
δ (x), then ∣∣ f (u)− f (x)− f ′ (x)(u− x)

∣∣< ε

2
|u− x|

and ∣∣ f ′ (x)(v− x)− f (v)+ f (x)
∣∣< ε

2
|v− x|

Now add these and use the triangle inequality along with the above picture to write∣∣ f ′ (x)(v−u)− ( f (v)− f (u))
∣∣< ε |v−u| . ■

The next proposition says 13.15 makes sense for the generalized Riemann integral.

Proposition 13.4.3 Suppose f : [a,b]→ R is differentiable. Then f ′ ∈ R∗ [a,b] and

f (b)− f (a) =
∫ b

a
f ′dx

where the integrator function is F (x) = x.

Proof: Let ε > 0 be given and let δ (x) be such that the conclusion of the above lemma
holds for ε replaced with ε/(b−a). Then let P = {(Ii, ti)}n

i=1 be δ fine. Then using the
triangle inequality and the result of the above lemma with ∆xi = xi− xi−1,∣∣∣∣∣ f (b)− f (a)−

n

∑
i=1

f ′ (ti)∆xi

∣∣∣∣∣ =

∣∣∣∣∣ n

∑
i=1

f (xi)− f (xi−1)− f ′ (ti)∆xi

∣∣∣∣∣
≤

n

∑
i=1

ε/(b−a)∆xi = ε. ■

With this proposition there is a very simple statement of the integration by parts for-
mula, the product rule gives a very simple version of integration by parts.

Corollary 13.4.4 Suppose f ,g are differentiable on [a,b]. Then f ′g ∈ R∗ [a,b] if and
only if g′ f ∈ R∗ [a,b] and in this case,

f g|ba−
∫ b

a
f g′dx =

∫ b

a
f ′gdx
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The following example, is very significant. It exposes an unpleasant property of the
generalized Riemann integral. You can’t multiply two generalized Riemann integrable
functions together and expect to get one which is generalized Riemann integrable. This is
like the case of summation. You know that if you multiply the terms of two conditionally
convergent series, the resulting series is not necessarily convergent. Also, just because
f is generalized Riemann integrable, you cannot conclude | f | is. Again, this is like the
situation with summation. This is very different than the case of the Riemann integral. It is
unpleasant from the point of view of pushing symbols. The reason for this unpleasantness
is that there are so many functions which can be integrated by the generalized Riemann
integral.

Example 13.4.5 Consider the function

f (x) =

{
x2 sin

(
1
x2

)
if x ̸= 0

0 if x = 0

Then f ′ (x) exists for all x ∈ R and equals

f ′ (x) =

{
2xsin

(
1
x2

)
− 2

x cos
(

1
x2

)
if x ̸= 0

0 if x = 0

Then f ′ is generalized Riemann integrable on [0,1] because it is a derivative. Now let ψ (x)
denote the sign of f ′ (x) . Thus

ψ (x)≡

 1 if f ′ (x)> 0
−1 if f ′ (x)< 0
0 if f ′ (x) = 0

Then ψ is a bounded function and you can argue it is Riemann integrable on [0,1] . How-
ever, ψ (x) f ′ (x) = | f ′ (x)| and this is not generalized Riemann integrable .

Although you can’t in general multiply two generalized integrable functions and get
one which is also a generalized integrable function as shown in the example, sometimes
you can. The following computation will show what the conditions should be.

Let h∈R∗ [a,b] with F an increasing integrator function which we assume is continuous
here. This last assumption could be generalized. What are conditions for g such that hg is
also R∗ [a,b]? Let εn→ 0 and let δ n be a gauge function such that if Pn is a tagged division
which is δ n fine, then ∣∣∣∣∫ b

a
hdF−S (P,h)

∣∣∣∣< εn

Without loss of generality, δ n (x)≤ εn. Say Pn consists of the division points a = xn
0 < · · ·<

xn
mn = b. By Henstock’s lemma, for tm

i the tags,∣∣∣∣∣ k

∑
i=1

h(tn
i )
(
F (xn

i )−F
(
xn

i−1
))
−
∫ xn

k

a
hdF

∣∣∣∣∣< εn

Let Hn
k ≡ ∑

k
i=1 h(tn

i )
(
F (xn

i )−F
(
xn

i−1
))

,Hn
0 ≡ 0. Thus, from the above, if k ≥ 1∣∣∣∣Hn

k −
∫ xn

k

a
hdF

∣∣∣∣= ∣∣enk

∣∣< εn (13.16)
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Then
mn

∑
k=1

h(tn
k )g(tn

k )
(
F (xn

k)−F
(
xn

k−1
))

=
mn

∑
k=1

(
Hn

k −Hn
k−1
)

g(tn
k )

=
mn

∑
k=1

Hn
k g(tn

k )−
mn−1

∑
k=0

Hn
k g
(
tn
k+1
)
=

mn−1

∑
k=1

Hn
k
(
g(tn

k )−g
(
tn
k+1
))

+Hn
mng
(
tn
mn

)
(13.17)

Applying 13.16, this equals

mn−1

∑
k=1

(∫ xn
k

a
hdF

)(
g(tn

k )−g
(
tn
k+1
))

+Hn
mng
(
tn
mn

)
(13.18)

+
mn−1

∑
k=1

(
enk

)(
g(tn

k )−g
(
tn
k+1
))

(13.19)

I want to estimate the last term. To do this, suppose g is either increasing or decreasing.
Then this last term is dominated by

εn |g(b)−g(a)|

and so it converges to 0 as n→ ∞. The function x→
∫ x

a hdF is continuous. See Problem
4 on Page 320 and the following problem. Therefore, since δ n ≤ εn the last term in 13.18
converges to (∫ b

a
hdF

)
g(b−)

The remaining term in 13.18 is just a Riemann sum for a continuous function having an
integrator function given by an increasing function. Therefore, since δ n→ 0 the norm of
the partitions consisting of the division points converges to 0 and so this Riemann sum,
added to the other terms in 13.18 and 13.19 converges to∫ b

a

∫ x

a
hdFdg+

(∫ b

a
hdF

)
g(b−)

thanks to Theorem 9.3.7 about the existence of the Riemann Stieltjes integral.
Of course you can also use Proposition 9.3.2 about functions of bounded variation being

the difference of two increasing functions to conclude g could be a real valued bounded
variation function. This proves the following theorem.

Theorem 13.4.6 Let f ∈ R∗ [a,b] where the increasing integrator function F is con-
tinuous and suppose g is of bounded variation. Then f g ∈ R∗ [a,b] also.

The proof of this theorem, patterned after the proof of the Dirichlet test for convergence
of series, shows why you have to assume something more on g. This requirement, along
with the fact that f ∈ R∗ [a,b] does not imply | f | ∈ R∗ [a,b] is really OBNOXIOUS. The
reason for this is that the generalized Riemann integral can be like conditional convergence.
Recall how strange things could take place. In the next chapter I will present a general
abstract framework for Lebesgue integration. This is like absolutely convergent series and
so many of the strange things will disappear and the resulting integral is much easier to use
in applications. It also is the integral for the study of probability.
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13.5 Exercises
1. Prove that if fn ∈R∗ [a,b] and { fn} converges uniformly to f , and | fn− fm| ∈R∗ [a,b]

for each m,n, then f ∈ R∗ [a,b] and limn→∞

∫
I fn =

∫
I f .

2. Suppose the integrator function is F (x) = x. Show that for I any interval, XI is
Riemann Stieltjes integrable and if I ⊆ [a,b] , then

∫ b
a XIdx is the length of I.

3. In Example 13.4.5 there is the function given

g(x)≡

{
2xsin

(
1
x2

)
− 2

x cos
(

1
x2

)
if x ̸= 0

0 if x = 0

It equals the derivative of a function as explained in this example. Thus g is general-
ized Riemann integrable on [0,1]. Show that h(x) = max(0,g(x)) and h(x) = |g(x)|
are not generalized Riemann integrable.

4. Let f ∈R∗ [a,b] and consider the function x→
∫ x

a f (t)dt. Is this function continuous?
Explain. Hint: Let ε > 0 be given and let a gauge δ be such that if P is δ fine then∣∣∣∣S (P, f )−

∫ b

a
f dx
∣∣∣∣< ε/2

Now pick h < δ (x) for some x ∈ (a,b) such that x+h < b. Then consider the single
tagged interval, ([x,x+h] ,x) where x is the tag. By Corollary 13.1.15∣∣∣∣ f (x)h−

∫ x+h

x
f (t)dt

∣∣∣∣< ε/2.

Now you finish the argument and show f is continuous from the right. A similar
argument will work for continuity from the left.

5. Generalize Problem 4 to the case where the integrator function is continuous. What
if the integrator function is not continuous at x? Can you say that continuity holds at
every point of continuity of F?

6. If F is a real valued increasing function, show that it has countably many points of
discontinuity.

7. If C ≡ {ri}∞

i=1 is a countable set in [a,b] , show that XC is in R∗ [a,b] . Hint: Let
Cn = {r1, · · · ,rn} and explain why XCn is generalized Riemann integrable. Then use
the monotone convergence theorem.

8. Prove the first mean value theorem for integrals for the generalized Riemann integral
in the case that x→

∫ x
a f (t)dF is continuous.

9. Suppose f , | f | ∈ R∗ [a,b] and f is continuous at x ∈ [a,b] . Show G(y)≡
∫ y

a f (t)dt is
differentiable at x and G′ (x) = f (x).

10. Suppose f has n+1 derivatives on an open interval containing c. Show using induc-
tion and integration by parts that

f (x) = f (c)+
n

∑
k=1

f k (c)
k!

(x− c)k +
1
n!

∫ x

c
f (n+1) (t)(x− t)n dt.
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Is this formula even valid for ordinary Riemann or Darboux integrals? Hint: It is
fine if you assume f n+1 is continuous.

11. The ordinary Riemann integral is only applicable to bounded functions. However,
the Generalized Riemann integral has no such restriction. Let f (x) = x−1/2 for x > 0
and 0 for x = 0. Find

∫ 1
0 x−1/2dx. Hint: Let fn (x) = 0 for x ∈ [0,1/n] and x−1/2 for

x > 1/n. Now consider each of these functions and use the monotone convergence
theorem.

12. Do the above problem directly from the definition without involving the monotone
convergence theorem. This involves choosing an auspicious gauge function. Define
the function to equal 0 at 0. It is undefined at this point so make it 0 there.

13. Can you establish a version of the monotone convergence theorem which has a de-
creasing sequence of functions, { fk} rather than an increasing sequence?

14. For E a subset of R and F an increasing integrator function, define E to be “measur-
able” if XE∩[a,b] ∈ R∗ [a,b] for each interval [a,b] and in this case, let

µ (E)≡ sup
{∫ n

−n
XE (t)dF : n ∈ N

}
Show that if each Ek is measurable and the Ek are disjoint, then so is ∪∞

k=1Ek and if E
is measurable, then so is R\E. Show that intervals are all “measurable”. Hint: This
will involve the monotone convergence theorem. Thus the collection of measurable
sets is closed with respect to countable disjoint unions and complements.

15. Nothing was said about the function being bounded in the presentation of the gen-
eralized Riemann integral. In Problem 51 on Page 227, it was shown that you need
to have the function bounded if you are going to have the definition holding for a
Riemann integral to exist. However, in the case of the generalized Riemann integral,
this is not necessary. Suppose F (x) = x so you have the usual Riemann type integral
and let

f (x) =
{

1/
√

x if x ∈ (0,1]
0 if x = 0

Letting ε > 0, consider δ (x) = min(|x| ,ε) for x ̸= 0 and δ (0) = ε . If you have a > 0
then

∫ b
a

1√
x dx = 1√

t (b−a) for some t ∈ (a,b) thanks to the mean value theorem for
integrals. This t could be a tag for the interval [a,b] or it might be close enough to
a tag γ that

∣∣∣ 1√
t −

1√
γ

∣∣∣ is small. Modify δ on [ε,1] a compact set on which 1/
√

x is

continuous. Compare the Riemann sums with the tags and
∫ 1

ε
1/
√

xdx. When you
do this, it really looks a lot like the standard method of finding an improper Riemann
integral.

16. Let F be an increasing integrator function. In Proposition 13.3.4 an argument was
given which showed that if I is an interval contained on the interior of an interval
(a,b) , then XI was in R∗ [a,b]. However, this was not computed. In this problem we
do this. Let a < α < β < b. For x /∈ {α,β} , let

δ (x)≡min(|x−α| , |x−β |)
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and let δ (α) = δ (β ) = ε > 0. If you have any δ fine division P of [a,b] , note that
if t is a tag such that t /∈ {α,β} , then (t−δ (t) , t +δ (t)) cannot contain α and it
cannot contain β . Therefore, both α,β are tags. Furthermore, explain why each of
α and β is an interior point of the interval for which they are tags. Now explain why
the division points are

a = x0 < · · ·< xk < α < xk+2 < · · ·< xm < β < xm+2 < · · ·< xn = b

where (xk+2− xk) < 2ε,(xm+2− xm) < 2ε . Now explain why if I = (α,β ) , then
S (P,XI)=F (xm)−F (xk+2) and if I =(α,β ], S (P,XI)=F (xm+2)−F (xk+2) and if
I = [α,β ), then S (P, f )=F (xm)−F (xk) and if I = [α,β ] , then S (P, f )=F (xm+2)−
F (xk). Now as ε → 0, show these converge respectively to F (β−)− F (α+),
F (β+)−F (α+), F (β−)−F (α−) , and F (β+)−F (α−). Thus indicator func-
tions of intervals are generalized Riemann integrable and we can even compute them.
Consider a case where (α,β ) is not contained in [a,b] and use the same method to
compute

∫ b
a X(α,β )dF . Also consider intervals of the form (α,∞).

17. The gamma function is defined for x > 0 as

Γ(x)≡
∫

∞

0
e−ttx−1dt ≡ lim

R→∞

∫ R

0
e−ttx−1dt

Show the integral from 0 to R exists as a generalized Riemann integral directly from
the definition. Also show that

Γ(x+1) = xΓ(x) , Γ(1) = 1.

How does Γ(n) for n an integer compare with (n−1)!? This was all done earlier for
the improper Riemann integrals. Why is there no change with generalized Riemann
integrals?



Chapter 14

The Lebesgue Integral
This short chapter is on the Lebesgue integral. The emphasis is on the abstract Lebesgue
integral which is a general sort of construction depending on a measure space. It is an
introduction to this topic. I will use the generalized Riemann integral to give non trivial
examples in which the measure space is linked to the real line, thus tying it in to the topic
of this book, advanced calculus for functions of one variable. Probably, these are the most
important examples. However, the complete development of this topic is in other sources
like [25] or [17]. This is also in my on line analysis books. As mentioned earlier, this inte-
gral can’t do some of the things the generalized Riemann integral can, but it is a lot easier
to use if you are interested in things like function spaces or probability which are typically
built on this integral. Also, you can consider absolute values of integrable functions and
get functions for which the integral at least makes sense since this integral is free of some
of the pathology associated with the generalized Riemann integral. The right way to do all
of this is by the use of functionals defined on continuous functions which vanish off some
interval and to use the Riemann Stieltjes integrals, but to save trouble, I will emphasize the
measure of sets directly because the machinery of the generalized integral has been devel-
oped. The example of measures on R is based on Dynkin’s lemma, a very useful result in
probability which is interesting for its own sake. This integral is like absolute convergent
series whereas the generalized Riemann integral is more like the inclusion of conditionally
convergent series.

14.1 Measures
The definition of a measure is given next. It is a very general notion so I am presenting
it in this way. The case of main interest here is where Ω = R. However, if you want
to study mathematical statistics or probability, it is very useful to understand this general
formulation. Surely the study of the integral should lead somewhere. It turns out that the
machinery developed makes it very easy to extend to Lebesgue measure on appropriate
subsets of Rp also, but this will not be done in this book because this is a book on one
variable ideas. See my on line analysis books to see this done.

Definition 14.1.1 Let Ω be a nonempty set. A σ algebra F is a set whose elements
are subsets of Ω which satisfies the following.

1. If Ei ∈F , for i = 1,2, · · · , then ∪∞
i=1Ei ∈F .

2. If E ∈F , then EC ≡Ω\E ∈F

3. /0,Ω are both in F

µ : F → [0,∞] is called a measure if whenever Ei ∈F and Ei ∩E j = /0 for all i ̸= j,
then

µ (∪∞
i=1Ei) =

∞

∑
i=1

µ (Ei)

that sum is defined as supn ∑
n
i=1 µ (Ei) . It could be a real number or +∞. Such a pair

(Ω,F ) is called a measurable space. If you add in µ, written as (Ω,F ,µ) , it is called a
measure space.

323
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Example 14.1.2 As a simple example, let Ω =N and let F =P (N) the set of all subsets,
and let µ (E) be the number of elements of E. You might verify that this is a measure space.

Observation 14.1.3 If (Ω,F ) is a measurable space and Ei ∈F , then ∩∞
i=1Ei ∈F .

This is because Ei ∈F and by DeMorgan’s laws,

∩∞
i=1Ei =

(
∪∞

i=1EC
i
)C ∈F since each EC

i ∈F

Measures have the following fundamental property.

Lemma 14.1.4 If µ is a measure and Fi ∈ F , then µ (∪∞
i=1Fi) ≤ ∑

∞
i=1 µ (Fi). Also if

Fn ∈F and Fn ⊆ Fn+1 for all n, then if F = ∪nFn,

µ (F) = lim
n→∞

µ (Fn)

Symbolically, if Fn ↑ F, then µ (Fn) ↑ µ (F). If Fn ⊇ Fn+1 for all n, then if µ (F1) < ∞ and
F = ∩nFn, then

µ (F) = lim
n→∞

µ (Fn)

Symbolically, if µ (F1)< ∞ and Fn ↓ F, then µ (Fn) ↓ µ (F).

Proof: Let G1 = F1 and if G1, · · · ,Gn have been chosen disjoint, let

Gn+1 ≡ Fn+1 \∪n
i=1Gi

Thus the Gi are disjoint. In addition, these are all measurable sets. Now

µ (Gn+1)+µ (Fn+1∩ (∪n
i=1Gi)) = µ (Fn+1)

and so µ (Gn)≤ µ (Fn). Therefore,

µ (∪∞
i=1Gi) = µ (∪∞

i=1Fi) = ∑
i

µ (Gi)≤∑
i

µ (Fi) .

Now consider the increasing sequence of Fn ∈F . If F ⊆ G and these are sets of F

µ (G) = µ (F)+µ (G\F)

so µ (G)≥ µ (F). Also
F = ∪∞

i=1 (Fi+1 \Fi)+F1

Then

µ (F) =
∞

∑
i=1

µ (Fi+1 \Fi)+µ (F1)

Now µ (Fi+1 \Fi)+µ (Fi) = µ (Fi+1). If any µ (Fi) = ∞, there is nothing to prove. Assume
then that these are all finite. Then

µ (Fi+1 \Fi) = µ (Fi+1)−µ (Fi)

and so µ (F) =

∞

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1) = lim
n→∞

n

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1) = lim
n→∞

µ (Fn+1)
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Next suppose µ (F1)< ∞ and {Fn} is a decreasing sequence. Then F1 \Fn is increasing
to F1 \F and so by the first part,

µ (F1)−µ (F) = µ (F1 \F) = lim
n→∞

µ (F1 \Fn) = lim
n→∞

(µ (F1)−µ (Fn))

This is justified because µ (F1 \Fn)+µ (Fn) = µ (F1) and all numbers are finite by assump-
tion. Hence µ (F) = limn→∞ µ (Fn). ■

Now I will specify a collection of subsets of R which I will refer to as measurable.

Definition 14.1.5 Given an integrator function F let

S ≡ {E ⊆ R : XE ∈ R∗ [p,q] for all closed intervals [p,q]}

I will call these sets “measurable”.

Then these so called measurable sets satisfy the following:

Lemma 14.1.6 The following hold.

1. All open intervals are in S .

2. If {Ei}∞

i=1 are disjoint sets in S then ∪∞
i=1Ei ∈S also.

3. If E ∈S , then EC ≡ R\E is also in S .

Proof: Consider 1. Let (a,b) be an open interval. There are several possibilities for
(a,b)∩ [p,q]

1. (a,b)∩ [p,q] = (α,β )⊆ [p,q],

2. (a,b)∩ [p,q] = (α,q]⊆ [p,q],

3. (a,b)∩ [p,q] = [p,β )⊆ [p,q] , or

4. (a,b)∩ [p,q] = [p,q] .

In case 1., let ψn vanish off (a,b), be continuous, and increase to X(α,β ). Then ψn ∈
R([p,q]) so it is in R∗ ([a,b]) and by the monotone convergence X(α,β ) ∈ R∗ ([a,b]).

Next consider 2. Is X(α,q] ∈ R∗ [p,q]? Yes, and a similar argument to 1.) will hold. just
get a sequence of functions continuous on [p,q] and increasing to X(α,q] and use a similar
argument.

Case 3.) is entirely similar.
The last case is obvious from Lemma 9.7.2. In fact,

∫ q
p X[p,q]dF = F (q+)−F (p−),

this being the ordinary Riemann Stieltjes integral.
Letting E ≡ ∪∞

i=1Ei, the Ei being disjoint, why is XE ∈ R∗ [p,q]? It follows from what
was done above that X∪m

i=1Ei∩[a,b] ∈ R∗ [p,q] because, since the sets are disjoint, X∪m
i=1Ei

equals ∑
m
i=1 XEi and it was shown that the sum of functions in R∗ [p,q] is in R∗ [p,q]. Now

apply the monotone convergence theorem as m→ ∞ to conclude that X∪∞
i=1Ei ∈ R∗ [p,q] .

Next consider 3. If E ∈S , then XEC = 1−XE and the two summands on the right
are in R∗ [p,q] so the function on the left is also. ■
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14.2 Dynkin’s Lemma
Rather than attempt to show S is a σ algebra, I will show that S contains a σ algebra. This
is fairly easy because of a very elegant lemma due to Dynkin which is part of the abstract
theory of measures and integrals. This lemma is more interesting than the assertion that S
contains a σ algebra.

Lemma 14.2.1 Let C be a set whose elements are σ algebras each containing some
subset K of the set of all subsets. Then ∩C is a σ algebra which contains K .

Proof: /0,Ω are in ∩C because these are each in each σ algebra of C . If Ei ∈ ∩C , then
if F ∈ C it follows that ∪∞

i=1Ei ∈F and so, since F is arbitrary, this shows this union is
in ∩C . If E ∈ ∩C , then EC ∈F for each F ∈ ∩C and so, as before, EC ∈ ∩C . Thus ∩C
is a σ algebra. ■

Definition 14.2.2 Let Ω be a set and let K be a collection of subsets of Ω. Then
K is called a π system if /0,Ω∈K and whenever A,B∈K , it follows A∩B∈K . σ (K )
will denote the intersection of all σ algebras containing K . The set of all subsets of Ω

is one such σ algebra which contains K . Thus σ (K ) is the smallest σ algebra which
contains K .

The following is the fundamental lemma which shows these π systems are useful. This
is due to Dynkin. Note that the open intervals in R constitute a π system.

Lemma 14.2.3 Let K be a π system of subsets of Ω, a set. Also let G be a collection
of subsets of Ω which satisfies the following three properties.

1. K ⊆ G

2. If A ∈ G , then AC ∈ G

3. If {Ai}∞

i=1 is a sequence of disjoint sets from G then ∪∞
i=1Ai ∈ G .

Then G ⊇ σ (K ) , where σ (K ) is the smallest σ algebra which contains K .

Proof: First note that if

H ≡ {G : 1 - 3 all hold for G }

then ∩H yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume in
the argument that G is the smallest collection satisfying 1 - 3. Let A ∈K and define

GA ≡ {B ∈ G : A∩B ∈ G } .

I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈K and B ∈ G , A∩B ∈ G . This information will then be used to show that if A,B ∈ G
then A∩B ∈ G . From this it will follow very easily that G is a σ algebra which will imply
it contains σ (K ). Now here are the details of the argument.

Since K is given to be a π system, K ⊆ G A. Property 3 is obvious because if {Bi}
is a sequence of disjoint sets in GA, then A∩∪∞

i=1Bi = ∪∞
i=1A∩Bi ∈ G because A∩Bi ∈ G

and the property 3 of G .
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It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA. In other
words, I need to show that A∩BC ∈ G . However, from De Morgan’s laws,

A∩BC =
(
AC ∪B

)C
=
(
AC ∪ (A∩B)

)C
Now AC ∈ G because A ∈K ⊆ G and G is closed with respect to complements. Also,
since B∈GA,A∩B∈G and so AC∪(A∩B)∈G because G is closed with respect to disjoint
unions. Therefore,

(
AC ∪ (A∩B)

)C ∈ G because G is closed with respect to complements.
Thus BC ∈ GA as hoped. Thus GA satisfies 1 - 3 and this implies, since G is the smallest
such, that GA ⊇ G . However, GA is constructed as a subset of G . This proves that for every
B ∈ G and A ∈K , A∩B ∈ G . Now pick B ∈ G and consider

GB ≡ {A ∈ G : A∩B ∈ G } .

I just proved K ⊆ GB. The other arguments are identical to show GB satisfies 1 - 3 and is
therefore equal to G . This shows that whenever A,B ∈ G it follows A∩B ∈ G .

This implies G is a σ algebra. To show this, all that is left is to verify G is closed under
countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G . Then let A′1 = A1
and

A′n+1 ≡ An+1 \ (∪n
i=1Ai) = An+1∩

(
∩n

i=1AC
i
)
= ∩n

i=1
(
An+1∩AC

i
)
∈ G

because the above showed that finite intersections of sets of G are in G . Since the A′i are
disjoint, it follows ∪∞

i=1Ai = ∪∞
i=1A′i ∈ G Therefore, G ⊇ σ (K ). ■

14.3 The Lebesgue Stieltjes Measures and Borel Sets
The σ algebra of interest here consists of B (R) , the Borel sets of R. B (R) is defined as
the smallest σ algebra which contains the open sets.

Definition 14.3.1 Let B (R) denote σ (O) where O denotes the set of all open sets
of R.

Then the following lemma is available.

Lemma 14.3.2 Let I denote the set of open intervals. Then σ (I ) = B (R).

Proof: By Theorem 6.5.9, every open set is a countable or finite union of open intervals.
Therefore, each open set is contained in σ (I ). It follows that σ (I )⊇B (R)≡ σ (O)⊇
σ (I ). ■

Let G be those Borel sets E satisfy XE∩[p,q] ∈ R∗ [p,q]. Thus G ⊆B (R) = σ (I ).
By Lemma 14.1.6 G contains the open intervals I and is closed with respect to countable
disjoint unions and complements. Hence, from Dynkin’s lemma, G ⊇ σ (I ) and so S ⊇
B (R), see Definition 14.1.5. This has proved the following.

Theorem 14.3.3 Every set E in B (R) is measurable which means that the indica-
tor function XE is in R∗ [p,q] for any [p,q] .

From this, it is easy to define the Lebesgue Stieltjes measures on the Borel sets. I will
give the definition first and then show that it really is a measure.
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Definition 14.3.4 Let µ = µF be defined on B (R) as follows.

µ (E)≡ sup
n∈N

∫ n

−n
XE∩[−n,n] (x)dF = lim

n→∞

∫ n

−n
XE∩[−n,n] (x)dF

Does this definition make sense? I need to verify the limit exists because{∫ n

−n
XE∩[−n,n] (x)dF

}∞

n=1

is an increasing sequence. If unbounded, then the limit is ∞ and if bounded, it is the real
limit of the sequence. Thus the definition does make sense.

Lemma 14.3.5
{∫ n
−n XE∩[−n,n] (x)dF

}∞

n=1 is increasing in n. Also, if E is a bounded set

contained in [−(n−1) ,n−1] , then
∫ n+1
−(n+1)XE∩[−(n+1),n+1] (x)dF =

∫ n
−n XE∩[−n,n] (x)dF.

Proof:
∫ n+1
−(n+1)XE∩[−(n+1),n+1] (x)dF =

∫ −n

−(n+1)
XE∩[−(n+1),n+1] (x)dF +

∫ n

−n
XE∩[−(n+1),n+1] (x)dF

+
∫ n+1

n
XE∩[−(n+1),n+1] (x)dF ≥

∫ n+1

−(n+1)
XE∩[−n,n] (x)dF

If E ⊆ [−(n−1) ,n−1] , then∫ n+1

−(n+1)
XE∩[−(n+1),n+1] (x)dF =

∫ n+1

−(n+1)
XE∩[−(n−1),n−1] (x)dF

=
∫ −n

−(n+1)
XE∩[−(n−1),n−1] (x)dF +

∫ n

−n
XE∩[−(n−1),n−1] (x)dF

+
∫ n+1

n
XE∩[−(n−1),n−1] (x)dF

=
∫ n

−n
XE∩[−(n−1),n−1] (x)dF =

∫ n

−n
XE∩[−n,n] (x)dF

because on [−(n+1) ,−n] and [n,n+1] all the sums in defining the integrals are 0. Thus,
if E is bounded, the integrals giving the measure as a limit are eventually constant and
µ (E)< ∞. ■

Next I need to verify that this is a measure. Let {Ei}∞

i=1 be disjoint sets in B (R). Then
∪∞

i=1Ei ∈B (R) and so, from the monotone convergence theorem for generalized Riemann
integrals,

µ (∪∞
i=1Ei) ≡ sup

n

∫ n

−n
X∪∞

i=1Ei∩[−n,n] (x)dF = sup
n

lim
m→∞

∫ n

−n
X∪m

i=1Ei∩[−n,n] (x)dF

= sup
n

lim
m→∞

∫ n

−n

m

∑
i=1

XEi∩[−n,n]dF = sup
n

sup
m

∫ n

−n

m

∑
i=1

XEi∩[−n,n]dF
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= sup
n

sup
m

m

∑
i=1

∫ n

−n
XEi∩[−n,n]dF = sup

m
sup

n

m

∑
i=1

∫ n

−n
XEi∩[−n,n]dF

= sup
m

lim
n→∞

m

∑
i=1

∫ n

−n
XEi∩[−n,n]dF = sup

m

m

∑
i=1

lim
n→∞

∫ n

−n
XEi∩[−n,n]dF

= sup
m

m

∑
i=1

µ (Ei)≡
∞

∑
i=1

µ (Ei)

In this computation, I have used the interchange of limits with supremums in case of an
increasing sequence. Also, I have used the monotone convergence theorem. Therefore,
this has only shown the desired result in case µ (∪∞

i=1Ei) is finite because of the mono-
tone convergence theorem we currently have. However, in case this is infinity, let l be a
real number. Then by definition, there is n large enough that

∫ n
−n X∪∞

i=1Ei∩[−n,n] (x)dF > l.
If
∫ n
−n X∪m

i=1Ei∩[−n,n] (x)dF ≤ l for each m, then by the monotone convergence theorem,∫ n
−n X∪∞

i=1Ei∩[−n,n] (x)dF ≤ l also, from the monotone convergence theorem for generalized
integrals, which would be a contradiction. Hence for large enough m,

∞

∑
i=1

µ (Ei)≥
∫ n

−n
X∪m

i=1Ei∩[−n,n] (x)dF =
m

∑
i=1

∫ n

−n
XEi∩[−n,n]dF > l

Since l is arbitrary, it follows that in this case, both µ (∪∞
i=1Ei) and ∑

∞
i=1 µ (Ei) equal ∞. To

understand measure of intervals here is a lemma.
For [c,d]⊆ (−n,n) it is not clear that

∫ n
−n X[c,d]dF the Riemann Stieltjes integral even

exists. This is because X[c,d] is not continuous and we do not assume F is continuous
either. In particular, you could have F have a jump at c or at d. But with the generalized
integral, one can get the appropriate result.

Theorem 14.3.6 Let F be an increasing integrator function. Then

1. µF ([c,d]) = F (d+)−F (c−)

2. µF ((c,d)) = F (d−)−F (c+)

3. µF ((c,d]) = F (d+)−F (c+)

4. µF ([c,d)) = F (d−)−F (c−)

Proof: For large n,µF ([c,d]) =
∫ n
−n X[c,d]dF, [c,d] ⊆ (−n,n). Define the gauge func-

tion
δ ε (x)≡min(|x− c| , |x−d|) if x /∈ {c,d} and δ ε (c) = δ ε (d) = ε > 0

Let Pε be a δ ε fine division of [−n,n]. Then both c,d are tags because, due to the def-
inition of δ ε , neither of these can be closer than δ ε (t) for any t /∈ {c,d} because of
the definition of δ ε . For example, if c is not a tag, then there is some tag x such that
c∈ (x−δ ε (x) ,x+δ ε (x)) and so δ ε (x)> |c− x| which does not happen. Similarly d must
also be a tag. If Ic is the interval containing c then c is on the interior of Ic. Otherwise, the
adjacent interval having t for a tag and c an endpoint, would have c∈ (t−δ ε (t) , t +δ ε (t))
which would say that |c− t| < δ ε (t) which does not happen due to the definition of δ ε .
Similarly d is an interior point of Id the closed interval containing d. Thus the division
points x j are

−n = x0 < · · ·< xk < c < xk+1 < xk+2 < · · ·< xm < d < xm+1 < xm+2 < · · ·< xl = n
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where xk+1− xk ≤ 2ε and xm+1− xm ≤ 2ε . In writing down a sum corresponding to this
δ ε division, it reduced to F (xm+1)−F (xk). Letting ε → 0 yields the integral and it equals
F (d+)−F (c−). this shows 1.).

For 2.) (c,d) = ∪k
[
c+ 1

k ,d−
1
k

]
for all j suitably large. Thus from Lemma 14.1.4,

µF ((c,d)) = lim
k→∞

µF

([
c+

1
k
,d− 1

k

])
= lim

k→∞

(
F
((

d− 1
k

)
+

)
−F

((
c+

1
k

)
−
))

= lim
k→∞

(
F
(

d− 1
k

)
−F

(
c+

1
k

))
= F (d−)−F (c+)

For 3.) similar reasoning to the above using (c,d] = ∪k
[
c+ 1

k ,d
]
,

µF ((c,d]) = lim
k→∞

F (d+)−F
(

c+
1
k

)
= F (d+)−F (c+) .

Part 4.) is entirely similar. ■

14.4 Regularity
This has to do with approximating with certain special sets. This is of utmost importance if
you want to use the Lebesgue integral in any significant way, especially for various function
spaces. I will show that under reasonable conditions this needed regularity is automatic.

Definition 14.4.1 A set is called Fσ if it is the countable union of closed sets. A
set is called Gδ if it is the countable intersection of open sets.

Lemma 14.4.2 If A is an Fσ set, then if I is any interval, finite or infinite, A∩ I is also
an Fσ set. If A is a Gδ set, then if I is any interval, then I∩A is also a Gδ set.

Proof: Consider the following example in which I = [a,b). Say A = ∪∞
k=1Hk where Hk

is closed. I = ∪∞
j=1

[
a,b− 1

j

]
and so

A∩ I = (∪∞
k=1Hk)∩∪∞

j=1

[
a,b− 1

j

]
= ∪∞

j=1

[
a,b− 1

j

]
∩∪∞

k=1Hk

= ∪∞
j=1∪∞

k=1

(
Hk ∩

[
a,b− 1

j

])
which is still an Fσ set. It is still a countable union of closed sets. Other cases are similar.

Now consider the case where A is Gδ . Say A = ∩∞
k=1Vk for Vk open. Consider the same

half open interval. In this case, [a,b) = ∩∞
j=1

(
a− 1

j ,b
)

. Then

A∩ I = ∩∞
k=1Vk ∩∩∞

j=1

(
a− 1

j
,b
)
= ∩∞

j=1∩∞
k=1

(
Vk ∩

(
a− 1

j
,b
))

which is a Gδ set, still being a countable intersection of open sets. Other cases are similar.
■
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In particular, the above lemma shows that all intervals are both Gδ and Fσ as are finite
unions of intervals. Indeed, R is both open and closed so in the lemma, you could take
A = R. Also note that /0 is both open and closed. In what follows, µ is a measure which
is defined on B (R) such that µ is finite on all bounded sets. We don’t really need to
worry about where it comes from. However, this is a good time to review the properties of
measures in Lemma 14.1.4. I will use these as needed.

A measure satisfying the conclusions of the following theorem is called a regular mea-
sure.

Theorem 14.4.3 Let µ be a measure defined on B (R) which is finite on bounded
sets. Then for all E a Borel set, there is an Fσ set F and a Gδ set G such that

F ⊆ E ⊆ G, and µ (G\F) = 0 (14.1)

Also for all E Borel,

µ (E) = sup{µ (K) ,K ⊆ E and K compact}
µ (E) = inf{µ (V ) ,V ⊇ E and V open} (14.2)

Proof: Letting I denote the open intervals, recall that σ (I ) = B (R). Let

Ak = [−(k+1) ,−k)∪ [k,k+1), k = 0,1, ...

These Ak are disjoint and partition R, each being both Gδ and Fσ . The following is a
definition of Borel sets such that the set intersected with each of these Ak is perfectly ap-
proximated from the inside and outside by a Fσ and Gδ set respectively. Thus

G ≡
{

E ∈B (R) : Fk ⊆ E ∩Ak ⊆ Gk,
µ (Gk \Fk) = 0,Gk ⊆ Ak

}
,

for some Gk a Gδ set and Fk an Fσ set, this holding for all k ∈ 0,1,2, · · · . From Lemma
14.4.2, I ⊆ G .

I want to show that G is closed with respect to countable disjoint unions and comple-
ments. Consider complements first. Say E is Borel and

Fk ⊆ E ∩Ak ⊆ Gk, µ (Gk \Fk) = 0, Gk ⊆ Ak

From Lemma 14.4.2, each Ak is both Gδ and Fσ . Thus

Ak ∩GC
k ⊆ EC ∩Ak ⊆ Ak ∩FC

k

From Lemma 14.4.2, the left end is Fσ and the right end is Gδ . This is because the com-
plement of a Gδ is an Fσ and the complement of an Fσ is a Gδ . Now

µ
(
Ak ∩FC

k \
(
Ak ∩GC

k
))

= µ
((

Ak ∩FC
k
)
∩
(
AC

k ∪Gk
))

= µ
(
Ak ∩FC

k ∩Gk
)
= µ (Gk \Fk) = 0

since Gk ⊆ Ak. Thus G is closed with respect to complements.
Next let Ei ∈ G and let the Ei be disjoint. Is ∪∞

i=1Ei ≡ E ∈ G ? Say for each k

Fk ⊆ Ei∩Ak ⊆ Gk, µ (Gk \Fk) = 0, Gk ⊆ Ak
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Then F ≡ ∪kFk is Fσ because it is still a countable union of closed sets. Recall that the
countable union of countable sets is countable. Also µ (E \F)≤ ∑k µ (Ek \Fk) = 0. How-
ever, it may not be clear why ∪kGk would be Gδ . However, the above implies that there
exists an open set Vi ⊇ Ei∩Ak such that µ (Ei∩Ak)+

ε

2k2i+1 > µ (Vi) . Then if Vk ≡∪∞
i=1Vi,

µ (Vk)≤∑
i

µ (Vi)<
∞

∑
i=0

(
µ (Ei∩Ak)+

ε

2k2i+1

)
=

ε

2k +µ (E ∩Ak) , Vk ⊇ E ∩Ak

µ (Vk \ (E ∩Ak))<
ε

2k

Then µ
(
∪∞

k=0Vk \E
)
≤ ∑

∞
k=0 µ (Vk \ (E ∩Ak)) < 2ε . It follows that there exists open Wn

containing E such that µ (Wn \E) < 1/n. These Wn can be assumed decreasing. Thus if
G ≡ ∩nWn,µ (G\E) = 0. Hence G ⊇ E ⊇ F and µ (G\F) = µ (G\E) + µ (E \F) =
0. Thus G is closed with respect to complements and countable disjoint unions so from
Lemma 14.2.3 it contains σ (I ) = B (R) but G was defined to consist of sets of B (R) so
G = B (R).

The first claim 14.1 was just shown. Let l < µ (E) then µ (E ∩ [−n,n]) > l for large
enough n and so there is a closed set K contained in E ∩ [−n,n] such that l < µ (K) also.
This shows the first of 14.2. There is nothing to show in the second if µ (E) =∞. So assume
µ (E) is finite. Then letting G be from the first part, G = ∩nWn where Wn is open and these
are decreasing open sets. We can assume µ (W1) < µ (E) + 1 from the argument given
above to show 14.1. Thus µ (G) = µ (E) = limn→∞ µ (Wn) and so for large n,µ (E)+ ε >
µ (Wn). This shows the second part of 14.1. ■

This shows that all those Lebesgue Stieltjes measures are regular.
Next is to define the kind of function which can be integrated. The measure space of

this section dealing with the Lebesgue Stieltjes measures is specific to R but what comes
next is the general notion in an abstract measure space.

14.5 Measurable Functions
You can integrate nonnegative measurable functions. All this will be presented in general.
Thus the functions are defined on a measure space. I am going to present this in the general
setting but you can apply it to the measure space just developed consisting of the Lebesgue
Stieltjes measure on R or on the counting measure of Example 14.1.2.

Notation 14.5.1 In whatever context f−1 (S) ≡ {ω : f (ω) ∈ S}. It is called the inverse
image of S and everything in the theory of the Lebesgue integral is formulated in terms of
inverse images. For a real valued f , f−1 (λ ,∞) may sometimes be written as [ f > λ ].

Lemma 14.5.2 Let f : Ω→ (−∞,∞] where F is a σ algebra of subsets of Ω. The
following are equivalent.

f−1((d,∞]) ∈F for all finite d,

f−1((−∞,d)) ∈F for all finite d,

f−1([d,∞]) ∈F for all finite d,

f−1((−∞,d]) ∈F for all finite d,

f−1 ((a,b)) ∈F for all a < b,−∞ < a < b < ∞.
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Definition 14.5.3 Any of these equivalent conditions in the above lemma is what is
meant the statement that f is measurable.

Proof of the lemma: First note that the first and the third are equivalent. To see this,
observe

f−1([d,∞]) = ∩∞
n=1 f−1((d−1/n,∞]),

and so if the first condition holds, then so does the third.

f−1((d,∞]) = ∪∞
n=1 f−1([d +1/n,∞]),

and so if the third condition holds, so does the first.
Similarly, the second and fourth conditions are equivalent. Now

f−1((−∞,d]) = ( f−1((d,∞]))C

so the first and fourth conditions are equivalent. Thus the first four conditions are equivalent
and if any of them hold, then for −∞ < a < b < ∞,

f−1((a,b)) = f−1((−∞,b))∩ f−1((a,∞]) ∈F .

Finally, if the last condition holds,

f−1 ([d,∞]) =
(
∪∞

k=1 f−1 ((−k+d,d))
)C ∈F

and so the third condition holds. Therefore, all five conditions are equivalent. ■
From this, it is easy to verify that pointwise limits of a sequence of measurable functions

are measurable.

Corollary 14.5.4 If fn (ω)→ f (ω) where all functions have values in (−∞,∞], then if
each fn is measurable, so is f .

Proof: Note the following:

f−1
(
(b+

1
l
,∞]

)
= ∪∞

k=1∩n≥k f−1
n

(
(b+

1
l
,∞]

)
⊆ f−1

([
b+

1
l
,∞

])
This follows from the definition of the limit. Therefore,

f−1 ((b,∞]) = ∪∞
l=1 f−1

(
(b+

1
l
,∞]

)
= ∪∞

l=1∪∞
k=1∩n≥k f−1

n

(
(b+

1
l
,∞]

)
⊆ ∪∞

l=1 f−1
([

b+
1
l
,∞

])
= f−1 ((b,∞])

The messy term on the middle is measurable because it consists of countable unions and in-
tersections of measurable sets. It equals f−1 ((b,∞]) and so this last set is also measurable.
By Lemma 14.5.2, f is measurable. ■

A convenient way to check measurability is in terms of limits of simple functions.

Definition 14.5.5 Let (Ω,F ) be a measurable space. A simple function is one
which is measurable but has only finitely many values.
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Note that a simple function achieves each value on a measurable set.

Theorem 14.5.6 Let f ≥ 0 be measurable. Then there exists a sequence of nonneg-
ative simple functions {sn} satisfying

0≤ sn(ω) (14.3)

· · · sn(ω)≤ sn+1(ω) · · ·

f (ω) = lim
n→∞

sn(ω) for all ω ∈Ω. (14.4)

If f is bounded, the convergence is actually uniform. Conversely, if f is nonnegative and is
the pointwise limit of such simple functions, then f is measurable.

Proof: Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n

∑
k=0

k
n
X f−1([ k

n ,
k+1

n ))(ω)+2nXI(ω).

Then tn(ω)≤ f (ω) for all ω and limn→∞ tn(ω) = f (ω) for all ω . This is because tn (ω) =
2n for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0≤ f (ω)− tn (ω)≤ 1
n
. (14.5)

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max(t1, t2) , s3 = max(t1, t2, t3) , · · · .

Then the sequence {sn} satisfies 14.3-14.4. Also each sn has finitely many values and is
measurable. To see this, note that

s−1
n ((a,∞]) = ∪n

k=1t−1
k ((a,∞]) ∈F

To verify the last claim, note that in this case the term 2nXI(ω) is not present and for
n large enough, 2n/n is larger than all values of f . Therefore, for all n large enough, 14.5
holds for all ω . Thus the convergence is uniform.

Now consider the converse assertion. Why is f measurable if it is the pointwise limit
of an increasing sequence simple functions?

f−1 ((a,∞]) = ∪∞
n=1s−1

n ((a,∞])

because ω ∈ f−1 ((a,∞]) if and only if ω ∈ s−1
n ((a,∞]) for all n sufficiently large. ■

Observation 14.5.7 If f : Ω→R then the above definition of measurability holds with
no change. In this case, f never achieves the value ∞. This is actually the case of most
interest.

Corollary 14.5.8 If f : Ω→ (−∞,∞) is measurable, then there exists a sequence of
simple functions {sn (ω)} such that |sn (ω)| ≤ | f (ω)| and sn (ω)→ f (ω).
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Proof: Let f+ (ω) ≡ | f (ω)|+ f (ω)
2 , f− (ω) ≡ | f (ω)|− f (ω)

2 . Thus f = f+− f− and | f | =
f++ f−. Also f = f+ when f ≥ 0 and f =− f− when f ≤ 0. Both f+, f− are measurable
functions. Indeed, if a≥ 0, f−1

+ ((a,∞)) = f−1 ((a,∞)) ∈F . If a < 0 then f−1
+ ((a,∞)) =

Ω. Similar considerations hold for f−. Now let s+n (ω) ↑ f+ (ω) ,s−n (ω) ↑ f− (ω) meaning
these are simple functions converging respectively to f+ and f− which are both increasing
in n and nonnegative. Thus if sn (ω)≡ s+n (ω)−s−n (ω) , this converges to f+ (ω)− f− (ω) .
Also

|sn (ω)|= s+n (ω)+ s−n (ω)≤ f+ (ω)+ f− (ω) = | f (ω)| ■

Definition 14.5.9 Rp consists of the mappings from (1,2, · · · , p) to R. We usually
write it as follows. x ∈ Rp means x is an ordered list of p real numbers. Thus

x = (x1, · · · ,xp)

(1,2,3) is in R3. Note that (1,2,3) ̸= (3,2,1) because the two have different real num-
bers in some locations. In terms of functions, x(1) ̸= x(3).

Definition 14.5.10 If xn =
(
xn

1, · · · ,xn
p
)

is a sequence of points in Rp, then we say
limn→∞ xn = x if and only if limn→∞ xn

i = xi for each i. In other words, convergence takes
place if and only if the component entries of xn converge to the corresponding component
entries of x. We say that g : D→R is continuous for D⊆Rp if whenever xn→ x with each
xn ∈ D and x ∈ D, then g(xn)→ g(x) .

In other words, it is essentially the same as what was presented earlier for continuous
functions of one variable.

Proposition 14.5.11 Let fi : Ω→ R be measurable, (Ω,F ) a measurable space, and
let g : Rp→ R be continuous. If f(ω) =

(
f1 (ω) · · · fp (ω)

)T
, then g◦ f is measur-

able.

Proof: From Corollary 14.5.8 above, there are sn
i (ω) , simple functions

lim
n→∞

sn
i (ω) = fi (ω)

such that |sn
i (ω)| ≤ | fi (ω)|. Let sn (ω) ≡

(
sn

1 (ω) · · · sn
p (ω)

)
thus, by continuity,

g(sn (ω))→ g(f(ω)) for each ω. It remains to verify that g◦ sn is measurable.

(g◦ sn)
−1 (a,∞)≡ {ω : g(sn (ω))> a} .

This is the finite union of measurable sets since each sn
i is a simple function having finitely

many values. Thus there are finitely many possible values for g ◦ sn, each value corre-
sponding to the intersection of p measurable sets. Therefore, g ◦ sn is measurable. By
Corollary 14.5.4, it follows that g◦ f , being the pointwise limit of measurable functions is
also measurable. ■

Note how this shows as a very special case that linear combinations of measurable real
valued functions are measurable because you could take g(x,y) ≡ ax+by and then if you
have two measurable functions f1, f2, it follows that a f1 +b f2, f1 f2 are measurable. Also,
if f is measurable, then so is | f |. Just let g(x) = |x|. In general, you can do pretty much
any algebraic combination of measurable functions and get one which is measurable. This
is very different than the case of generalized integrable functions.
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14.6 Riemann Integrals for Decreasing Functions
This continues the abstract development but here it is tied in to the ordinary theory of
Riemann integration for real valued functions. A decreasing function is always Riemann
integrable with respect to the integrator function F (t) = t. This is because the function is
of bounded variation and the integrator function is continuous. You can also show directly
that there is a unique number between the upper and lower sums. I will define the Lebesgue
integral for a nonnegative function in terms of an improper Riemann integral which involves
a decreasing function.

Definition 14.6.1 Let f : [a,b]→ [0,∞] be decreasing. Define∫ b

a
f (λ )dλ ≡ lim

M→∞

∫ b

a
M∧ f (λ )dλ = sup

M

∫ b

a
M∧ f (λ )dλ

where A∧B means the minimum of A and B. Note that for f bounded,

sup
M

∫ b

a
M∧ f (λ )dλ =

∫ b

a
f (λ )dλ

where the integral on the right is the usual Riemann integral because eventually M > f .
For f a nonnegative decreasing function defined on [0,∞),∫

∞

0
f dλ ≡ lim

R→∞

∫ R

0
f dλ = sup

R>1

∫ R

0
f dλ = sup

R
sup
M>0

∫ R

0
f ∧Mdλ

Now here is an obvious property.

Lemma 14.6.2 Let f be a decreasing nonnegative function defined on an interval [a,b] .
Then if [a,b] =∪m

k=1Ik where Ik ≡ [ak,bk] and the intervals Ik are non overlapping, it follows

∫ b

a
f dλ =

m

∑
k=1

∫ bk

ak

f dλ .

Proof: This follows from the computation,∫ b

a
f dλ ≡ lim

M→∞

∫ b

a
f ∧Mdλ = lim

M→∞

m

∑
k=1

∫ bk

ak

f ∧Mdλ =
m

∑
k=1

∫ bk

ak

f dλ

Note both sides could equal +∞. ■

14.7 Lebesgue Integrals of Nonnegative Functions
Here is the definition of the Lebesgue integral of a function which is measurable and has
values in [0,∞]. The idea is motivated by the following picture in which f−1 (λ i,∞) is
A∪B∪C and we take the measure of this set, multiply by λ i−λ i−1 and do this for each λ i
in an increasing sequence of points, λ 0 ≡ 0. Then we add the “areas” of the little horizontal
“rectangles” in order to approximate the “area” under the curve. The difference here is
that the “rectangles” in the sum are horizontal whereas with the Riemann integral, they
are vertical. Note how it is important to be able to measure f−1 (λ ,∞)≡ {x : f (x)> λ} ≡
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[ f > λ ] which is what it means for f to be measurable. Also note that, in spite of the picture,
in general we don’t know a good description of this set other than that it is measurable.

λ i

A B C

y = f (x)

Definition 14.7.1 Let (Ω,F , µ) be a measure space and suppose f : Ω→ [0,∞] is
measurable. Then define∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ =

∫
∞

0
µ
(

f−1 (λ ,∞)
)

dλ

which makes sense because λ → µ ([ f > λ ]) is nonnegative and decreasing. On the right
you have an improper Riemann integral like what was discussed above.

Note that if f ≤ g, then
∫

f dµ ≤
∫

gdµ because µ ([ f > λ ])≤ µ ([g > λ ]) . Next I point
out that the integral is a limit of lower sums.

Lemma 14.7.2 In the situation of the above definition,∫
f dµ = sup

h>0

∞

∑
i=1

µ ([ f > hi])h

Proof: Let m(h,R) ∈N satisfy R−h < hm(h,R)≤ R. Then limR→∞ hm(h,R) = ∞ and
so ∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ ≡ sup

M
sup

R

∫ R

0
µ ([ f > λ ])∧Mdλ

sup
M

sup
R

∫ hm(h,R)

0
µ ([ f > λ ])∧Mdλ = sup

M
sup
R>0

sup
h>0

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

because the sum is just a lower sum for the integral
∫ hm(h,R)

0 µ ([ f > λ ])∧Mdλ . Hence,
switching the order of the sups, this equals

sup
R>0

sup
h>0

sup
M

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h = sup
R>0

sup
h>0

lim
M→∞

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

= sup
h>0

sup
R

m(R,h)

∑
k=1

µ ([ f > kh])h = sup
h>0

∞

∑
k=1

µ ([ f > kh])h. ■

14.8 Nonnegative Simple Functions
To begin with, here is a useful lemma.

Lemma 14.8.1 If f (λ ) = 0 for all λ > a, where f is a decreasing nonnegative function,
then

∫
∞

0 f (λ )dλ =
∫ a

0 f (λ )dλ .
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Proof: From the definition,∫
∞

0
f (λ )dλ = lim

R→∞

∫ R

0
f (λ )dλ = sup

R>1

∫ R

0
f (λ )dλ = sup

R>1
sup

M

∫ R

0
f (λ )∧Mdλ

= sup
M

sup
R>1

∫ R

0
f (λ )∧Mdλ = sup

M
sup
R>1

∫ a

0
f (λ )∧Mdλ

= sup
M

∫ a

0
f (λ )∧Mdλ ≡

∫ a

0
f (λ )dλ . ■

Now the Lebesgue integral for a nonnegative function has been defined, what does it
do to a nonnegative simple function? Recall a nonnegative simple function is one which
has finitely many nonnegative real values which it assumes on measurable sets. Thus a
simple function can be written in the form s(ω) = ∑

n
i=1 ciXEi (ω) where the ci are each

nonnegative, the distinct values of s.

Lemma 14.8.2 Let s(ω) = ∑
p
i=1 aiXEi (ω) be a nonnegative simple function where the

Ei are distinct but the ai might not be. Then∫
sdµ =

p

∑
i=1

aiµ (Ei) . (14.6)

Proof: Without loss of generality, assume 0≡ a0 < a1≤ a2≤ ·· · ≤ ap and that µ (Ei)<
∞, i > 0. Here is why. If µ (Ei) = ∞, then the left side would be∫ ap

0
µ ([s > λ ])dλ ≥

∫ ai

0
µ ([s > λ ])dλ

= sup
M

∫ ai

0
µ ([s > λ ])∧Mdλ ≥ sup

M
Mai = ∞

and so both sides are equal to ∞. Thus it can be assumed that for each i,µ (Ei)< ∞. Then
it follows from Lemma 14.8.1 and Lemma 14.6.2,∫

∞

0
µ ([s > λ ])dλ =

∫ ap

0
µ ([s > λ ])dλ =

p

∑
k=1

∫ ak

ak−1

µ ([s > λ ])dλ

=
p

∑
k=1

(ak−ak−1)
p

∑
i=k

µ (Ei) =
p

∑
i=1

µ (Ei)
i

∑
k=1

(ak−ak−1) =
p

∑
i=1

aiµ (Ei) ■

Lemma 14.8.3 If a,b≥ 0 and if s and t are nonnegative simple functions, then∫
(as+bt)dµ = a

∫
sdµ +b

∫
tdµ .

Proof: Let s(ω) = ∑
n
i=1 α iXAi(ω), t(ω) = ∑

m
i=1 β jXB j(ω) where α i are the distinct

values of s and the β j are the distinct values of t. Clearly as+ bt is a nonnegative simple
function because it has finitely many values on measurable sets. In fact,

(as+bt)(ω) =
m

∑
j=1

n

∑
i=1

(aα i +bβ j)XAi∩B j(ω)
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where the sets Ai∩B j are disjoint and measurable. By Lemma 14.8.2,∫
as+btdµ =

m

∑
j=1

n

∑
i=1

(aα i +bβ j)µ(Ai∩B j)

=
n

∑
i=1

a
m

∑
j=1

α iµ(Ai∩B j)+b
m

∑
j=1

n

∑
i=1

β jµ(Ai∩B j)

= a
n

∑
i=1

α iµ(Ai)+b
m

∑
j=1

β jµ(B j) = a
∫

sdµ +b
∫

tdµ . ■

14.9 The Monotone Convergence Theorem
The following is called the monotone convergence theorem also Beppo Levi’s theorem.
This theorem and related convergence theorems are the reason for using the Lebesgue
integral. If limn→∞ fn (ω) = f (ω) and fn (ω) is increasing in n, then clearly f is also
measurable because

f−1 ((a,∞]) = ∪∞
k=1 f−1

k ((a,∞]) ∈F

The version of this theorem given here will be much simpler than what was done with the
generalized Riemann integral and it will be easier to state and remember and use.

Theorem 14.9.1 (Monotone Convergence theorem) Let f have values in [0,∞] and
suppose { fn} is a sequence of nonnegative measurable functions having values in [0,∞]
and satisfying

lim
n→∞

fn(ω) = f (ω) for each ω.

· · · fn(ω)≤ fn+1(ω) · · ·
Then f is measurable and ∫

f dµ = lim
n→∞

∫
fndµ.

Proof: By Lemma 14.7.2 and interchange of supremums,

lim
n→∞

∫
fndµ = sup

n

∫
fndµ

= sup
n

sup
h>0

∞

∑
k=1

µ ([ fn > kh])h = sup
h>0

sup
N

sup
n

N

∑
k=1

µ ([ fn > kh])h

= sup
h>0

sup
N

N

∑
k=1

µ ([ f > kh])h = sup
h>0

∞

∑
k=1

µ ([ f > kh])h =
∫

f dµ. ■

The next theorem, known as Fatou’s lemma is another important theorem which justi-
fies the use of the Lebesgue integral.

Theorem 14.9.2 (Fatou’s lemma) Let fn be a nonnegative measurable function. Let
g(ω) = liminfn→∞ fn(ω). Then g is measurable and∫

gdµ ≤ lim inf
n→∞

∫
fndµ .

In other words, ∫ (
lim inf

n→∞
fn

)
dµ ≤ lim inf

n→∞

∫
fndµ
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Proof: Let gn(ω) = inf{ fk(ω) : k ≥ n}. Then g−1
n ([a,∞]) = ∩∞

k=n f−1
k ([a,∞]) ∈ F

Thus gn is measurable. Now the functions gn form an increasing sequence of nonnega-
tive measurable functions. Thus g−1 ((a,∞)) = ∪∞

n=1g−1
n ((a,∞)) ∈F so g is measurable

also. By monotone convergence theorem,
∫

gdµ = limn→∞

∫
gndµ ≤ liminfn→∞

∫
fndµ.

The last inequality holding because
∫

gndµ ≤
∫

fndµ . (Note that it is not known whether
limn→∞

∫
fndµ exists.) ■

14.10 The Integral’s Righteous Algebraic Desires
The monotone convergence theorem shows the integral wants to be linear. This is the
essential content of the next theorem.

Theorem 14.10.1 Let f ,g be nonnegative measurable functions and let a,b be
nonnegative numbers. Then a f +bg is measurable and∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ. (14.7)

Proof: By Theorem 14.5.6 on Page 334 there exist increasing sequences of nonnegative
simple functions, sn→ f and tn→ g. Then a f +bg, being the pointwise limit of the simple
functions asn+btn, is measurable. Now by the monotone convergence theorem and Lemma
14.8.3,

∫
(a f +bg)dµ =

lim
n→∞

∫
asn +btndµ = lim

n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a

∫
f dµ +b

∫
gdµ. ■

14.11 Integrals of Real Valued Functions
As long as you are allowing functions to take the value +∞, you cannot consider something
like f +(−g) and so you can’t very well expect a satisfactory statement about the integral
being linear until you restrict yourself to functions which have values in a vector space. To
be linear, a function must be defined on a vector space. The integral of real valued functions
is next.

Definition 14.11.1 Let (Ω,F ,µ) be a measure space and let f : Ω→ R be mea-
surable. Then it is said to be in L1 (Ω,µ) when

∫
Ω
| f (ω)|dµ < ∞.

Lemma 14.11.2 If g−h = ĝ− ĥ where g, ĝ,h, ĥ are measurable and nonnegative, with
all integrals finite, then ∫

Ω

gdµ−
∫

Ω

hdµ =
∫

Ω

ĝdµ−
∫

Ω

ĥdµ

Proof: From Theorem 14.10.1,∫
ĝdµ +

∫
hdµ =

∫
(ĝ+h)dµ =

∫ (
g+ ĥ

)
dµ =

∫
gdµ +

∫
ĥdµ

and so, ∫
ĝdµ−

∫
ĥdµ =

∫
gdµ−

∫
hdµ ■

The functions you can integrate are those which have | f | integrable, and then you can
make sense of

∫
f dµ for f having values in R or C although here, I will emphasize R.
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Definition 14.11.3 Let f ∈ L1 (Ω,µ). Define
∫

f dµ ≡
∫

f+dµ−
∫

f−dµ.

Proposition 14.11.4 The definition of
∫

f dµ is well defined and if a,b are real num-
bers ∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ

Proof: First of all, it is well defined because f+, f− are both no larger than | f |. There-
fore,

∫
f+dµ,

∫
f−dµ are both real numbers. Next, why is the integral linear. First consider

the sum. ∫
( f +g)dµ ≡

∫
( f +g)+ dµ−

∫
( f +g)− dµ

Now ( f +g)+− ( f +g)− = f +g = f+− f−+g+−g−. By Lemma 14.11.2 and Theorem
14.10.1∫

( f +g)dµ ≡
∫

( f +g)+ dµ−
∫

( f +g)− dµ =
∫

( f++g+)dµ−
∫

( f−+g−)dµ

=
∫

f+dµ−
∫

f−dµ +
∫

g+dµ−
∫

g−dµ ≡
∫

f dµ +
∫

gdµ

Next note that if a is real and a ≥ 0,(a f )+ = a f+,(a f )− = a f− and if a < 0,(a f )+ =
−a f−,(a f )− =−a f+. This follows from a simple computation involving the definition of
f+, f−. Therefore, if a < 0,∫

a f dµ ≡
∫

(a f )+ dµ−
∫

(a f )− dµ =
∫

(−a) f−dµ−
∫

(−a) f+dµ

By Theorem 14.10.1,

=−a
(∫

f−dµ−
∫

f+dµ

)
= a

(∫
f+dµ−

∫
f−dµ

)
≡ a

∫
f dµ

The case where a≥ 0 is easier. ■
Note how attractive this is. If you have a measurable function f and it is absolutely

integrable, then it is integrable. This is just like the situation with series.
Now that we understand how to integrate real valued functions, it is time for another

great convergence theorem, the dominated convergence theorem.

Theorem 14.11.5 (Dominated Convergence theorem) Let fn ∈ L1(Ω) and suppose
f (ω) = limn→∞ fn(ω), and there exists a measurable function g, with values in [0,∞],1

such that
| fn(ω)| ≤ g(ω) and

∫
g(ω)dµ < ∞.

Then f ∈ L1 (Ω) and 0 = limn→∞

∫
| fn− f |dµ = limn→∞ |

∫
f dµ−

∫
fndµ|

Proof: f is measurable by Corollary 14.5.4. Since | f | ≤ g, it follows that

f ∈ L1(Ω) and | f − fn| ≤ 2g.

1Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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By Fatou’s lemma (Theorem 14.9.2),∫
2gdµ ≤ lim inf

n→∞

∫
2g−| f − fn|dµ =

∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ.

Subtracting
∫

2gdµ , 0≤− limsupn→∞

∫
| f − fn|dµ. Hence

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣≥ 0.

This proves the theorem by Theorem 4.10.10 because the limsup and liminf are equal. ■

Example 14.11.6 Let Ω≡N and let F be the set of all subsets of Ω. Let µ (E)≡ number
of entries in E. Then (N,F ,µ) is a measure space and the Lebesgue integral is summation.
Thus all the convergence theorems mentioned above apply to sums.

First, why is µ a measure? If {Ei} are disjoint, then if infinitely many are nonempty,
say En1 ,En2 , · · · . Then ∪iEi is infinite and so

µ (∪iEi) = ∞ =
∞

∑
i=1

µ (Ei) =
∞

∑
k=1

Enk ≥
∞

∑
k=1

1 = ∞

The alternative is that only finitely many Ei are nonempty and in this case, the assertion
that µ (∪iEi) = ∑

∞
i=1 µ (Ei) is obvious. Hence µ is indeed a measure. Now let f : N→ R.

It is obviously measurable because the inverse image of anything is a subset of N. So if
f (n)≥ 0 for all n, what is

∫
f dµ?

f (i) =
∞

∑
k=1

f (k)X{k} (i) = lim
n→∞

n

∑
k=1

f (k)X{k} (i)≡ fn (i)

Now fn is a nonnegative simple function and there is exactly one thing in {k}. Therefore,∫
fndµ = ∑

n
k=1 f (k) . Then, by the monotone convergence theorem,∫

f dµ = lim
n→∞

∫
fndµ = lim

n→∞

n

∑
k=1

f (k)≡
∞

∑
k=1

f (k)

When ∑k | f (k)|< ∞, one has
∫

f dµ = ∑
∞
k=1 f (k).

This example illustrates how the Lebesgue integral pertains to absolute summability
and absolute integrability. It is not a theory which can include conditional convergence.
The generalized Riemann integral can do this. However, the Lebesgue integral is very
easy to use because of this restriction. Of course one could make the same restriction
and consider those functions for which | f | is integrable in the context of the generalized
Riemann integral.

How does this new integral compare to the generalized Riemann Stieltjes integral? Let
µF be the measure of Theorem 14.3.6 in what follows.

Theorem 14.11.7 Let F be an increasing integrator function and let f be continu-
ous on [a,b] . Then ∫ b

a
f dF =

∫
f dµF

Here the integral on the left is the Riemann Stieltjes integral.
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Proof: Since f is continuous, there is a sequence of step functions {sn} which con-
verges uniformly to f . In fact, you could partition [a,b] as a = xn

0 < · · · < xn
n = b and

consider

sn (x) =
mn

∑
k=1

f (xk−1)X[xk−1,xk) (x) , |xk− xk−1|=
b−a

n

Then if you consider the generalized Riemann integral of sn (x) it equals∫ b

a
sn (x)dF =

n

∑
k=1

f (xk−1)(F (xk−)−F (xk−1−)) =
∫

sndµF

The integrals on the left converge as n→∞ to
∫ b

a f dF where this is the generalized Riemann
integral of f because of the uniform convergence of the step functions to f . But this equals
the Riemann Stieltjes integral since f is continuous. On the right, you get convergence to∫

f dµF again because of uniform convergence. ■
This shows that the new integral coincides with the generalized Riemann Stieltjes in-

tegral on all continuous functions continuous on a closed interval which is the same as the
Riemann Stieltjes integral. They give the same answer on continuous functions. The ad-
vantage of the Lebesgue integral is that it has all those wonderful convergence theorems
which are particularly easy to understand and use. You don’t have these theorems with
the Riemann Stieltjes integral and the version of these convergence theorems which hold
for the generalized Riemann integral are much more difficult to prove. Compare the easy
monotone convergence theorem with the much more difficult one in the Chapter on the
generalized Riemann integral.

Also, there is the following definition of the integral over a measurable subset.

Definition 14.11.8 Let (Ω,F ,µ) be a measure space and let E be a measurable
subset of Ω. Then if | f XE | is integrable,

∫
E f dµ ≡

∫
XE f dµ .

When we are considering the Lebesgue Stieltjes measures, we might write the following
for f Borel measurable: ∫ b

a
f dµF ≡

∫
X[a,b] f dµF

Of course the notation on the right is preferable because you might have µF (a) > 0. The
notation on the left might seem a little ambiguous about whether the end points are consid-
ered. Of course the main example is when F (t) = t and in this case, there is no ambiguity.
As pointed out, this gives the Riemann Stieltjes integral provided f is continuous on [a,b]
and vanishes near a and b. One must remember that single points can have positive mea-
sure in the Stieltjes case where you just have an increasing integrator function which could
have jumps.

14.12 The Vitali Covering Theorems
These theorems are remarkable and fantastically useful. I will use m for µF where F (t) = t.
This yields Lebesgue measure which gives the measure of an interval to be the length of the
interval. As earlier, B(x,r) will be the interval (x− r,x+ r) . Thus m(B(x,αr)) = αm(x,r)
whenever α > 0. Also note that the closure of B(x,r) is the closed interval [x− r,x+ r].
This is because the closure simply adds in the limit points which are not in the open interval
and these are the end points. This all extends to many dimensions and so I am using the
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notation which is appropriate for this generalization. The main ideas are all present in one
dimension. A ball will just be an interval. It might have no endpoints, one endpoint, or
both endpoints.

Lemma 14.12.1 Let F be a countable collection of balls satisfying

∞ > M ≡ sup{r : B(p,r) ∈F}> 0

and let k ∈ (0,∞) . Then there exists G ⊆F such that

If B(p,r) ∈ G then r > k, (14.8)

If B1,B2 ∈ G then B1∩B2 = /0, (14.9)

G is maximal with respect to 14.8 and 14.9. (14.10)

By this is meant that if H is a collection of balls satisfying 14.8 and 14.9, then H cannot
properly contain G .

Proof: If no ball of F has radius larger than k, let G = /0. Assume therefore, that some
balls have radius larger than k. Let F ≡ {Bi}∞

i=1 ,Bi∩B j = /0 if i ̸= j. Now let Bn1 be the
first ball in the list which has radius greater than k. If every ball having radius larger than k
has closure which intersects Bn1 , then stop. The maximal set is {Bn1} . Otherwise, let Bn2
be the next ball having radius larger than k for which Bn2 ∩Bn1 = /0. Continue this way
obtaining {Bni}

N
i=1, a finite or infinite sequence of balls having radius larger than k whose

closures are disjoint. N = ∞ if the process never stops. N is some number if the process
does stop. Then let G ≡ {Bni}

N
i=1. To see G is maximal with respect to 14.8 and 14.9,

suppose B ∈F , B has radius larger than k, and G ∪{B} satisfies 14.8 and 14.9. Then at
some point in the process, B would have been chosen because it would be the ball of radius
larger than k which has the smallest index at some point in the construction. Therefore,
B ∈ G and this shows G is maximal with respect to 14.8 and 14.9. ■

Lemma 14.12.2 Let F be a collection of open balls, and let

A⊆ ∪{B : B ∈F} .

Suppose B̃ denotes the closed ball with the same center as B but four times the radius. Let
B̂ denote the open ball with same center as B but five times the radius.

∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of balls whose closures are disjoint and

A⊆ ∪
{

B̃ : B ∈ G
}
⊆ ∪{B̂ : B ∈ G }

Proof: First of all, it follows from Theorem 4.8.20 on Page 73 that there is a countable
subset F̃ of F which also covers A. Thus ∪F̃ ⊇ A⊇ ∪F ⊇ ∪F̃ and so ∪F̃ = A. Thus
it can be assumed that F is countable.

By Lemma 14.12.1, there exists G1 ⊆ F which satisfies 14.8, 14.9, and 14.10 with
k = 2M

3 . That is, G1 consists of balls having radii larger than 2M
3 and their closures are

disjoint and G1 is as large as possible.
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Suppose G1, · · · ,Gm−1 have been chosen for m ≥ 2. Let Gi denote the collection of
closures of the balls of Gi. Then let Fm be those balls of F , such that if B is one of these
balls, B has empty intersection with every closed ball of Gi for each i≤ m−1. Then using
Lemma 14.12.1, let Gm be a maximal collection of balls from Fm with the property that
each ball has radius larger than

( 2
3

)m
M and their closures are disjoint. Let G ≡ ∪∞

k=1Gk.
Thus the closures of balls in G are disjoint. Let x ∈ B(p,r) ∈F \G . Choose m such that(

2
3

)m

M < r ≤
(

2
3

)m−1

M

Then B(p,r) must have nonempty intersection with the closure of some ball from G1∪·· ·∪
Gm because if it didn’t, then Gm would fail to be maximal. Denote by B(p0,r0) a ball in
G1∪ ·· ·∪Gm whose closure has nonempty intersection with B(p,r). Thus r0,r >

( 2
3

)m
M.

Consider the picture, in which w ∈ B(p0,r0)∩B(p,r).

p− r p+ r

p0− r0 p0 + r0

x x0

Then for x ∈ B(p,r), |x− p0| ≤ |x−p|+ |p−w|+

≤r0︷ ︸︸ ︷
|w−p0|

≤ r+ r+ r0 ≤ 2
(

2
3

)m−1

M+ r0 ≤ 2
(

3
2

) <r0︷ ︸︸ ︷(
2
3

)m

M+ r0 ≤ 4r0

Thus B(p,r) is contained in B(p0,4r0). This shows that A⊆
{

B̃ : B ∈ G
}
⊆∪{B̂ : B∈ G }.

■
You can easily generalize this proposition to include the case where the balls are not

necessarily open. These balls could be either open, closed, or neither open nor closed.

Proposition 14.12.3 Let F be a collection of balls, open, closed, or neither open nor
closed, and let

A≡ ∪{B : B ∈F} .

Let B̂ denote the open ball with same center as B but five times the radius.

∞ > M ≡ sup{r : B(p,r) ∈F}> 0.

Then there exists G ⊆F such that G consists of balls whose closures are disjoint and

A⊆ ∪{B̂ : B ∈ G }

Proof: Let F ′ consist of the open balls obtained from F by keeping the center the same
and multiplying the radius by 20

19 . Denote these open balls by {B′ : B ∈F} . Thus B′ is an
open ball in which the radius is slightly expanded but the center is the same as B∈F . Then
from Lemma 14.12.2, there is G ′ ⊆F ′ such that the closures of the balls in G ′ are disjoint
and

{
B̃′ : B′ ∈ G ′

}
covers A. Here B̃′ is the closed ball obtained by multiplying the radius

of B′ by four. If B = B(x,r) , then B′ = B
(
x, 20

19 r
)

and so B̃′ = B
(
x, 80

19 r
)
⊆ B(x,5r) since

5> 80
19 . Thus, letting G be the balls B such that B′ ∈ G ′, it follows the closures of these balls

in G are disjoint since these balls are smaller than the balls of G ′ and A⊆ ∪{B̂ : B ∈ G } ■
The notion of an outer measure allows the consideration of arbitrary sets, measurable

or not.
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Definition 14.12.4 Let E be any set in R. Then

m̄(E)≡ inf{m(F) : F is a Borel set and F ⊇ E} .

Proposition 14.12.5 The following hold.

1. m̄(F)≤ m̄(G) if F ⊆ G

2. If E is Borel, then m̄(E) = m(E)

3. m̄
(
∪∞

k=1Ek
)
≤ ∑k m̄(Ek)

4. If m̄(E) = 0, then there exists F Borel such that F ⊇ E and m(F) = 0.

5. For any E, there exists F Borel such that F ⊇ E and m̄(E) = m(F).

Proof: The first claim is obvious. Consider the second. By definition, m̄(E) ≤ m(E)
because E ⊇ E. If F ⊇ E and F is Borel, then m(E) ≤ m(F) and so, taking the inf of all
such F containing E, it follows that m(E)≤ m̄(E) . Now consider the third assertion.

If any Ek has m̄(Ek) = ∞, then there is nothing to show. Assume then that m̄(Ek)< ∞

for all k. Then by definition, there is Fk Borel, containing Ek such that m̄(Ek)+
ε

2k ≥m(Fk) .
Then m̄(∪kEk)≤

m̄(∪kFk) = m(∪kFk)≤
∞

∑
k=1

m(Fk)≤∑
k

m̄(Ek)+
ε

2k = ∑
k

m̄(Ek)+ ε

Since ε is arbitrary, this shows 3.
Finally consider 4.,5. Of course 4. is a special case of 5. If m̄(E) = ∞, let F = R.

Otherwise there exists Gn ⊇ E such that m(Gn) < m̄(E) + 1/2n and Gn is a Borel set.
Then let Fn ≡ ∩n

k=1Gn. It follows that ∩nFn ≡ F is a Borel set containing E and m(F) =
limn→∞ m(Fn) = 0. ■

Definition 14.12.6 Let | f |XB ∈ L1 (R,m) for every bounded Borel B. The Hardy
Littlewood maximal function M f (x) is defined as

M f (x)≡ sup
1≥r>0

1
m(B(0,r))

∫
B(x,r)

| f |dm

You can try and show this function is measurable, but I will not do so here. The funda-
mentally important inequality involving this maximal function is the following major result
which comes from the above Vitali covering theorem and is one of the main applications
of the above Vitali covering theorem.

Theorem 14.12.7 Let | f | ∈ L1 (R,m). Then if λ > 0,

m̄([M f > λ ])≤ 5
λ

∫
| f |dm

Proof: If x ∈ [M f > λ ] , then there is rx < 1 such that

1
m(B(0,rx))

∫
B(x,rx)

| f |dm > λ , m(B(0,rx))≤
1
λ

∫
B(x,rx)

| f |dm
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Then {B(x,rx) : x ∈ [M f > λ ]} is an open cover of [M f > λ ]. By the Vitali covering
theorem, there are countably many of these balls {Bi}∞

i=1 which are disjoint and ∪iB̂i ⊇
[M f > λ ] . Therefore,

m̄([M f > λ ]) ≤ m
(
∪iB̂i

)
≤

∞

∑
i=1

m
(
B̂i
)

= 5
∞

∑
i=1

m(Bi)≤ 5
∞

∑
i=1

1
λ

∫
Bi

| f |dm≤ 5
λ

∫
| f |dm

the last step resulting from the fact that the balls Bi are disjoint. ■
Next is a version of the Vitali covering theorem which involves covering a set with

disjoint closed balls in such a way that what is left over has measure 0. Here is the concept
of a Vitali covering.

Definition 14.12.8 Let S be a set and let C be a covering of S meaning that every
point of S is contained in a set of C . This covering is said to be a Vitali covering if for each
ε > 0 and x ∈ S, there exists a set B ∈ C containing x, the diameter of B is less than ε, and
there exists an upper bound to the set of diameters of sets of C .

In the following, F will just be a bounded set measurable or not. Actually, you don’t
even need to consider it to be bounded but this will not be needed here.

Corollary 14.12.9 Let F be a bounded set and let C be a Vitali covering of F con-
sisting of balls. Let r (B) denote the radius of one of these balls. Then assume also that
sup{r (B) : B ∈ C }= M < ∞. Then there is a countable subset of C denoted by {Bi} such
that m̄

(
F \∪N

i=1Bi
)
= 0,N ≤ ∞, and Bi∩B j = /0 whenever i ̸= j.

Proof: If m̄(F) = 0, there is nothing to show. Assume then that m̄(F) ̸= 0. Let U be a
bounded open set containing F such that U approximates F so well that m(U)≤ 10

9 m̄(F) .
This is possible because of regularity of m shown earlier. Since this is a Vitali covering, for
each x ∈ F, there is one of these balls B containing x such that B̂ ⊆U . Recall this means
you keep the same center but make the radius 5 times as large. Let Ĉ denote those balls
of C such that B̂⊆U also. Thus, this is also a cover of F . By the Vitali covering theorem
above, Proposition 14.12.3, there are disjoint balls from C {Bi} such that

{
B̂i
}

covers F .
Here the B̂i are open balls. Thus

m̄
(
F \∪∞

j=1B j
)
≤ m(U)−m

(
∪∞

j=1B j
)
<

10
9

m̄(F)−
∞

∑
j=1

m(B j)

=
10
9

m̄(F)− 1
5

∞

∑
j=1

m
(

B̂ j

)
≤ 10

9
m̄(F)− 1

5
m̄(F) = m̄(F)θ 1

Here θ 1 =
41
45 < 1.

Now F \∪n
k=1Bk ⊆

(
F \∪∞

k=1Bk
)
∪
(
∪n

k=1Bk
)
. Indeed, if x is in F but not in any of the

Bk for k≤ n, then if it fails to be in F \∪∞
k=1Bk, so it must be in the complement of this set.

Hence it is in
(
∩∞

k=1

(
F ∩BC

k

))C
= ∪∞

k=1

(
FC ∪Bk

)
but it is not in any of the Bk for k ≤ n

while being in F so it must be in ∪∞
k=n+1Bk. It follows, since the Bk are disjoint, that

m̄
(
F \∪n

j=1B j
)
≤ m̄

(
F \∪∞

j=1B j
)
+

∞

∑
k=n

m(Bk)≤ θ 1m̄(F)+
∞

∑
k=n

m(Bk) ,θ 1 < 1
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Now these balls Bk are disjoint and contained in a bounded set so letting 1 > θ > θ 1, if n
is large enough, and since the sum on the right is the tail of a convergent series,

∞

∑
k=n

m(Bk)≤ (θ −θ 1) m̄(F)

Thus there exists n1 such that m̄
(

F \∪n1
j=1B j

)
< θ m̄(F) . If m̄

(
F \∪n1

j=1B j

)
= 0, stop.

Otherwise, do for F \∪n1
j=1B j exactly the same thing that was done for F. Since ∪n1

j=1B j is
closed, you can arrange to have the approximating open set be contained in the open set(
∪n1

j=1B j

)C
. It follows there exist disjoint closed balls from C called Bn1+1, · · · ,Bn2 such

that
m̄
((

F \∪n1
j=1B j

)
\∪n2

j=n1+1
B j

)
< θ m̄

(
F \∪n1

j=1B j

)
< θ

2m̄(F)

continuing this way and noting that limn→∞ θ
n = 0 while m(F)< ∞, this shows the desired

result. Either the process stops because m̄
(

F \∪nk
j=1B j

)
= 0 or else you obtain an infinite

sequence {Bk} and m̄
(

F \∪∞
j=1B j

)
≤ m̄

(
F \∪nk

j=1B j

)
≤ θ

km̄(F) for each k, showing that

m̄
(

F \∪∞
j=1B j

)
= 0. ■

14.13 Differentiation of Increasing Functions
As a spectacular application of the covering theorem, is the famous theorem that an increas-
ing function has a derivative a.e. Here the a.e. refers to Lebesgue measure, the Stieltjes
measure from the increasing function F (x) = x.

I will write yn ↑ x to mean limn→∞ yn = x and yn < x,yn ≤ yn+1. I will write yn ↓ x to
mean limn→∞ yn = x and yn > x,yn ≥ yn+1.

Definition 14.13.1 The Dini derivates are as follows. In these formulas, f is a
real valued function defined on R. yn ↓ x refers to a decreasing sequence as just described.

D+ f (x) ≡ sup
{

lim sup
n→∞

f (yn)− f (x)
yn− x

: yn ↓ x
}
,

D+ f (x) ≡ inf
{

lim inf
n→∞

f (yn)− f (x)
yn− x

: yn ↓ x
}
,

D− f (x) ≡ sup
{

lim sup
n→∞

f (yn)− f (x)
yn− x

: yn ↑ x
}
,

D− f (x) ≡ inf
{

lim inf
n→∞

f (yn)− f (x)
yn− x

: yn ↑ x
}

The notation means that the sup and inf refer to all sequences of the sort described in {} .

Lemma 14.13.2 The function f : R→ R has a derivative if and only if all the Dini
derivates are equal for any sequence just described.

Proof: If D+ f (x) = D+ f (x) , then for any yn ↓ x, it must be the case that

lim sup
n→∞

f (yn)− f (x)
yn− x

= lim inf
n→∞

f (yn)− f (x)
yn− x

= lim
n→∞

f (yn)− f (x)
yn− x

= D+ f (x) = D+ f (x)
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whenever yn ↓ x. Therefore, it would follow that the limit of these difference quotients
would exist and f would have a right derivative at x. Therefore, D+ f (x)> D+ f (x) if and
only if there is no right derivative. Similarly D− f (x) > D− f (x) if and only if there is no
derivative from the left at x. Also, there is a derivative if and only if there is a derivative
from the left, right and the two are equal. Thus this happens if and only if all Dini derivates
are equal. ■

The Lebesgue measure of single points is 0 and so we do not need to worry about
whether the intervals are closed in using Corollary 14.12.9.

Let ∆ f (I) = f (b)− f (a) if I is an interval having end points a < b. Now suppose
{

J j
}

are disjoint intervals contained in I. Then, since f is increasing, ∆ f (I)≥∑ j ∆ f (J j). In this
notation, the above lemma implies that if D− f (x)> b or D+ f (x)> b, then for each ε > 0
there is an interval J of length less than ε which is centered at x and ∆ f (J)

m(J) > b where m(J)
is the Lebesgue measure of J which is the length of J. If either D− f (x) or D+ f (x) < a,
the above lemma implies that for each ε > 0 there exists I centered at x with m(I)< ε and
∆ f (I)
m(I) < a. For example, if D− f (x)< a, there exists a sequence yn ↑ x with

f (yn)− f (x)
yn− x

=
f (x)− f (yn)

x− yn
< a

so let In be the interval (yn,x) . For large n it is smaller than ε .

Theorem 14.13.3 Let f :R→R be increasing. Then f ′ (x) exists for all x off a set
of measure zero.

Proof: Let Nab for 0 < a < b denote either{
x : D+ f (x)> b > a > D+ f (x)

}
,
{

x : D− f (x)> b > a > D− f (x)
}
,

or {
x : D− f (x)> b > a > D+ f (x)

}
,
{

x : D+ f (x)> b > a > D− f (x)
}
.

The function f is increasing and so it is a Borel measurable function. Indeed, f−1 (a,∞)
is either open or closed. Therefore, all these derivates are also Borel measurable, hence
Lebesgue measurable. Assume that Nab is bounded and let V be open with

V ⊇ Nab, m(Nab)+ ε > m(V )

By Corollary 14.12.9 and the above discussion, there are open, disjoint intervals {In} , each
centered at a point of Nab such that

∆ f (In)

m(In)
< a, m(Nab) = m(Nab∩∪iIi) = ∑

i
m(Nab∩ Ii)

Now do for Nab∩ Ii what was just done for Nab and get disjoint intervals J j
i contained in Ii

with
∆ f
(

J j
i

)
m
(

J j
i

) > b, m(Nab∩ Ii) = ∑
j

m
(

Nab∩ Ii∩ J j
i

)
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Then

a(m(Nab)+ ε) > am(V )≥ a∑
i

m(Ii)> ∑
i

∆ f (Ii)≥∑
i

∑
j

∆ f
(

J j
i

)
≥ b∑

i
∑

j
m
(

J j
i

)
≥ b∑

i
∑

j
m
(

J j
i ∩Nab

)
= b∑

i
m(Nab∩ Ii) = bm(Nab)

Since ε is arbitrary and a < b, this shows m(Nab) = 0. If Nab is not bounded, apply the
above to Nab∩ (−r,r) and conclude this has measure 0. Hence so does Nab.

The countable union of Nab for a,b positive rational numbers is an exceptional set off
which

D+ f (x) = D+ f (x)≥ D− f (x)≥ D− f (x)≥ D+ f (x)

and so these are all equal. This shows that off a set of measure zero, the function has a
derivative a.e. ■

14.14 Exercises
1. Show carefully that if S is a set whose elements are σ algebras which are subsets of

P (Ω) , the set of all subsets of Ω, then ∩S is also a σ algebra. Now let G ⊆P (Ω)
satisfy property P if G is closed with respect to complements and countable disjoint
unions as in Dynkin’s lemma, and contains /0 and Ω. If H ⊆ G is any set whose
elements are subsets of P (Ω) which satisfies property P, then ∩H also satisfies
property P. Thus there is a smallest subset of G satisfying P. Show these things.

2. Show f : (Ω,F )→ R is measurable if and only if f−1 (open) ∈F . Show that if
E is any set in B (R) , then f−1 (E) ∈ F . Thus, inverse images of Borel sets are
measurable. Next consider f : (Ω,F )→R being measurable and g :R→R is Borel
measurable, meaning that g−1 (open) ∈ B (R). Explain why g ◦ f is measurable.
Hint: You know that (g◦ f )−1 (U) = f−1

(
g−1 (U)

)
. For your information, it does

not work the other way around. That is, measurable composed with Borel measur-
able is not necessarily measurable. In fact examples exist which show that if g is
measurable and f is continuous, then g◦ f may fail to be measurable. This is in the
chapter, but show it anyway.

3. You have two finite measures defined on B (R) µ,ν . Suppose these are equal on
every open set. Show that these must be equal on every Borel set. Hint: You should
use Dynkin’s lemma to show this very easily.

4. You have two measures defined on B (R) which are finite and equal on every open
set. Show, using Dynkin’s lemma that these are the same on all Borel sets.

5. Let µ (E) = 1 if 0 ∈ E and µ (E) = 0 if 0 /∈ E. Show this is a measure on P (R).

6. Give an example of a measure µ and a measure space and a decreasing sequence of
measurable sets {Ei} such that limn→∞ µ (En) ̸= µ (∩∞

i=1Ei).

7. You have a measure space (Ω,F ,P) where P is a probability measure on F . Thus
P(Ω) = 1. Then you also have a measurable function X : Ω → R, meaning that
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X−1 (U) ∈ F whenever U is open. Now define a measure on B (R) denoted by
λ X and defined by λ X (E) = P({ω : X (ω) ∈ E}) . Explain why this yields a well
defined probability measure on B (R). This is called the distribution measure.

8. Let (Ω,F ) be a measurable space and let f : Ω → R be a measurable function
meaning that f−1 (U) ∈ F whenever U is open. Then σ ( f ) denotes the small-
est σ algebra such that f is measurable with respect to this σ algebra. Show that
σ ( f ) =

{
f−1 (E) : E ∈B (R)

}
.

9. There is a monumentally important theorem called the Borel Cantelli lemma. It says
the following. If you have a measure space (Ω,F ,µ) and if {Ei} ⊆ F is such
that ∑

∞
i=1 µ (Ei) < ∞, then there exists a set N of measure 0 (µ (N) = 0) such that if

ω /∈ N, then ω is in only finitely many of the Ei. Hint: You might look at the set of
all ω which are in infinitely many of the Ei. First explain why this set is of the form
∩∞

n=1∪k≥n Ek.

10. Let (Ω,F ,µ) be a measure space. A sequence of functions { fn} is said to converge
in measure to a measurable function f if and only if for each ε > 0,

lim
n→∞

µ ({ω : | fn (ω)− f (ω)|> ε}) = 0

Show that if this happens, then there exists a subsequence
{

fnk

}
and a set of measure

N such that if ω /∈ N, then limnk→∞ fnk (ω) = f (ω) . Also show that if µ is finite and
limn→∞ fn (ω) = f (ω) , then fn converges in measure to f .

11. Prove Chebyshev’s inequality µ ({ω : | f (ω)|> λ})≤ 1
λ

∫
| f |dµ .

12. ↑Use the above inequality to show that if limn→∞

∫
| fn|dµ = 0, then there is a set of

measure zero N and a subsequence, still called { fn} such that for ω /∈ N, fn (ω)→ 0.
Hint: Get a subsequence using the above Chebyshev inequality, still denoted as
{ fn} , such that µ

([
| fn (ω)|> 1

n

])
< C2−n Then use the Borel Cantelli lemma of

Problem 9 to conclude that off a set of measure zero, | fn (ω)| < 1
n for all n large

enough.

13. Let {rn}∞

n=1 be an enumeration of the rational numbers in [0,1] meaning that every
rational number is included in {rn}∞

n=1 for some n and let fn (x) = 0 except for when
x∈ {r1, · · · ,rn} when it is 1. Explain why fn is Riemann integrable and has Riemann
integral 0. However, limn→∞ fn (x) ≡ f (x) is 1 on rationals and 0 elsewhere so this
isn’t even Riemann integrable with respect to the integrator F (t) = t. It can be
shown that the two integrals give the same answer whenever the function is Riemann
integrable. Thus the Lebesgue integral of fn will be 0. So what is the Lebesgue
integral of the function which is 1 on the rationals and 0 on the irrationals? Explain
why this is so.

14. In fact, µF being only defined on B (R) might not be a complete measure. This
means that you can have A⊆ B⊆C and µ (A) = µ (C) with both A,C measurable but
B is not. Give a way to enlarge B (R) to a larger σ algebra, extending µ so that the
result is a σ algebra with measure which is a complete measure space, meaning that
if A⊆B and µ (B) = 0 with B measurable, then A is also measurable. Hint: Let a null
set be one which is contained in a measurable set of measure zero. Denoting such sets
with N, let F ≡{A∪N where N is a null set, A ∈B (R)} and let µ̂ (A∪N)≡ µ (A).
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15. Lebesgue measure was discussed. Recall that m((a,b)) = b− a and it is defined
on a σ algebra which contains the Borel sets. Show, using Dynkin’s lemma, that
m is translation invariant meaning that m(E) = m(E +a). for all Borel sets E and
then explain why this will be true for all Lebesgue measurable sets described in
Problem 14. Let x∼ y if and only if x− y ∈Q. Show this is an equivalence relation.
Now let W be a set of positive measure which is contained in (0,1). For x ∈W,
let [x] denote those y ∈W such that x ∼ y. Thus the equivalence classes partition
W . Use axiom of choice to obtain a set S ⊆W such that S consists of exactly one
element from each equivalence class. Let T denote the rational numbers in [−1,1].
Consider T+S ⊆ [−1,2]. Explain why T+S ⊇W . For T≡

{
r j
}
, explain why the

sets
{

r j +S
}

j are disjoint. Explain why S cannot be measurable. Explain why this
shows that for any Lebesgue measurable set of positive measure, there is a subset of
this set which is not measurable.

16. Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0,1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a,b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
linear and equal to 1

2 ( fn(a)+ fn(b)) on the middle third of [a,b]. Sketch a few of
these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

Show { fn} converges uniformly on [0,1]. If f (x) = limn→∞ fn(x), show that f (0) =
0, f (1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is the Cantor set
of Problem 14. This function is called the Cantor function.It is a very important
example to remember. Note it has derivative equal to zero a.e. and yet it succeeds in
climbing from 0 to 1. Explain why this function cannot be recovered as an integral
of its derivative even though the derivative exists everywhere but on a set of measure
zero. Hint: This isn’t too hard if you focus on getting a careful estimate on the
difference between two successive functions in the list considering only a typical
small interval in which the change takes place. The above picture should be helpful.

17. ↑ This problem gives a very interesting example found in the book by McShane [23].
Let g(x) = x+ f (x) where f is the strange function of Problem 16. Let P be the
Cantor set of Problem 14. Let [0,1] \P = ∪∞

j=1I j where I j is open and I j ∩ Ik = /0
if j ̸= k. These intervals are the connected components of the complement of the
Cantor set. Show m(g(I j)) = m(I j) so

m(g(∪∞
j=1I j)) =

∞

∑
j=1

m(g(I j)) =
∞

∑
j=1

m(I j) = 1.

Thus m(g(P)) = 1 because g([0,1]) = [0,2]. By Problem 15 there exists a set,
A⊆ g(P) which is non measurable. Define φ(x) = XA(g(x)). Thus φ(x) = 0 unless
x ∈ P. Tell why φ is measurable. (Recall m(P) = 0 and Lebesgue measure is com-
plete.) Now show that XA(y) = φ(g−1(y)) for y ∈ [0,2]. Tell why g−1 is continuous
but φ ◦ g−1 is not measurable. (This is an example of measurable ◦ continuous ̸=
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measurable.) Show there exist Lebesgue measurable sets which are not Borel mea-
surable. Hint: The function, φ is Lebesgue measurable. Now recall that Borel ◦
measurable = measurable.

18. Suppose you have a function f which is of bounded variation on every closed in-
terval. Explain why this function has a derivative off some Borel set of measure
zero.

19. Suppose f : R→ R is Lipschitz. This means | f (x)− f (y)| ≤ K |x− y| . Then let
g(x) ≡ (K +1)x− f (x) . Explain why g is monotone. Note f (x) = (K +1)x−
g(x) . Explain why f ′ (x) exists off a Borel set of measure zero. This is a case of
Rademacher’s theorem which says that a Lipschitz map is differentiable almost ev-
erywhere. In the general case, the function is vector valued and defined on Rp rather
than R.

20. Suppose f ≥ 0, is Lebesgue measurable, see Problem 14, or if you didn’t do that one,
let it be Borel measurable. Also suppose f X[a,b] has a finite integral for any finite
interval [a,b]. Let F (x)≡

∫ x
0 f (t)dm. Show that this function of x is continuous ev-

erywhere on [a,b] and then explain why this function has a derivative off some Borel
set of measure zero. Hint: To show continuous, note that for x < b,X[x,x+h] f (x)→ 0
as h→ 0. Consider using the dominated convergence theorem.

21. Let S ̸= /0 and define dist(x,S)≡ inf{|x− y| : y ∈ S} . Show x→ dist(x,S) is contin-
uous. In fact, show that

|dist(x,S)−dist(y,S)| ≤ |x− y|

22. ↑From regularity theorems for measures on B (R), you know that if µ (E)< ∞, then
there is a compact K and open V such that K ⊆ E ⊆ V and µ (V \K) < δ . Here µ

is a Borel measure which is finite on bounded sets. Show that for such E, there is
a continuous function f which is 1 on K, 0 off V , and has values in [0,1] . Use this
to show that there exists a continuous function h such that

∫
|XE −h|dµ < ε. Hint:

You might get such compact sets Kn and open sets Vn such that µ (Vn \Kn) < 1/2n

and let hn be as just shown. Then do some sort of argument involving the dominated
convergence theorem.

23. ↑Let µ be a measure on B (R) which is finite on bounded intervals and
∫
| f |dµ < ∞.

Show there exists a simple function s such that |s(x)| ≤ | f (x)| for all x and∫
| f (x)− s(x)|dµ < ε/2

Next show there is a continuous function h such that∫
|s(x)−h(x)|dµ < ε/2

Conclude that if f is real valued and measurable with
∫
| f |dµ < ∞, then there is h

continuous such that
∫
| f −h|dµ < ε .

24. ↑Let µ be a measure on B (R) which is finite on bounded intervals and
∫
| f |dµ < ∞.

Show that if fn ≡ f X[−n,n], then if n is large enough,∫
| f − fn|dµ < ε
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Modify the above problem slightly to show that it can be assumed that h vanishes
outside of some finite interval.

25. A Lebesgue measurable function f is said to be in L1
loc if f X[a,b] has a finite inte-

gral. Show that there is a Borel set of measure zero off which x→
∫ x

0 f (t)dm has a
derivative a.e.

26. This is on the Lebesgue fundamental theorem of calculus. Let f ∈ L1 (R,m) . By
Problem 24 for each ε, there is g continuous which vanishes off a finite interval such
that

∫
| f −g|dm < ε . Such a g is uniformly continuous by Theorem 6.7.2. Fill in

details to the following argument. For g as just described,

lim
r→0

1
m(B(0,r))

∫
B(x,r)

|g(x)−g(y)|dm(y) = 0

Here x is fixed and the function integrated is y→ |g(x)−g(y)|. Now let rn→ 0+ be
an arbitrary sequence each less than 1. Then

lim sup
n→∞

(
1

m(B(0,rn))

∫
B(x,rn)

| f (y)− f (x)|dm(y)
)
≤

lim sup
n→∞

1
m(B(0,rn))

∫
B(x,rn)

| f (y)−g(y)|dm(y)

+ lim sup
n→∞

1
m(B(0,rn))

∫
B(x,rn)

|g(y)−g(x)|dm(y)

+ lim sup
n→∞

1
m(B(0,rn))

∫
B(x,rn)

|g(x)− f (x)|dm(y)

≤M ( f −g)(x)+ |g(x)− f (x)|

Then

m̄
[

x : lim sup
n→∞

(
1

m(B(0,rn))

∫
B(x,rn)

| f (y)− f (x)|dm(y)
)
> λ

]
≤

m̄ [M ( f −g)> λ/2]+ m̄ [|g− f |> λ/2]

By Theorem 14.12.7 and Problem 11

≤ 10
λ

∫
| f −g|dm+

2
λ

∫
|g− f |dm

We are free to choose how close g is to f and so

m̄
([

x : lim sup
n→∞

(
1

m(B(0,rn))

∫
B(x,rn)

| f (y)− f (x)|dm(y)
)
> λ

])
= 0

It follows that

m̄
([

x : lim sup
n→∞

(
1

m(B(0,rn))

∫
B(x,rn)

| f (y)− f (x)|dm(y)
)
> 0
])

= 0
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and so, there is a Borel set of measure zero N such that if x /∈ N,

lim
n→∞

1
m(B(0,rn))

∫
B(x,rn)

| f (y)− f (x)|dm(y) = 0

and so
lim
r→∞

1
m(B(0,r))

∫
B(x,r)

| f (y)− f (x)|dm(y) = 0

which implies for x /∈ N,

lim
r→0

1
m(B(0,r))

∫
B(x,r)

f (y)dm(y) = f (x)

27. If you only know that f X[a,b] ∈ L1 (R,m) for all finite intervals [a,b] , show exactly
the same conclusion holds.

28. Use the above result to show that if f X[a,b] ∈ L1 (R,m) for all finite intervals [a,b] ,
then for a.e. x,

lim
h→0

1
h

∫ x+h

0
f (t)dm = f (x)

which can also be termed the Lebesgue fundamental theorem of calculus.

29. This problem outlines an approach to Stirling’s formula following [24] and [9]. An
easier approach comes from the traditional Stirling’s formula and Problem 16 on
Page 250 From the above problems, Γ(n+1) = n! for n ≥ 0. Consider more gen-
erally Γ(x+1) for x > 0. Actually, we will always assume x > 1 since it is the
limit as x→ ∞ which is of interest. Γ(x+1) =

∫
∞

0 e−ttxdt. Change variables let-
ting t = x(1+u) to obtain Γ(x+1) = xx+1e−x ∫ ∞

−1 ((1+u)e−u)
x du Next let h(u) be

such that h(0) = 1 and (1+u)e−u = exp
(
− u2

2 h(u)
)

Show the thing which works

is h(u) = 2
u2 (u− ln(1+u)). Use L’Hospital’s rule to verify that the limit of h(u)

as u→ 0 is 1. The graph of h is illustrated in the following picture. Verify that its
graph is like this, with an asymptote at u = −1 decreasing and equal to 1 at 0 and
converging to 0 as u→ ∞.

−1

1

Next change the variables again letting u = s
√

2
x . This yields, from the original

description of h, Γ(x+1) = xxe−x
√

2x
∫

∞

−
√

x/2
exp
(
−s2h

(
s
√

2
x

))
ds. For s < 1,

h

(
s

√
2
x

)
> 2−2ln2 = 0.61371

so the above integrand is dominated by e−(2−2ln2)s2
. Consider the integrand in the

above for s ≥ 1. The exponent part is −
(√

2
√

xs− x ln
(

1+ s
√

2
x

))
. Now for
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x > 1,
(√

2
√

xs− x ln
(

1+ s
√

2
x

))
−
(√

2s− ln
(

1+ s
√

2
))

equals the expression

√
2s(
√

x−1)+ ln

 1+s
√

2(
1+s

√
2
x

)x

> 0.

Therefore,
(√

2
√

xs− x ln
(

1+ s
√

2
x

))
>
(√

2s− ln
(

1+ s
√

2
))

and so, for s≥ 1,

exp

(
−s2h

(
s

√
2
x

))
≤ exp

(
−
(√

2s− ln
(

1+ s
√

2
)))

=
(

1+ s
√

2
)

e−
√

2s

Thus, there exists a dominating function for X[−
√ x

2 ,∞]
(s)exp

(
−s2h

(
s
√

2
x

))
and

limx→∞ X[−
√ x

2 ,∞]
(s)exp

(
−s2h

(
s
√

2
x

))
= exp

(
−s2

)
so by the dominated con-

vergence theorem,

lim
x→∞

∫
∞

−
√

x/2
exp

(
−s2h

(
s

√
2
x

))
ds =

∫
∞

−∞

e−s2
ds =

√
π

See Problem 49 on Page 227 or Theorem 9.9.4. This yields a general Stirling’s
formula, limx→∞

Γ(x+1)
xxe−x

√
2x

=
√

π .



Chapter 15

Construction of Real Numbers
The purpose of this chapter is to give a construction of the real numbers from the rationals.
This was first done by Dedekind in 1858 although not published till 1872. He used a totally
different approach than what is used here. Dedekind’s construction was based on an early
idea of Eudoxus who lived around 350 B.C. in which points on the real line divided the
rationals above and below them. Dedekind made this cut into what was meant by a real
number. See Rudin [24] for a description of this approach. I am using equivalence classes
of Cauchy sequences rather than Dedekind cuts because this approach applies to metric
spaces and Dedekind cuts do not. This idea of constructing the real numbers from such
equivalence classes is due to Cantor, also published in 1872. Hewitt and Stromberg [17]
also use this approach. Hobson [18] has a description of both of these methods.

Why do this? Why not continue believing that a real number is a point on a number
line and regard its existence as geometrically determined? This is essentially what was done
till Dedekind and, as mentioned, seems to have been part of the belief system of Greeks
thousands of years earlier. I think the reason that such a construction is needed is algebra.
Is there a way to carry the algebraic notions and order axioms of the rational numbers to the
real numbers, defined geometrically as points on the number line? Till Dedekind, this was
simply assumed, as it has been in this book till now. Also, it is desirable to remove the last
vestiges of geometry from analysis; hence this construction. I think this is why Dedekind
and Cantor’s work was very important.

Definition 15.0.1 Let R denote the set of Cauchy sequences of rational numbers.
If {xn}∞

n=1 is such a Cauchy sequence, this will be denoted by x for the sake of simplicity of
notation. A Cauchy sequence x will be called a null sequence if limn→∞ xn = 0. Denote the
collection of such null Cauchy sequences as N.Then define x∼ y if and only if x−y ∈ N.
Here x−y signifies the Cauchy sequence {xn− yn}∞

n=1. Also, for simplicity of notation, let
Q denote the collection of Cauchy sequences equivalent to some constant Cauchy sequence
{an}∞

n=1 for an = a ∈Q. Thus Q⊆ R.

Notice that whether x−y ∈ N is determined completely by the tail of x−y, the terms
of the sequence larger than some number. Then the following proposition is very easy to
establish and is left to the reader.

Proposition 15.0.2 ∼ is an equivalence relation on R.

Definition 15.0.3 Define R as the set of equivalence classes of R. For [x] , [y] , [z]∈
R, define [x] [y]≡ [xy] where xy is the sequence {xnyn}∞

n=1 . Also define [x]+ [y]≡ [x+y] .

This leads to the following theorem. Note that this is enlarging the field Q obtaining a
larger field R. Enlarging fields is done frequently in algebra using the machinery of field
extensions. It also uses equivalence classes. However, this is very different, resulting in an
enlargement of Q which essentially goes all the way at once. It emphasizes completeness
and order rather than inclusion of roots of various polynomials.

Lemma 15.0.4 If x /∈ N, then there is δ > 0 and N such that |xk|> δ for all k ≥ N.

Proof: If the conclusion does not hold, then for each δ > 0, there exist infinitely many
k such that |xk| ≤ δ . Thus there is a subsequence which converges to 0. By Theorem 4.5.4,
x ∈ N after all. ■

357
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Theorem 15.0.5 With the two operations defined above,R is a field. The operations
are well defined.

Proof: Why are these operations well defined? Consider multiplication because it is
fairly obvious that addition is well defined. If x∼ x′ and y∼ y′, is it true that [x′y′] = [xy]?
Is {x′ny′n− xnyn}∞

n=1 ∈ N?∣∣x′ny′n− xnyn
∣∣≤ ∣∣x′ny′n− x′nyn

∣∣+ ∣∣x′nyn− xnyn
∣∣≤C

(∣∣y′n− yn
∣∣+ ∣∣x′n− xn

∣∣)
where C is a constant which bounds all terms of all four given Cauchy sequences, the con-
stant existing because these are all Cauchy sequences. See Theorem 4.5.2. By assumption,
the last expression converges to 0 as n→ ∞ and so {x′ny′n− xnyn}∞

n=1 ∈ N which verifies
that [x′y′] = [xy] as hoped. The case for addition is similar but easier.

Now it is necessary to verify that the two operations are binary operations on R. This
is obvious for addition. The question for multiplication reduces to whether xy is a Cauchy
sequence.

|xnyn− xmym| ≤ |xnyn− xmyn|+ |xmyn− xmym| ≤C (|xn− xm|+ |yn− ym|)

for some constant which is independent of n,m. This follows because x,y Cauchy implies
that these sequences are both bounded. See Theorem 4.5.2.

Commutative and associative laws for addition and multiplication are all obvious be-
cause these hold pointwise for individual terms of the sequence. So is the distributive law.
The existence of an additive identity is clear. You just use [0] . Similarly [1] is a multiplica-
tive identity. For [x] ̸= [0] , let yn = 1 if xn = 0 and yn = x−1

n if xn ̸= 0. Is y ∈ R? Since
[x] ̸= [0] , Lemma 15.0.4 implies that there exists δ > 0 and N such that |xk| > δ for all
k ≥ N. Now for m,n > N,

|yn− ym|=
∣∣∣∣ 1
xn
− 1

xm

∣∣∣∣= |xn− xm|
|xn| |xm|

≤ 1

δ
2 |xn− xm|

which shows that {yn}∞

n=1 ∈ R. Then clearly [y] = [x]−1 because [y] [x] = [yx] and yx is a
Cauchy sequence which equals 1 for all n large enough. Therefore, [xy] = [1] as required,
because xy−1 ∈ N. It is obvious that an additive inverse [−x] ≡ − [x] exists for each
[x] ∈ R. Thus R is a field as claimed. ■

It might be of interest to note that with the operations described, R is a commutative
ring and N is a maximal ideal. Thus from algebra R/N is a field. Showing N is maximal is
essentially done above where if [x] ̸= [0] , then the multiplicative inverse exists which gets
1 in any ideal containing N making N maximal. You do the same thing with algebraic field
extensions but the argument is harder there.

Of course there are two other properties which need to be considered. Is R ordered? Is
R complete? First recall what it means for R to be ordered. There is a subset of R called
the positive numbers, such that

The sum of positive numbers is positive.

The product of positive numbers is positive.

[x] is either positive [0] , or − [x] is positive.
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Definition 15.0.6 Define [x]> [0] means that there exists δ > 0,δ ∈Q and a subse-
quence of x

{
xnk

}∞

k=1 with the property that xnk > δ for all k. Since x is a Cauchy sequence,
this requires that for all n large enough, xn > δ/2. Thus we could also say [x]> [0] means
xk > η for some positive η whenever k is large enough. It has already been shown that
[x] = [0] means limk→∞ xk = 0.

Theorem 15.0.7 The above definition makes R into an ordered field.

Proof: The first two order axioms are obvious. As to the third, if [x] ̸= [0] , it follows
that for all k large enough, xk > δ for some δ > 0 or −xk < δ for all k large enough. In
the first case, [x] > [0] and in the second case, − [x] > [0] . The only other case is where
[x] = [0] . Thus R is an ordered field. ■

Now that we know this is an ordered field, the usual notions apply to <.

Observation 15.0.8 To say [x]< ε ∈Q is to say that [ε]− [x] = [ε−x]> [0] where ε

is the constant sequence every term equal to ε ∈ Q. Thus ε > [x] says that for all k large
enough, xk < ε .

Lemma 15.0.9 Q is dense in R in the sense that given ε > 0 where ε ∈ Q, and x ∈ R,
there is r ∈ Q such that [|x− r|] < ε where r is the constant sequence always equal to
r ∈Q.

Proof: Note that |x− r|∈ R from the triangle inequality. It remains to verify Q is
dense in R. I need to verify that if x ∈ R, then there is r ∈Q such that for large enough k,
r− xk < ε ∈ Q and xk− r < ε . It suffices to get an r such that |xk− r| < ε . Since x ∈ R,
|xk− xm|< ε/4 for all k,m≥ n for some n. Let r≡ xn so k≥ n implies |xk− r|< ε/4. Then
ε−|xk− r|> 3ε/4 so [|x− r|]< ε . ■

Definition 15.0.10 Define |[x]| ≡ [|x|] . This makes sense because of the triangle
inequality ||xk|− |yk|| ≤ |xk− yk| . Thus |x| ≡ {|xk|}k ∈ R and if [x] = [y] then [|x|] = [|y|] .

Theorem 15.0.11 |·| as just defined satisfies the usual properties of the absolute
value. Also, if [q]> 0 and if [x] ∈ R then there is r ∈Q such that |[x]− [r]|< [q]. Thus Q
is dense in R. Also R is complete.

Proof: If [x] ̸= [0] , then eventually, for large enough k either xk ≥ δ > 0 or xk < −δ

for some rational δ > 0. Therefore, |[x]|= [|x|]> δ .

|[x] [y]| ≡ |[xy]| ≡ [|xy|] and |[x]| |[y]| ≡ [|x|] [|y|]≡ [|xy|]

Thus |[x] [y]|= |[x]| |[y]|. Also [x]2 = |[x]|2 and |[x] [y]| ≥ [x] [y].

|[x]+ [y]|2 = ([x]+ [y])2 = [x]2 +[y]2 +2 [x] [y]
≤ |[x]|2 + |[y]|2 +2 |[x]| |[y]|= (|[x]|+ |[y]|)2

and so |[x]+ [y]| ≤ |[x]|+ |[y]| . The usual properties of absolute value are obtained.
Now since [q] > 0, we have qk > δ > 0 for some δ ∈ Q whenever k is large enough.

Let n be still larger such that for k,m ≥ n, |qk−qm| < δ/3. Thus k ≥ n implies qk− qn >
− δ

3 ,qk > qn− δ

3 > 2δ/3. From Theorem 15.0.7, if [x] ∈ R then there is r ∈ Q such that
[|x− r|]< δ/2 < 2δ/3 < [q] . It follows Q is dense in R.
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To show R is complete, let {[x]n}n be a sequence of elements of R. By definition,
[x]n = [xn] where xn is a representative of [x]n . Thus xn is in R. Then we are given that for
every ε > 0,ε ∈Q there is nε such that if m,n > nε , then

|[x]n− [x]m| ≡ |[xn]− [xm]| ≡ |[xn−xm]|= [|xn−xm|]< ε

We can therefore, obtain a subsequence, still denoted with n such that∣∣∣[x]n− [x]n+1
∣∣∣= [∣∣xn−xn+1∣∣]< 4−n

It will be this subsequence in what follows. Thus there is an increasing sequence {kn} such

that
∣∣xn

k − xn+1
l

∣∣ < 2−n if k, l ≥ kn where kn is increasing in n. Let y =
{

xn
kn

}∞

n=1
. Then

y ∈ R and if m≥ kn,

|xn
m− ym| =

∣∣xn
m− xm

km

∣∣≤ ∣∣xn
m− xn

kn

∣∣+ ∣∣xn
kn
− xm

km

∣∣
< 2−n +

m−1

∑
j=n

∣∣∣x j
kn
− x j+1

km

∣∣∣< 2−n +
∞

∑
j=n

2− j = 2−n +2−(n−1)

Then from the above,
|[x]n− [y]|= [|xn−y|]< 2−(n−2)

This says that limn→∞ [x]n = [y] by definition. The original Cauchy sequence converges to
the same thing thanks to Theorem 4.5.4. ■

It follows that you can consider each real number inR as an equivalence class of Cauchy
sequences. One can show that any two ordered, complete, separable, fields are isomorphic
so there is essentially only one of them.

There are other ways to construct the real numbers from the rational numbers. The
technique of Dedekind cuts might be a little shorter and easier to understand. However,
the above technique of the consideration of equivalence classes of Cauchy sequences can
also be used to complete any metric space and this is a common problem. The technique
of Dedekind cuts cannot do this because it depends on the order of Q and there is no order
in a general metric space.

A metric space is a nonempty set X on which is defined a distance function (metric)
which satisfies the following axioms for x,y,z ∈ X .

d (x,y) = d (y,x) , ∞ > d (x,y)≥ 0

d (x,y)+d (y,z)≥ d (x,z)

d (x,y) = 0 if and only if x = y.

Its completion is a larger metric space with the property that Cauchy sequences con-
verge. It will also consist of equivalence classes of Cauchy sequences. The idea of a
Cauchy sequence makes sense in a metric space.



Appendix A

Classification of Real Numbers
Dedekind and Cantor constructed the real numbers in 1872. Then in 1882 and 1884 Linder-
mann and Weierstrass were able to classify certain important real numbers like logarithms,
sines and cosines and π . This was an amazing achievement.

Recall that algebraic numbers are those which are roots of a polynomial with rational
or integer coefficients. (Note that if the coefficients are rational, you could simply multiply
by the product of the denominators and reduce to one which has all integer coefficients.)
This of course includes many complex numbers. For example, x2 + 1 has roots ±i. The
algebraic numbers include all rational numbers. For example the root of mx−n = 0 is n

m .
Numbers which are not algebraic are called transcendental.

Most numbers are transcendental. This follows from Problem 14 on Page 53 and Prob-
lem 16 on Page 53. However, it is very difficult to show that a particular number is tran-
scendental. Lindermann and Weierstrass made some progress on this in 1882 and 1884. In
particular, Lindermann showed that π is transcendental. This solved the ancient problem
about whether one could square the circle. If you start with the unit circle, its area is π and
the question was whether you could construct with compass and unmarked straight edge
only, a square of area π .

You can’t do it because all constructible numbers are algebraic. In fact they all involve
roots of quadratic polynomials and linear polynomials which is essentially why you cannot
trisect an arbitrary angle either, such as a 60◦ angle. If you could square the circle, then you
would end up needing the sides of the square to be

√
π which, if algebraic, would require

π to also be algebraic. This is explained below. It turns out that doing algebra to algebraic
numbers results in algebraic numbers.

This theorem of Lindermann is a very significant result and it seems to be neglected
these days. This is why I am including a treatment of it which I hope will be somewhat
understandable. It is very technical however. I have not seen the original proof of this the-
orem. I suspect it is not what is about to be presented which depends on work of Steinberg
and Redheffer dating from 1950. However, the use of the symmetric polynomial theorem
used here seems an interesting way to proceed. This symmetric polynomial theorem is very
important for its own sake.

I will use the concept of a vector space and a basis for it in what follows. A beginning
linear algebra course which is not restricted to row operations should contain sufficient
background. However, if you have not seen the notion of an abstract vector space and
basis, it would be better to learn this first. It is in any of my books on linear algebra.

A.1 Algebraic Numbers
a is an algebraic number when there is a polynomial p(x)≡ xn +an−1xn−1 + · · ·+a0 with
each ak rational having a as a root. Out of all such polynomials, the one which has n as
small as possible is called the minimum polynomial for the algebraic number a and n is
called the degree of this algebraic number. This minimum polynomial is unique. Indeed, if
p(x) and p̂(x) are two such, then by the division algorithm,

p̂(x) = p(x)q(x)+ r (x)

where r (x) has smaller degree than n or is 0. The first case cannot happen because r (a) = 0
and so r (x) = 0. Now matching coefficients shows that p̂(x) is a multiple of p(x) and so

361
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q(x) can only be a scalar. q(x) must be 1 because both p(x), and p̂(x) have leading
coefficient equal to 1.

If m≥ n, then by the division algorithm for polynomials, xm = p(x)q(x)+ r (x) where
r (x) is either 0 or has degree less than n the degree of p(x). Then am = r (a) and so this
shows that if q(x) is a polynomial then q(a) can always be written in the form r (a) where
either r (a)= 0 or r (x) has smaller degree than p(x) the minimum polynomial. Incidentally,
this works for linear transformations in place of a for exactly the same reasons. We denote
by k≡

(
k1 · · · kr

)
an ordered list of nonnegative integers.

Let Q [a1, ...,ar] be all finite sums of the form ∑k akak1
1 · · ·akr

r where the ki are nonneg-
ative integers, the ak are rational numbers, and the ai are nonzero algebraic numbers. Then
from what was just observed, this is always of the form ∑{k such that ki≤ni} akak1

1 · · ·akr
r where

the ni are degrees of the algebraic numbers ai. Then Q [a1, ...,ar] is a vector space over the
field of scalars Q or more generally, you would have F [a1, ...,ar] a vector space over the
field of scalars F. It follows that Q [a1, ...,ar] has a spanning set{

ak1
1 · · ·a

kr
r ,0≤ ki ≤ ni−1

}
Therefore, the dimension ofQ [a1, ...,ar] , as such a vector space, is no more than ∏

r
i=1 ni ≡

m, the product of the degrees of the algebraic numbers. Letting g(a1, ...,ar) be a polynomial
in which the ai are algebraic, it follows that with m as just defined,

1,g(a1, ...,ar) ,g(a1, ...,ar)
2 , ...,g(a1, ...,ar)

m

cannot be linearly independent. There are too many of them. It follows that there exist
scalars bk in Q or the field of scalars, such that b0 + ∑

m
k=1 bkg(a1, ...,ar)

k = 0 and so,
g(a1, ...,ar) is an algebraic number. This shows that if you have algebraic numbers, you
can multiply them, add them, raise them to positive integer powers and so forth, and the
result will still be an algebraic number. Sloppily expressed, doing algebra to algebraic
numbers yields algebraic numbers.

In fact, you can exploit the existence of a polynomial of minimum degree for which
a number in Q [a1, ...,ar] is a root, to show that Q [a1, ...,ar] is actually a field. However,
this is not needed here. It is enough to note that Q [a1, ...,ar] is a commutative ring, dis-
cussed below. Note how this compares with the previous section about extending Q to R.
This extends Q to a larger field Q [a1, ...,ar] ⊆ C but not anywhere near all the way to the
field C = R+ iR. In fact, as shown in an early problem the set of algebraic numbers, is
countable whereas R and C are not. Of course, if you had a which is not a root of any
polynomial having rational coefficients, then Q [a] would not be finite dimensional and the
above process will fail. When this occurs, we say that a is transcendental.

A.2 The Symmetric Polynomial Theorem
First here is a definition of polynomials in many variables which have coefficients in a com-
mutative ring. A commutative ring would be a field except it lacks the axiom which gives
multiplicative inverses for nonzero elements of the ring. A good example of a commutative
ring is the integers. In particular, every field is a commutative ring. Thus, a commutative
ring satisfies the following axioms. They are just the field axioms with one omission just
mentioned. You might not have x−1 if x ̸= 0. We will assume that the ring has 1, the
multiplicative identity.
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Axiom A.2.1 Here are the axioms for a commutative ring.

1. x+ y = y+ x, (commutative law for addition)

2. There exists 0 such that x+0 = x for all x, (additive identity).

3. For each x ∈ F, there exists −x ∈ F such that x+(−x) = 0, (existence of additive
inverse).

4. (x+ y)+ z = x+(y+ z) ,(associative law for addition).

5. xy = yx,(commutative law for multiplication). You could write this as x× y = y× x.

6. (xy)z = x(yz) ,(associative law for multiplication).

7. There exists 1 such that 1x = x for all x,(multiplicative identity).

8. x(y+ z) = xy+ xz.(distributive law).

The example of most interest here is where the commutative ring is the integers Z or
Q [a1, ...,ar]. Next is a definition of what is meant by a polynomial.

Definition A.2.2 Let k ≡ (k1,k2, · · · ,kn) where each ki is a nonnegative integer.
Let |k| ≡∑i ki. Polynomials of degree p in the variables x1,x2, · · · ,xn are expressions of the
form

g(x1,x2, · · · ,xn) = ∑
|k|≤p

akxk1
1 · · ·x

kn
n

where each ak is in a commutative ring. If all ak = 0, the polynomial has no degree. Such
a polynomial is said to be symmetric if whenever σ is a permutation of {1,2, · · · ,n},

g
(
xσ(1),xσ(2), · · · ,xσ(n)

)
= g(x1,x2, · · · ,xn)

An example of a symmetric polynomial is s1 (x1,x2, · · · ,xn) ≡ ∑
n
i=1 xi. Another one is

sn (x1,x2, · · · ,xn)≡ x1x2 · · ·xn.

Definition A.2.3 The elementary symmetric polynomial

sk (x1,x2, · · · ,xn) ,k = 1, · · · ,n

is the coefficient of (−1)k xn−k in the following polynomial.

(x− x1)(x− x2) · · ·(x− xn) = xn− s1xn−1 + s2xn−2−·· ·± sn

Thus
s1 = x1 + x2 + · · ·+ xn

s2 = ∑
i< j

xix j, s3 = ∑
i< j<k

xix jxk, . . . ,sm = ∑
i1<i2···<im

xi1xi2 · · ·xim , sn = x1x2 · · ·xn

These special elementary polynomials are symmetric because switching two of the
variables xi and x j is equivalent to switching the corresponding factors in the product
(x− x1)(x− x2) · · ·(x− xn) and using the same process to collect terms which multiply
xn−k. The polynomial in x does not change.



364 APPENDIX A. CLASSIFICATION OF REAL NUMBERS

Example A.2.4

(x− x1)(x− x2)(x− x3)

= x3− x2 (x1 + x2 + x3)+ x(x1x2 + x1x3 + x2x3)− x1x2x3.

Thus the symmetric polynomials are x1 + x2 + x3,x1x2 + x1x3 + x2x3, and x1x2x3.

Note that it follows from the above definition that

α
ksk (x1,x2, · · · ,xn) = sk (αx1, · · · ,αxn)

Then the following result is the fundamental theorem in the subject. It is the symmetric
polynomial theorem. This is a very remarkable theorem.

Theorem A.2.5 Let g(x1,x2, · · · ,xn) be a symmetric polynomial. Then this sym-
metric polynomial g(x1,x2, · · · ,xn) equals a polynomial in the elementary symmetric poly-
nomials.

g(x1,x2, · · · ,xn) = ∑
k

aksk1
1 · · ·s

kn
n

and the ak in the commutative ring are unique.

Proof: The proof is by induction on the number of variables. If n = 1, it is obviously
true because s1 = x1 and g(x1) can only be a polynomial in x1. Suppose the theorem is true
for n−1 variables and g(x1,x2, · · · ,xn) has degree d. Thus in the sum for the polynomial,
|k| ≤ d. By induction, there is a polynomial

Q(s̃1, · · · , s̃n−1) = ∑
|k|≤p

aks̃k1
1 · · · s̃

kn−1
n−1 = g(x1,x2, · · · ,xn−1,0) (1.1)

where s̃k is a symmetric polynomial for the variables {x1,x2, · · · ,xn−1} . Now let

p(x1,x2, · · · ,xn)≡ g(x1,x2, · · · ,xn)−Q(s1, · · · ,sn−1) (1.2)

Thus p(x1,x2, · · · ,xn) is a symmetric polynomial because each s j is symmetric and g is
given to be symmetric. Notice how s̃k was replaced with sk.

If xn is set equal to 0, the right side reduces to 0 because sk (x1,x2, · · · ,xn−1,0) =
s̃k (x1,x2, · · · ,xn−1). This follows from the definition of these symmetric polynomials.
Indeed, the coefficient of xn−k in (x− x1)(x− x2) · · ·(x− xn−1)(x−0) is the same as the
coefficient of x(n−1)−k in (x− x1)(x− x2) · · ·(x− xn−1) . Thus, the right side of 1.2 reduces
to g(x1,x2, · · · ,xn−1,0)−Q(s̃1, · · · , s̃n−1) = 0 from 1.1 when xn = 0.

Thus xn divides p(x1,x2, · · · ,xn) so every term in p(x1,x2, · · · ,xn) has a factor of xn.
The same must be true with x j since otherwise, the symmetric polynomial p(x1,x2, · · · ,xn)
would change if you switched x j and xn. Hence there exists a symmetric polynomial
g1 (x1,x2, · · · ,xn) such that

sng1 (x1,x2, · · · ,xn) = g(x1,x2, · · · ,xn)−Q(s1, · · · ,sn−1)

Recall sn = x1x2 · · ·xn. Thus

g(x1,x2, · · · ,xn) = sng1 (x1,x2, · · · ,xn)+Q(s1, · · · ,sn−1)
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Now if g1 is not constant, do for g1 what was just done for g. Obtain

g(x1,x2, · · · ,xn) = sn

(
sng2 (x1,x2, · · · ,xn)
+Q2 (s1, · · · ,sn−1)

)
+Q(s1, · · · ,sn−1)

Continue this way, obtaining a sequence of gk till the process stops with some gm being
a constant. This must happen because the degree of gk becomes strictly smaller with
each iteration. This yields a polynomial in the elementary symmetric polynomials for
{x1,x2, · · · ,xn}. ■

Example A.2.6 Let g(x,y) = x3 + y3. It is clear that g(x,y) = g(y,x) so g is a symmetric
polynomial. Write as a polynomial in the elementary functions.

The above proof tells how to do this. First note that x3 = s̃3
1 where s1 is the symmetric

polynomial associated with the single variable x. Thus p(x,y)= x3+y3−s3
1 where this s1 is

x+y. Then p(x,y) = x3 +y3− (x+ y)3 = −3x2y−3xy2 and this equals (−xy)(3x+3y) =
−3s2s1. Thus −3s1s2 = x3 + y3− s3

1 and so g(x,y) = s3
1−3s1s2.

You can see that if you have a symmetric polynomial in more variables, you could use
a process of reducing one variable at a time in g(x1, ...,xn−1,0) to eventually obtain this
function as a polynomial in the symmetric polynomials in variables {x1, ...,xn−1}.

Note that if you have ∏
m
j=1 (x− x j) then by definition, it is the sum of terms like

g(x1, · · · ,xm)xm−k. If you replace x with xi and sum over all i, you would obtain an ex-
pression of the form ∑

m
i=1 g(x1, · · · ,xm)xm−k

i which would also be a symmetric polynomial.
It is of the form

g(x1, · · · ,xm)xm−k
1 +g(x1, · · · ,xm)xm−k

2 + · · ·+g(x1, · · · ,xm)xm−k
m

so when you switch some variables in this, you get the same thing.
Here is a very interesting result which I saw claimed in a paper by Steinberg and Red-

heffer on Lindermannn’s theorem which follows from the above theorem. It is a very useful
property of symmetric polynomials and is the main tool for proving the Lindermann Weier-
strass theorem.

Theorem A.2.7 Let α1, · · · ,αn be roots of the polynomial equation

p(x)≡ anxn +an−1xn−1 + · · ·+a1x+a0 = 0 (∗)

where each ai is an integer. Then any symmetric polynomial in the quantities

anα1, · · · ,anαn

having integer coefficients is also an integer. Also any symmetric polynomial with rational
coefficients in the quantities α1, · · · ,αn is a rational number.

Proof: Let f (x1, · · · ,xn) be the symmetric polynomial having integer coefficients.
From Theorem A.2.5 it follows there are integers ak1···kn such that

f (x1, · · · ,xn) = ∑
k1+···+kn≤m

ak1···kn pk1
1 · · · p

kn
n (1.3)
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where the pi are elementary symmetric polynomials defined as the coefficients of p̂(x) =
∏

n
j=1 (x− x j) with pk (x1, ...,xn) of degree k since it is the coefficient of xn−k. Earlier we

had them ± these coefficients. Thus

f (anα1, · · · ,anαn) = ∑
k1+···+kn=d

ak1···kn pk1
1 (anα1, · · · ,anαn) · · · pkn

n (anα1, · · · ,anαn)

Now the given polynomial in ∗, p(x) is of the form

an

n

∏
j=1

(x−α j)≡ an

(
n

∑
k=0

pk (α1, · · · ,αn)xn−k

)

= anxn +an−1xn−1 + · · ·+a1x+a0

Thus, equating coefficients, an pk (α1, · · · ,αn) = an−k. Multiply both sides by ak−1
n . Thus

pk (anα1, · · · ,anαn) = ak−1
n an−k

an integer. Therefore,

f (anα1, · · · ,anαn) = ∑
k1+···+kn=d

ak1···kn pk1
1 (anα1, · · · ,anαn) · · · pkn

n (anα1, · · · ,anαn)

and each pk (anα1, · · · ,anαn) is an integer. Thus f (anα1, · · · ,anαn) is indeed an integer.
From this, it is obvious that f (α1, · · · ,αn) is rational. Indeed, from 1.3,

f (α1, · · · ,αn) = ∑
k1+···+kn=d

ak1···kn pk1
1 (α1, · · · ,αn) · · · pkn

n (α1, · · · ,αn)

Now multiply both sides by aM
n , an integer where M is chosen large enough that

aM
n f (α1, · · · ,αn)

= ∑
k1+···+kn=d

ah(k1,...,kn)
n ak1···kn pk1

1 (anα1, · · · ,anαn) · · · pkn
n (anα1, · · · ,anαn)

where h(k1, ...,kn) is some nonnegative integer. Then the right side is an integer. Thus
f (α1, · · · ,αn) is rational. If the f had rational coefficients, then m f would have inte-
ger coefficients for a suitable m and so m f (α1, · · · ,αn) would be rational which yields
f (α1, · · · ,αn) is rational. ■

A.3 Transcendental Numbers
Most numbers are like this, transcendental. Here the algebraic numbers are those which
are roots of a polynomial equation having rational numbers as coefficients, equivalently
integer coefficients. By the fundamental theorem of algebra, all these numbers are in C
and they constitute a countable collection of numbers in C. Therefore, most numbers in C
are transcendental. Nevertheless, it is very hard to prove that a particular number is tran-
scendental. Probably the most famous theorem about this is the Lindermannn Weierstrass
theorem, 1884.

Theorem A.3.1 Let the α i be distinct nonzero algebraic numbers and let the ai be
nonzero algebraic numbers. Then ∑

n
i=1 aieα i ̸= 0.
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I am following the interesting Wikepedia article on this subject. You can also look at the
book by Baker [5], Transcendental Number Theory, Cambridge University Press. There are
also many other treatments which you can find on the web including an interesting article
by Steinberg and Redheffer which appeared in about 1950.

The proof makes use of the following identity. For f (x) a polynomial,

I (s)≡
∫ s

0
es−x f (x)dx = es

deg( f )

∑
j=0

f ( j) (0)−
deg( f )

∑
j=0

f ( j) (s) . (1.4)

where f ( j) denotes the jth derivative. It is like the convolution integral discussed earlier
with Laplace transforms. In this formula, s ∈ C and the integral is defined in the natural
way as ∫ 1

0
s f (ts)es−tsdt (1.5)

The identity follows from integration by parts.∫ 1

0
s f (ts)es−tsdt = ses

∫ 1

0
f (ts)e−tsdt = ses

[
−e−ts

s
f (ts) |10 +

∫ 1

0

e−ts

s
s f ′ (st)dt

]

= ses
[
−e−s

s
f (s)+

1
s

f (0)+
∫ 1

0
e−ts f ′ (st)dt

]
= es f (0)− f (s)+

∫ 1

0
ses−ts f ′ (st)dt

≡ es f (0)− f (s)+
∫ s

0
es−x f ′ (x)dx

Continuing this way establishes the identity since the right end looks just like what we
started with except with a derivative on the f .

Lemma A.3.2 Let (x1, ...,xn)→ g(x,x1, ...,xn) be symmetric and let

x→ g(x,x1, ...,xn)

be a polynomial. Then dm

dxm g(x,x1, ...,xn) is symmetric in the variables {x1, ...,xn}. If
(x1, ...,xn) → h(x,x1, ...,xn) is symmetric, then for r some nonnegative integer, it fol-
lows that ∑

n
k=1 h(xk,x1, ...,xn)xr

k is symmetric. In particular, ∑
n
k=1

dl

dxl g(·,x1, ...,xn)(xk)xr
k

is symmetric in {x1, ...,xn}.

Proof: The coefficients of the polynomial x→ g(x,x1, ...,xn) are symmetric functions
of {x1, ...,xn} . Differentiating with respect to x multiple times just gives another polyno-
mial in x having coefficients which are symmetric functions. Thus the first part is proved.
For the second part, the sum is of the form

h(x1,x1, ...,xn)xr
1 +h(x2,x1, ...,xn)xr

2 + · · ·+h(xn,x1, ...,xn)xr
n

You see that this is unchanged from switching two variables. For example, switch x1 and
x2. By assumption, nothing changes in the terms after the first two. The first term then
becomes

h(x2,x2,x1...,xn)xr
2 = h(x2,x1,x2, ...,xn)xr

2

and the second term becomes

h(x1,x2,x1, ...,xn)xr
1 = h(x1,x1,x2, ...,xn)xr

1
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which are the same two terms, just added in a different order. The situation works the same
way with any other pair of variables. ■

Recall that every algebraic number is a root of a polynomial having integer coefficients.

Lemma A.3.3 Let Q(x) = vxm + · · ·+ u have integer coefficients with roots β 1, ...,β m
listed according to multiplicity. Let

f (x)≡ v(m+1)pQp (x)xp−1

(p−1)!
(1.6)

a polynomial of degree n = pm+ p−1. Then

n

∑
j=0

f ( j) (0) = vp(m+1)up +m1 (p) p (1.7)

m

∑
i=1

n

∑
j=0

f ( j) (β i) = m2 (p) p (1.8)

where m1 (p) ,m2 (p) are integers and p will be a large prime.

Proof: First consider 1.7. f (x) = v(m+1)p(vxm+···+u)pxp−1

(p−1)! . Then f j (0) = 0 unless j ≥
p−1 because otherwise, that xp−1 term will result in some xr,r > 0 and everything is zero
when you plug in x = 0. Now say j = p−1. Then it is clear that you get a (p−1)! which
cancels the denominator and letting x = 0, you get the integer f (p−1) (0) = upv(m+1)p. So
what if j > p−1?

d j

dx j

(
(vxm + · · ·+u)p xp−1)

=
j

∑
r=0

(
j
i

)
di

dxi ((vxm + · · ·+u)p)
d j−i

dx j−i xp−1

and, since eventually x = 0, only j− i = p−1 is of interest, so i = j− p+1 where j ≥ p
as just mentioned. Since i ≥ 1, there will be a factor of p and a factor of (p−1)! from
d j−i

dx j−i xp−1. Thus when x = 0, this reduces to m1 (p) p(p−1)! and so this yields 1.7.
Next consider 1.8 which says that ∑

m
i=1 ∑

n
j=0 f ( j) (β i) = m2 (p) p. The factorization of

Q(x) is v(x−β 1) · · ·(x−β m) . Replace Q(x) with its factorization in 1.6 to get

f (x)(p−1)! = vpv(m+1)p ((x−β 1)(x−β 2) · · ·(x−β m))
p xp−1 (1.9)

First notice that (p−1)! f ( j) (β i) = 0 unless j ≥ p. Thus all terms in computing

f ( j) (β i)(p−1)!

for j ≥ p have a factor of p!. If you have

g(x,β 1, · · · ,β m)≡ vpv(m+1)p ((x−β 1)(x−β 2) · · ·(x−β m))
p xp−1,

it is symmetric in the β i so all derivatives with respect to x are also symmetric in these β i
by Lemma A.3.2. By the same lemma, for j ≥ p

m

∑
i=1

d j

dx j

(
g(·,β 1, · · · ,β m)(β i)

1
(p−1)!

)
=

m

∑
i=1

f ( j) (β i)



A.3. TRANSCENDENTAL NUMBERS 369

is symmetric in the β 1, · · · ,β m. Thanks to the factor vpv(m+1)p and the factor p! coming
from j ≥ p, it is a symmetric polynomial in the vβ i with integer coefficients, each multi-
plied by p with the β i roots of Q(x) = vxm + · · ·+u. By Theorem A.2.7 this is an integer.
As noted earlier, it equals 0 unless j ≥ p when it contains a factor of p. Thus the sum of
these integers is also an integer times p. It follows that

m

∑
i=1

n

∑
j=0

f ( j) (β i) = m2 (p) p, m2 (p) an integer. ■

Note that no use was made of p being a large prime number. This will come next.

Lemma A.3.4 If K and c are nonzero integers, and β 1, · · · ,β m are the roots of a single
polynomial with integer coefficients,

Q(x) = vxm + · · ·+u

where v,u ̸= 0, then,
K + c

(
eβ 1 + · · ·+ eβ m

)
̸= 0.

Letting

f (x)≡ v(m+1)pQp (x)xp−1

(p−1)!

and I (s) be defined in terms of f (x) as above,

I (s)≡
∫ s

0
es−x f (x)dx = es

deg( f )

∑
j=0

f ( j) (0)−
deg( f )

∑
j=0

f ( j) (s) ,

it follows,

lim
p→∞

m

∑
i=1

I (β i) = 0 (1.10)

and for n the degree of f (x) ,n = pm+ p− 1, where mi (p) is some integer for p a large
prime number.

Proof: The first step is to verify 1.10 for f (x) as given in 1.6 for p large prime numbers.
Let p be a large prime number. Then 1.10 follows right away from the definition of I

(
β j

)
and the definition of f (x) .

∣∣∣I(β j

)∣∣∣≤ ∫ 1

0

∣∣∣β j f
(

tβ j

)
eβ j−tβ j

∣∣∣dt ≤
∫ 1

0

∣∣∣∣∣∣∣
|v|(m−1)p

∣∣∣Q(tβ j

)∣∣∣p t p−1
∣∣∣β j

∣∣∣p−1

(p−1)!
dt

∣∣∣∣∣∣∣
which clearly converges to 0 using considerations involving convergent series which show
the integrand converges uniformly to 0. The degree of f (x) is n≡ pm+ p−1 where p will
be a sufficiently large prime number from now on.

From 1.4,

c
m

∑
i=1

I (β i) = c
m

∑
i=1

(
eβ i

n

∑
j=0

f ( j) (0)−
n

∑
j=0

f ( j) (β i)

)
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=

(
K + c

m

∑
i=1

eβ i

)
n

∑
j=0

f ( j) (0)−

(
K

n

∑
j=0

f ( j) (0)+ c
m

∑
i=1

n

∑
j=0

f ( j) (β i)

)
(1.11)

Here K ∑
n
j=0 f ( j) (0) is added and subtracted. From Lemma A.3.3,

vp(m+1)up +m1 (p) p+m2 (p) p = K
n

∑
j=0

f ( j) (0)+ c
m

∑
i=1

n

∑
j=0

f ( j) (β i)

Thus, if p is very large,

c
m

∑
i=1

I (β i) = small = Kvp(m+1)up +M (p) p+

(
K + c

m

∑
i=1

eβ i

)
n

∑
j=0

f ( j) (0)

Let p be prime and larger than max(K,v,u). If K + c∑
m
i=1 eβ i = 0, the above is impossible

because it would require
small = Kvp(m+1)up +M (p) p

Now the right side is a nonzero integer because p cannot divide Kvp(m+1)up so the right
side cannot equal something small. ■

Note that this shows π is irrational. If π = k/m where k,m are integers, then both iπ
and −iπ are roots of the polynomial with integer coefficients, m2x2 + k2 which would
require, from what was just shown that 0 ̸= 2+ eiπ + e−iπ which is not the case since the
sum on the right equals 0.

The following corollary follows from this. It is like the above lemma except it involves
several polynomials. First is a lemma.

Lemma A.3.5 Let vk,uk,mk be integers for k = 1,2...,m,uk,vk nonzero. Then for each
k there exists αk an integer such that α

mk+2
k vmk+1

k uk is U for some non zero integer.

Proof: Let U ≡
(

∏
m
j=1 v

m j+1
j u j

)
∏

m
j=1(m j+2)

2

≡ α
mk+2
k vmk+1

k uk where αk is an integer
chosen to make this so.■

Corollary A.3.6 Let K and ci for i = 1, · · · ,n be nonzero integers. For each k between
1 and n let {β (k)i}

mk
i=1 be the roots of a polynomial with integer coefficients,

Qk (x)≡ vkxmk + · · ·+uk

where vk,uk ̸= 0. Then

K + c1

(
m1

∑
j=1

eβ (1) j

)
+ c2

(
m2

∑
j=1

eβ (2) j

)
+ · · ·+ cn

(
mn

∑
j=1

eβ (n) j

)
̸= 0. (∗)

Proof: Let Kk be nonzero integers which add to K. It is certainly possible to obtain this
since the Kk are allowed to change sign. They only need to be nonzero. Also let αk be as in
the above lemma such that α

mk+2
k vmk+1

k uk = U some integer. Thus, replacing each Qk (x)
with αkvkxmk + · · ·+αkuk, it follows that for each large prime p,(αkv)p(mk+1) (αku)p =(

α
mk+2
k vmk+1

)p
=U p. From now on, use the new Qk (x).
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Defining fk (x) and Ik (s) as in Lemma A.3.4,

fk (x)≡
v(m+1)pQp

k (x)xp−1

(p−1)!

and as before, let p be a very large prime number. It follows from Lemma A.3.4 that for
each k = 1, · · · ,n,

ck

mk

∑
i=1

Ik (β (k)i) =

(
Kk + ck

mk

∑
i=1

eβ (k)i

)
deg( fk)

∑
j=0

f ( j)
k (0)

−

(
Kk

deg( fk)

∑
j=0

f ( j)
k (0)+ ck

mk

∑
i=1

deg( fk)

∑
j=0

f ( j)
k (β (k)i)

)

This is exactly the same computation as in the beginning of that lemma except one adds
and subtracts Kk ∑

deg( fk)
j=0 f ( j)

k (0) rather than K ∑
deg( fk)
j=0 f ( j)

k (0) where the Kk are chosen such
that their sum equals K and the term on the left converges to 0 as p→∞. By Lemma A.3.4,

ck

mk

∑
i=1

Ik (β (k)i) =

(
Kk + ck

mk

∑
i=1

eβ (k)i

)
(U p +Nk p)

−Kk (U p +Nk p)− ckN′k p

=

(
Kk + ck

mk

∑
i=1

eβ (k)i

)
U p−KU p +Mk p

where Mk is some integer. Now add.

m

∑
k=1

ck

mk

∑
i=1

Ik (β (k)i) =U p

(
K +

m

∑
k=1

ck

mk

∑
i=1

eβ (k)i

)
−KmU p +Mp

If K +∑
m
k=1 ck ∑

mk
i=1 eβ (k)i = 0, then if p > max(K,m,U) you would have −KmU p +Mp

an integer so it cannot equal the left side which will be small if p is large. Therefore, ∗
follows. ■

Next is an even more interesting Lemma which follows from the above corollary.

Lemma A.3.7 If b0,b1, · · · ,bn are non zero integers, and γ1, · · · ,γn are distinct alge-
braic numbers, then

b0eγ0 +b1eγ1 + · · ·+bneγn ̸= 0

Proof: Assume
b0eγ0 +b1eγ1 + · · ·+bneγn = 0 (1.12)

Divide by eγ0 and letting K = b0,

K +b1eα(1)+ · · ·+bneα(n) = 0 (1.13)

where α (k) = γk− γ0. These are still distinct algebraic numbers. Therefore, α (k) is a root
of a polynomial

Qk (x) = vkxmk + · · ·+uk (1.14)
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having integer coefficients, vk,uk ̸= 0. Recall algebraic numbers were defined as roots of
polynomial equations having rational coefficients. Just multiply by the denominators to get
one with integer coefficients. Let the roots of this polynomial equation be{

α (k)1 , · · · ,α (k)mk

}
and suppose they are listed in such a way that α (k)1 = α (k). Thus, by Theorem A.2.7
every symmetric polynomial in these roots is rational.

Letting ik be an integer in {1, · · · ,mk} it follows from the assumption 1.12 that

∏
(i1,··· ,in)

ik∈{1,··· ,mk}

(
K +b1eα(1)i1 +b2eα(2)i2 + · · ·+bneα(n)in

)
= 0 (1.15)

This is because one of the factors is the one occurring in 1.13 when ik = 1 for every k. The
product is taken over all distinct ordered lists (i1, · · · , in) where ik is as indicated. Expand
this possibly huge product. This will yield something like the following.

K′+ c1

(
eβ (1)1 + · · ·+ eβ (1)µ(1)

)
+c2

(
eβ (2)1 + · · ·+ eβ (2)µ(2)

)
+ · · ·+

cN

(
eβ (N)1 + · · ·+ eβ (N)µ(N)

)
= 0 (1.16)

These integers c j come from products of the bi and K. You group these exponentials ac-
cording to which ci they multiply. The β (i) j are the distinct exponents which result, each
being a sum of some of the α (r)ir . Since the product included all roots for each Qk (x),
interchanging their order does not change the distinct exponents β (i) j which result. They
might occur in a different order however, but you would still have the same distinct ex-
ponents associated with each cs as shown in the sum. Thus any symmetric polynomial
in the β (s)1 ,β (s)2 , · · · ,β (s)

µ(s) is also a symmetric polynomial in the roots of Qk (x) ,
α (k)1 ,α (k)2 , · · · ,α (k)mk

for each k.
Doesn’t this contradict Corollary A.3.6? This is not yet clear because we don’t know

that the β (i)1 , ...,β (i)
µ(i) are roots of a polynomial having rational coefficients. For a

given r,β (r)1 , · · · ,β (r)
µ(r) are roots of the polynomial

(x−β (r)1)(x−β (r)2) · · ·
(

x−β (r)
µ(r)

)
(1.17)

the coefficients of which are elementary symmetric polynomials in the β (r)i , i ≤ µ (r).
Thus the coefficients are symmetric polynomials in the

α (k)1 ,α (k)2 , · · · ,α (k)mk

for each k. Say the polynomial is of the form

µ(r)

∑
l=0

xn−lBl (A(1) , · · · ,A(n))
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where A(k) signifies the roots of Qk (x) ,
{

α (k)1 , · · · ,α (k)mk

}
. Thus, by the symmetric

polynomial theorem applied to the commutative ring Q [A(1) , · · · ,A(n−1)], the above
polynomial is of the form

µ(r)

∑
l=0

xµ(r)−l
∑
kl

Bkl (A(1) , · · · ,A(n−1))s
kl

1
1 · · ·s

kl
n

µ(r)

where the sk is one of the elementary symmetric polynomials in{
α (n)1 , · · · ,α (n)mn

}
and Bkl is symmetric in α (k)1 ,α (k)2 , · · · ,α (k)mk

for each k ≤ n−1 and

Bkl ∈Q [A(1) , · · · ,A(n−1)] .

Now do to Bkl what was just done to Bl featuring A(n−1) this time, and continue till
eventually you obtain for the coefficient of xµ(r)−l a large sum of rational numbers times a
product of symmetric polynomials in A(1) ,A(2) , etc. By Theorem A.2.7 applied repeat-
edly, beginning with A(1) and then to A(2) and so forth, one finds that the coefficient of
xµ(r)−l is a rational number and so the β (r) j for j ≤ µ (r) are algebraic numbers and roots
of a polynomial which has rational coefficients, namely the one in 1.17, hence roots of a
polynomial with integer coefficients. Now 1.16 contradicts Corollary A.3.6. ■

Note this lemma is sufficient to prove Lindermann’s theorem that π is transcendental.
Here is why. If π is algebraic, then so is iπ and so from this lemma, e0 +eiπ ̸= 0 but this is
not the case because eiπ =−1.

The next theorem is the main result, the Lindermann Weierstrass theorem. It replaces
the integers bi in the above lemma with algebraic numbers.

Theorem A.3.8 Suppose a(1) , · · · ,a(n) are nonzero algebraic numbers and sup-
pose

α (1) , · · · ,α (n)

are distinct algebraic numbers. Then

a(1)eα(1)+a(2)eα(2)+ · · ·+a(n)eα(n) ̸= 0

Proof: Suppose a( j)≡ a( j)1 is a root of the polynomial

v jxm j + · · ·+u j

where v j,u j ̸= 0. Let the roots of this polynomial be a( j)1 , · · · ,a( j)m j
. Suppose to the

contrary that
a(1)1 eα(1)+a(2)1 eα(2)+ · · ·+a(n)1 eα(n) = 0

Then consider the big product

∏
(i1,··· ,in)

ik∈{1,··· ,mk}

(
a(1)i1 eα(1)+a(2)i2 eα(2)+ · · ·+a(n)in eα(n)

)
(1.18)
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the product taken over all ordered lists (i1, · · · , in) . Since one of the factors in this product
equals 0, this product equals

0 = b1eβ (1)+b2eβ (2)+ · · ·+bNeβ (N) (1.19)

where the β ( j) are the distinct exponents which result and the bk result from combining
terms corresponding to a single β (k). The β (i) are clearly algebraic because they are the
sum of the α (i). I want to show that the bk are actually rational numbers. Since the
product in 1.18 is taken for all ordered lists as described above, it follows that for a given
k,if a(k)i is switched with a(k) j , that is, two of the roots of vkxmk + · · ·+uk are switched,
then the product is unchanged and so 1.19 is also unchanged. Thus each bl is a symmetric
polynomial in the a(k) j , j = 1, · · · ,mk for each k. Consider then a particular bk. It follows

bk = ∑
( j1,··· , jmn )

A j1,··· , jmn a(n) j1
1 · · ·a(n)

jmn
mn

and this is symmetric in the
{

a(n)1 , · · · ,a(n)mn

}
(note n is distinguished) the coefficients

A j1,··· , jmn being in the commutative ring Q [A(1) , · · · ,A(n−1)] where A(p) denotes

a(k)1 , · · · ,a(k)mp

and so from Theorem A.2.5,

bk = ∑
( j1,··· , jmn )

B j1,··· , jmn p j1
1

(
a(n)1 · · ·a(n)mn

)
· · · p jmn

mn

(
a(n)1 · · ·a(n)mn

)
where the B j1,··· , jmn are symmetric in

{
a(k) j

}mk

j=1
for each k ≤ n− 1 and the pl

k are ele-

mentary symmetri c polynomials. Now doing to B j1,··· , jmn what was just done to bk and
continuing this way, it follows bk is a finite sum of rational numbers times powers of el-
ementary polynomials in the various

{
a(k) j

}mk

j=1
for k ≤ n. By Theorem A.2.7 this is a

rational number. Thus bk is a rational number as desired. Multiplying by the product of all
the denominators, it follows there exist integers ci such that

0 = c1eβ (1)+ c2eβ (2)+ · · ·+ cNeβ (N)

which contradicts Lemma A.3.7. ■
This theorem is sufficient to show e is transcendental. If it were algebraic, then

ee−1 +(−1)e0 ̸= 0

but this is not the case. If a ̸= 1 is algebraic, then ln(a) is transcendental. To see this, note
that

1eln(a)+(−1)ae0 = 0
which cannot happen if ln(a) is algebraic according to the above theorem. If a is algebraic
and sin(a) ̸= 0, then sin(a) is transcendental because

1
2i

eia− 1
2i

e−ia +(−1)sin(a)e0 = 0

which cannot occur if sin(a) is algebraic. There are doubtless other examples of numbers
which are transcendental by this amazing theorem. For example, π is also transcendental.
This is because 1+eiπ = 0. This couldn’t happen if π were algebraic because then so would
be iπ .

Of course this marvelous theorem is insufficient to classify an arbitrary real number,
even many which are well specified like π + e.
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Integration on Rough Paths∗
The material on Stieltjes integrals has a very important generalization called integration on
rough functions. This chapter gives an introduction to this topic. In order to show this, we
need a simple inequality called the triangle inequality. First here is a useful lemma.

As in the case of Stieltjes integrals all of this has generalizations to integrator functions
which have values in various normed linear spaces but this is a book on single variable
advanced calculus and so this level of generality is avoided.

Lemma B.0.1 If a,b≥ 0, p > 1 and p′ is defined by 1
p +

1
p′ = 1, then

ab≤ ap

p
+

bp′

p′
.

Proof: Let p′ = q to save on notation and consider the following picture:

b

a

x

t

x = t p−1

t = xq−1

ab≤
∫ a

0
t p−1dt +

∫ b

0
xq−1dx =

ap

p
+

bq

q
.

Note equality occurs when ap = bq. ■
The following is a case of Holder’s inequality.

Lemma B.0.2 Let ai,bi ≥ 0. Then for p≥ 1,

∑
i

aibi ≤

(
∑

i
ap

i

)1/p(
∑

i
bp′

i

)1/p′

Proof: From the above inequality,

n

∑
i=1

ai(
∑i ap

i

)1/p

bi(
∑i bp′

i

)1/p′ ≤
n

∑
i=1

1
p

(
ap

i

∑i ap
i

)
+

1
p′

(
bp′

i

∑i bp′
i

)

=
1
p

(
∑i ap

i

∑i ap
i

)
+

1
p′

(
∑i bp′

i

∑i bp′
i

)
=

1
p
+

1
p′

= 1

Hence the inequality follows from multiplying both sides by
(
∑i ap

i

)1/p
(

∑i bp′
i

)1/p′

. ■

Then with this lemma, here is the triangle inequality.

375



376 APPENDIX B. INTEGRATION ON ROUGH PATHS∗

Theorem B.0.3 Let ai,bi ∈ R. Then for p≥ 1,(
n

∑
i=1
|ai +bi|p

)1/p

≤

(
n

∑
i=1
|ai|p

)1/p

+

(
n

∑
i=1
|bi|p

)1/p

Proof: First note that from the definition, p−1 = p/p′.

n

∑
i=1
|ai +bi|p ≤

n

∑
i=1
|ai +bi|p−1 (|ai|+ |bi|)

≤
n

∑
i=1
|ai +bi|p/p′ |ai|+

n

∑
i=1
|ai +bi|p/p′ |bi|

Now from Lemma B.0.2,

≤

(
n

∑
i=1

(
|ai +bi|p/p′

)p′
)1/p′( n

∑
i=1
|ai|p

)1/p

+

(
n

∑
i=1

(
|ai +bi|p/p′

)p′
)1/p′( n

∑
i=1
|bi|p

)1/p

=

(
n

∑
i=1
|ai +bi|p

)1/p′
( n

∑
i=1
|ai|p

)1/p

+

(
n

∑
i=1
|bi|p

)1/p


In case ∑
n
i=1 |ai +bi|p = 0 there is nothing to show in the inequality. It is obviously true. If

this is nonzero, then divide both sides of the above inequality by (∑n
i=1 |ai +bi|p)1/p′ to get(

n

∑
i=1
|ai +bi|p

)1− 1
p′

=

(
n

∑
i=1
|ai +bi|p

)1/p

≤

(
n

∑
i=1
|ai|p

)1/p

+

(
n

∑
i=1
|bi|p

)1/p

■

B.1 Finite p Variation
Instead of integrating with respect to a finite variation integrator function F , the function
will be of finite p variation. This is more general than finite variation. Here it is assumed
p > 0 rather than p > 1.

Definition B.1.1 Define for a function F : [0,T ]→ R

1. α Holder continuous if sup0≤s<t≤T
|F(t)−F(s)|
|t−s|α <C < ∞. Then from this inequality, it

follows that |F (t)−F (s)| ≤C |t− s|α .

2. The function F has finite p variation if for some p > 0,

∥F∥p,[0,T ] ≡ sup
P

(
m

∑
i=1
|F (ti+1)−F (ti)|p

)1/p

< ∞

where P denotes a partition of [0,T ] ,P = {t0, t1, · · · , tn} for

0 = t0 < t1 < · · ·< tn = T

also called a dissection in this subject. It was also called a division when discussing
the generalized Riemann integral. |P| denotes the largest length in any of the sub
intervals. It will be always assumed that actually p≥ 1.
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Note that when p = 1 having finite p variation is just the same as saying that it has finite
total variation. Thus this is including more general considerations. Also, to simplify the
notation, for P such a dissection, write

∑
P

|F (ti+1)−F (ti)|p instead of
n

∑
i=1
|F (ti+1)−F (ti)|p

Definition B.1.2 Let Cα ([0,T ] ;R) denote the α Holder functions and denote by
V p ([0,T ] ,R) the continuous functions F which have finite p variation, V p for short.

It is routine to verify that if α > 1, then any Holder continuous function is a constant. It
is also easy to see that any 1/p Holder is p finite variation. To see this, note that you have
|F (t)−F (s)| ≤C |t− s|1/p and so(

m

∑
i=1
|F (ti+1)−F (ti)|p

)1/p

≤

(
m

∑
i=1

Cp |ti+1− ti|
)1/p

=CT 1/p

From now on p ≥ 1 and define ∥F∥V p([0,T ],R) ≡ ∥F∥p,[0,T ]+ supt∈[0,T ] |F (t)| where as
described above,

∥F∥p,[0,T ] ≡ sup
P

(
∑

i
|F (ti+1)−F (ti)|p

)1/p

=

(
sup
P

∑
i
|F (ti+1)−F (ti)|p

)1/p

To save notation, it is customary to write ∥F∥
∞
= supt∈[0,T ] |F (t)|

Definition B.1.3 Suppose you have a set of functions V defined on some interval I
which satisfies cX ∈ V whenever c is a number and X ∈ V and that X +Y ∈ V whenever
X ,Y ∈V. Then ∥·∥ : V → [0,∞) is a norm if it satisfies.

∥X∥ ≥ 0,∥X∥= 0 if and only if X = 0

∥X +Y∥ ≤ ∥X∥+∥Y∥

For c a number, ∥cX∥= |c|∥X∥

Proposition B.1.4 For each p≥ 1,V p is a set of continuous functions. Also ∥·∥V p is a
norm. In addition, if 1≤ p < q,

V p ([0,T ] ;R)⊆V q ([0,T ] ;R)⊆C0 ([0,T ] ;R)

The embeddings are continuous. In fact, ∥F∥
∞
≤ ∥F∥V q ≤ ∥F∥V p .

Note that, although ∥·∥V p is a norm, ∥·∥p,[0,T ] is not.
Proof: It is clear that ∥F∥V p equals 0 if and only if F = 0. This follows from the

inclusion in the definition for the norm, supt∈[0,T ] |F (t)|. It only remains to verify the other
axioms of a norm. It suffices to consider ∥·∥p,[0,T ]. Does it satisfy the triangle inequality?

∥Z +Y∥p,[0,T ] ≡ sup
P

(
∑

i
|(Z +Y )(ti+1)− (Z +Y )(ti)|p

)1/p
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≤ sup
P

(
∑

i
(|Z (ti+1)−Z (ti)|+ |Y (ti+1)−Y (ti)|)p

)1/p

≤ sup
P

(∑
i
|Z (ti+1)−Z (ti)|p

)1/p

+

(
∑

i
|Y (ti+1)−Y (ti)|p

)1/p


This is by

≤ sup
P

(
∑

i
|Z (ti+1)−Z (ti)|p

)1/p

+ sup
P

(
∑

i
|Y (ti+1)−Y (ti)|p

)1/p

= ∥Z∥p,[0,T ]+∥Y∥p,[0,T ]

Thus ∥·∥V p clearly is a norm. What about those inclusions? Let F ∈ V p. Is it also in V q?
Suppose F ∈V p and ∥F∥p,[0,T ] = 1. What about ∥F∥q,[0,T ]? For any P(

∑
i
|F (ti+1)−F (ti)|q

)1/p

≤

(
∑

i
|F (ti+1)−F (ti)|p

)1/p

≤ 1

and so ∥F∥q/p
q,[0,T ] ≤ 1. Therefore, if ∥F∥p,[0,T ] < ∞,

∥∥∥ F
∥F∥p,[0,T ]

∥∥∥q/p

q,[0,T ]
≤ 1 and so

∥∥∥∥∥ F
∥F∥p,[0,T ]

∥∥∥∥∥
q,[0,T ]

≤ 1, ∥F∥q,[0,T ] ≤ ∥F∥p,[0,T ]

as claimed. Thus V p ⊆V q and the inclusion map is continuous. There is nothing to verify
for the uniform norm part of ∥F∥V p . How about the embedding into C0?∥F∥C0 ≤ ∥F∥V pby
definition. ■

In the above, there is nothing sacred about the interval [0,T ]. You could use any other
interval. Then we write ∥F∥V p(I) , ∥F∥p,I to denote the above with respect to the interval I.

Lemma B.1.5 Suppose a = t0 < t1 < · · ·< tn = b. Then ∑
n−1
i=0 ∥F∥

p
p,[ti,ti+1]

≤ ∥F∥p
p,[a,b]

Proof: It is sufficient to verify this with two intervals. Say a < b < c. Then let P1
be a dissection for [a,b] and P2 a dissection for [b,c]. Then P = P1 ∪P2 is clearly a
dissection for [a,c] . Then from definition,

∑
P1

|F (ti+1)−F (ti)|p +∑
P2

|F (ti+1)−F (ti)|p = ∑
P

|F (ti+1)−F (ti)|p ≤ ∥F∥p
p,[a,c]

Then taking the sup over all such P1 one gets

∥F∥p
p,[a,b]+∑

P2

|F (ti+1)−F (ti)|p ≤ ∥F∥p
p,[a,c]

Now take sup over all such P2. Note that in finding ∥F∥p
p,[a,c] there is no guarantee that b

will be in any of the dissections. That is, although P1∪P2 is a disection of [a,c] it might
not be any of the dissections needed to obtain ∥F∥p

p,[a,c]. Thus we can’t expect to have this
inequality an equation. ■
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B.2 Piecewise Linear Approximation
Definition B.2.1 Let P be a dissection of [0,T ] and let F ∈ V p ([0,T ]) . Let FP

denote the piecewise linear approximation of F. That is, it agrees with F at every point
of P and in [ti, ti+1] it is of the form 1

ti+1−ti
[(F (ti))(ti+1− t)+F (ti+1)(t− ti)] = F (ti)+

(t− ti)
(

F(ti+1)−F(ti)
ti+1−ti

)
.

To get the piecewise linear approximation, you could write

FP (t)≡
∫ t

0

(
F (0)
t1− t0

+
n−1

∑
i=0

F (ti+1)−F (ti)
ti+1− ti

)
X[ti,ti+1) (s)ds

Note that the formula gives

FP (t1) = F (0)+F (t1)−F (t0) = F (t1) ,

FP (t2) = F (t1)+
F (t2)−F (t1)

t2− t1
(t2− t1) = F (t2)

etc.
Next is a fundamental approximation lemma which says that when you replace a func-

tion in V p with its piecewise linear approximation the p variation gets smaller. First is a
simple observation. Suppose p ≥ 1 and ∑

n
i=1 ri = r where each ri is positive and less than

1. Then rp ≥ ∑
n
i=1 rp

i . To see this is so, note that ∑
n
i=1

ri
r = 1 and so ∑i

( ri
r

)p ≤ ∑i
ri
r = 1 so

the claim follows.

Lemma B.2.2 Let F ∈ V p ([0,T ]) and let P be a dissection. Then
∥∥FP

∥∥
p,[0,T ] ≤

∥F∥p,[0,T ]. Also, if Pε is a dissection for which

∑
Pε

∣∣∣FP (ui+1)−FP (ui)
∣∣∣p > ∥∥∥FP

∥∥∥p

p,[0,T ]
− ε,

then this inequality continues to hold for Pε in which Pε ⊆P .

Proof: Let Pε be a dissection of [0,T ] such that

∑
ui∈Pε

∣∣∣FP (ui+1)−FP (ui)
∣∣∣p > ∥∥∥FP

∥∥∥p

p,[0,T ]
− ε (2.1)

The idea is to show that, deleting some points of Pε you can assume every grid point of
Pε is also a grid point of P while preserving the above inequality. This might not be too
surprising because the variation of FP is determined by the F (ti) where ti ∈P . Let the
mesh points of Pε be denoted by {ui} and those of P are denoted by

{
t j
}

.
Let

(
t j, t j+1

)
be an interval which contains points of Pε say ui,ui+1, ...,uk in order.

Modify P if necessary by including t j, t j+1. Then corresponding to this interval, the above
sum gives

k−1

∑
l=i
|a(ul+1−ul)|p +

∣∣a(t j+1−uk
)∣∣p + ∣∣a(ui− t j)

∣∣p
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where a≡ F(t j+1)−F(t j)
t j+1−t j

. Then this sum equals

∣∣F (t j+1
)
−F (t j)

∣∣p(k−1

∑
l=i

∣∣∣∣ul+1−ul

t j+1− t j

∣∣∣∣p + ∣∣∣∣ t j+1−uk

t j+1− t j

∣∣∣∣p + ∣∣∣∣ ui− t j

t j+1− t j

∣∣∣∣p
)
.

If all the ur were deleted from Pε for i < r < k, this results in
∣∣F (t j+1

)
−F (t j)

∣∣p which

must be at least as large from the above observation because ∑
k−1
l=i

∣∣∣ ul+1−ul
t j+1−t j

∣∣∣+ ∣∣∣ ui−t j
t j+1−t j

∣∣∣+∣∣∣ t j+1−uk
t j+1−t j

∣∣∣= 1and p≥ 1 and all these quotients are positive and smaller than 1. Thus we get
a larger sum on the left in 2.1 by modifying Pε as just described. This shows that it can be
assumed that every point of Pε is in P . Therefore, since each ui ∈Pε

∥F∥p
p,[0,T ] ≥ ∑

ui∈Pε

|F (ui+1)−F (ui)|p = ∑
ui∈Pε

∣∣∣FP (ui+1)−FP (ui)
∣∣∣p > ∥∥∥FP

∥∥∥p

p,[0,T ]
− ε

Since ε is arbitrary, this shows the conclusion of the lemma. ■
Next is to show that these piecewise linear functions approximate F in terms of p

variation. In general, when you have a continuous function defined on a closed interval,
the above piecewise continuous approximations always converge to the function uniformly.
This is left to the reader to show. It is an exercise in uniform continuity of F .

Theorem B.2.3 Let F ∈V p ([0,T ]) , p≥ 1. Then lim|P|→0
∥∥FP −F

∥∥
q,[0,T ] = 0 for

every q > p.

Proof: Let ε > 0 be given and let P be a dissection of [0,T ].
Using what was just observed about uniform continuity of piecewise linear approxima-

tions,

∑
ti∈P

∣∣∣FP (ti+1)−F (ti+1)−
(

FP (ti)−F (ti)
)∣∣∣q

≤ max
ti∈P

(∣∣∣FP (ti+1)−F (ti+1)−
(

FP (ti)−F (ti)
)∣∣∣q−p

)
·

∑
ti∈P

∣∣∣FP (ti+1)−F (ti+1)−
(

FP (ti)−F (ti)
)∣∣∣p

≤ max
ti∈P

(∣∣∣FP (ti+1)−F (ti+1)−
(

FP (ti)−F (ti)
)∣∣∣q−p

)∥∥∥FP −F
∥∥∥p

p,[0,T ]

≤ max
ti∈P

((∣∣∣FP (ti+1)−F (ti+1)
∣∣∣+ ∣∣∣FP (ti)−F (ti)

∣∣∣)q−p
)
·(∥∥∥FP

∥∥∥
p,[0,T ]

+∥F∥p,[0,T ]

)p

≤ 2q−p max
t∈[0,T ]

∣∣∣FP (t)−F (t)
∣∣∣q−p(

2∥F∥p,[0,T ]

)p

from Lemma B.2.2 since
∥∥FP

∥∥
p,[0,T ] ≤ ∥F∥p,[0,T ]. Now it follows that if |P| is small

enough, the above is no more than ε . ■
The method of proof of the above yields the following useful lemma. To save space,

∥F∥
∞
≡ supt |F (t)| .
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Lemma B.2.4 Let F,Y ∈V p ([0,T ]) and let q > p≥ 1. Then

∥F−Y∥V q ≤ 2(q−p)/q ∥F−Y∥
q−p

q
∞ ∥F−Y∥p/q

p,[0,T ]+∥F−Y∥
∞

Note that 2
q−p

q ≤ 2.
Proof: Let P be a dissection. Then

∑
i
|F (ti+1)−Y (ti+1)− (F (ti)−Y (ti))|q

≤ sup
i
|F (ti+1)−Y (ti+1)− (F (ti)−Y (ti))|q−p

∑
i
|F (ti+1)−Y (ti+1)− (F (ti)−Y (ti))|p

≤ 2q−p ∥F−Y∥q−p
∞ ∑

i
|F (ti+1)−Y (ti+1)− (F (ti)−Y (ti))|p

Then taking the sup over all dissections,

∥F−Y∥q
q,[0,T ] ≤ 2q−p ∥F−Y∥q−p ∥F−Y∥p

p,[0,T ]

∥F−Y∥q,[0,T ] ≤ 2(q−p)/q ∥F−Y∥(q−p)/q ∥F−Y∥p/q
p,[0,T ]

Hence ∥F−Y∥V q ≤ 2(q−p)/q ∥F−Y∥(q−p)/q ∥F−Y∥p/q
p,[0,T ]+∥F−Y∥

∞
■

In all the above, one can replace [0,T ] with [a,b] through simple modifications.

B.3 The Young Integral
This dates from about 1936. Basically, you can do

∫ T
0 Y dF if Y is continuous and F is of

bounded variation or the other way around. This is the old Stieltjes integral. However, this
integral has to do with Y ∈V q and F ∈V p and of course, these functions are not necessarily
of bounded variation although they are continuous. First, here is a simple lemma which is
used a little later.

Lemma B.3.1 Let F be piecewise linear with respect to a dissection P and let Y be
continuous. Then t→

∫ t
0 Y dF is continuous.

Proof: Say P is given by {t0, t1, · · · , tn} where 0 = t0 < · · · < tn = T . Let G(t) ≡∫ t
0 Y dF. Then on [0, t1] ,

G(t) =
∫ t

0
Y (s)

F (t1)−F (0)
t1−0

ds =
F (t1)−F (0)

t1−0

∫ t

0
Y (s)ds

which is clearly continuous. Then on [t1, t2] you have

G(t) = G(t1)+
∫ t

t1
Y (s)

F (t2)−F (t1)
t2− t1

ds

which is again continuous. Continuing this way shows the desired conclusion. ■
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Definition B.3.2 Let P be a dissection of [0,T ] and let Y,F be continuous. Then∫
P

Y dF ≡∑
P

Y (ti)(F (ti+1)−F (ti))

where P = {t0, · · · , tn}. This is like a Riemann Stieltjes sum except that you don’t have a
bounded variation integrator function.

∫ T
0 Y dF is said to exist if there is I ∈ R such that

lim
|P|→0

∣∣∣∣∫
P

Y dF− I
∣∣∣∣= 0

meaning that for every ε > 0 there exists δ > 0 such that whenever |P|< δ , it follows that
|
∫
P Y dF− I|< ε . It suffices to show that for every ε there exists δ such that if |P| , |P ′|<

δ , then ∣∣∣∣∫
P

Y dF−
∫

P ′
Y dF

∣∣∣∣< ε

This last condition says that the set of all these
∫
P for |P| sufficiently small has small

diameter.

Note how this looks just like the Stieltjes integral except here one is considering one
sided sums just like Cauchy did in the 1820’s. The following theorem is from Young.

Theorem B.3.3 Let 1≤ p,q, 1
p +

1
q > 1. Also suppose that F ∈V p ([0,T ]) and Y ∈

V q ([0,T ]). Then for all sub interval [a,b] of [0,T ] there exists I[a,b] such that

lim
|P|→0

∣∣∣∣∫
P

Y dF− I
∣∣∣∣= 0

exists where here P ⊆ [a,b] is a dissection of [a,b] . Also there exist estimates of the form∣∣∣∣∫ t

s
Y dF

∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[s,t] (2.2)

∣∣∣∣∫ (·)

0
Y dF

∣∣∣∣
p,[0,T ]

≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ] (2.3)∣∣∣∣∫ t

s
Y dF

∣∣∣∣= ∣∣∣∣∫ t

0
Y dF−

∫ s

0
Y dF

∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[s,t]∣∣∣∣∫ (·)

0
Y dF

∣∣∣∣
V p([0,T ])

≤ 2Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ] (2.4)

where Cpq depends only on p,q. Also t→
∫ t

0 Y dF is continuous.

Proof: Let Z ∈ V q ([0,T ]) ,1≤ p,q, 1
p +

1
q > 1. Define for s≤ t

ω (s, t)≡ ∥F∥p
p,[s,t]+∥Z∥

q
q,[s,t]

Here Z will end up being Y −Y (0). From Lemma B.1.5,

ω (ti, ti+1)+ω (ti+1, ti+2)+ · · ·+ω (ti+r, ti+r+1)≤ ω (ti, ti+r+1)
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Also let P be a dissection 0 = t0 < t1 < · · ·< tr = T .
Claim: Then there exists ti such that ω (ti−1, ti+1)≤ 5

r ω (0,T ).
Proof of claim: If r = 2 so there are only two intervals in the dissection,

∥F∥p
p,[0,T ] ≤ ∥F∥

p
p,[0,T ]+∥Z∥

p
p,[0,T ] = ω (0,T )<

5
2

ω (0,T ) .

So assume r > 2. Then how many disjoint intervals [ti−1, ti+1] are there for either i odd or i
even? Certainly fewer than r and at least as many as r

2 . Then we have

∑
i even

ω (ti−1, ti+1)+ ∑
i odd

ω (ti−1, ti+1)≤ 2ω (0,T )

Now if it is not true that there exists such an i, then for each i,ω (ti−1, ti+1)>
5
r ω (0,T ) .

5
2

ω (0,T ) =
5
r

ω (0,T )
r
2
≤ ∑

i even

5
r

ω (0,T )< ∑
i even

ω (ti−1, ti+1)≤ ω (0,T )

5
2

ω (0,T ) =
5
r

ω (0,T )
r
2
≤ ∑

i odd

5
r

ω (0,T )< ∑
i odd

ω (ti−1, ti+1)≤ ω (0,T )

Hence 5ω (0,T )< 2ω (0,T ) which is absurd. Therefore, there exists such a ti. This shows
the claim.

Next points of P are deleted beginning with ti where ω (ti−1, ti+1)≤ 5
r ω (0,T ) .∫

P
ZdF−

∫
P\{ti}

ZdF = Z (ti−1)(F (ti)−F (ti−1))

+Z (ti)(F (ti+1)−F (ti))−Z (ti−1)(F (ti+1)−F (ti−1))

This equals Z (ti−1)F (ti)+Z (ti)F (ti+1)−Z (ti)F (ti)−Z (ti−1)F (ti+1)

= Z (ti)(F (ti+1)−F (ti))+Z (ti−1)(F (ti)−F (ti+1))

= (Z (ti)−Z (ti−1))(F (ti+1)−F (ti))

It follows that∣∣∣∣∫
P

ZdF−
∫

P\{ti}
ZdF

∣∣∣∣≤ |(Z (ti)−Z (ti−1))| |F (ti+1)−F (ti)|

≤ ω (ti−1, ti)
1/q

ω (ti, ti+1)
1/p ≤ ω (ti−1, ti+1)

1/p+1/q ≤
(

5
r

ω (0,T )
)1/p+1/q

In particular, this yields∣∣∣∣∫
P
(Y −Y (0))dF−

∫
P\{ti}

(Y −Y (0))dF
∣∣∣∣≤ (5

r
ω (0,T )

)1/p+1/q

=

(
5
r

(
∥F∥p

p,[0,T ]+∥Y∥
q
q,[0,T ]

))1/p+1/q
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It follows that removing the special point from the claim out of those ti which remain,
denoted as t1, t2, t3, · · · ,∣∣∣∣∣

∫
P
(Y −Y (0))dF−

∫
P\{t1}

(Y −Y (0))dF

∣∣∣∣∣
+

∣∣∣∣∣
∫

P\{t1}
(Y −Y (0))dF−

∫
P\{t1,t2}

(Y −Y (0))dF

∣∣∣∣∣+
+ · · ·+

∣∣∣∣∣
∫

P\{t1,t2,···tr−2}
(Y −Y (0))dF−

∫
P\{t1,t2,···tr−1}

(Y −Y (0))dF

∣∣∣∣∣
≤ 51/p+1/q (ω (0,T ))1/p+1/q

((
1
r

)1/p+1/q

+

(
1

r−1

)1/p+1/q

+ · · ·+1

)

≤ 51/p+1/q (ω (0,T ))1/p+1/q
∞

∑
r=1

(
1
r

)1/p+1/q

The triangle inequality applied to that sum of terms inside || implies∣∣∣∣∣
∫

P
(Y −Y (0))dF−

∫
P\{t1,t2,···tr−1}

(Y −Y (0))dF

∣∣∣∣∣
=

∣∣∣∣∫
P
(Y −Y (0))dF

∣∣∣∣≤ 51/p+1/q (ω (0,T ))1/p+1/q
∞

∑
r=1

(
1
r

)1/p+1/q

since
∫
P\{t1,t2,···tr−1} (Y −Y (0))dF = 0. This is true because by definition it equals

(Y (0)−Y (0))(Y (T )−Y (0))

Of course all of this works for F replaced with F̃t ≡ Ft
∥F∥p,[0,T ]

, and Y replaced with Ỹ where

Ỹt ≡ Yt
∥Y∥q,[0,T ]

. Then in this case it is very convenient because ω (0,T )≤ 2. Then the above
reduces to ∣∣∣∣∫

P

(
Ỹ − Ỹ (0)

)
dF̃
∣∣∣∣≤ 51/p+1/q (2)1/p+1/q

∞

∑
r=1

(
1
r

)1/p+1/q

≡ Ĉpq

Then also, ∣∣∣∣∫
P
(Y −Y (0))dF

∣∣∣∣≤ Ĉpq ∥Y∥q,[0,T ] ∥F∥p,[0,T ]

Then this implies∣∣∣∣∫
P

Y dF
∣∣∣∣ ≤ Ĉpq ∥Y∥q,[0,T ] ∥F∥p,[0,T ]+∥Y (0)∥

∞
∥FT −F0∥

= Ĉpq ∥Y∥q,[0,T ] ∥F∥p,[0,T ]+∥Y (0)∥
∞
(∥FT −F0∥p)1/p

≤ Ĉpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]+∥Y∥V q([0,T ]) ∥F∥p,[0,T ]

=
(
Ĉpq +1

)
∥Y∥V q([0,T ]) ∥F∥p,[0,T ] ≡Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]
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Of course there was absolutely nothing special about [0,T ] . We could have used the interval
[s, t] just as well and concluded that for P a dissection of [s, t] ,∣∣∣∣∫

P
Y dF

∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[s,t] (2.5)

Now it is possible to show the existence of the integral. By Theorem B.2.3 there exists
a sequence of piecewise linear functions {Fn} which converge to F in V p′ ([0,T ]) where p′

is chosen larger than p but still 1
p′ +

1
q > 1. Then letting ε > 0 be given, there exists N such

that if n≥ N,∣∣∣∣∫
P

Y d (F−Fn)

∣∣∣∣= ∣∣∣∣∫
P

Y dF−
∫

P
Y dFn

∣∣∣∣≤Cp′q ∥Y∥V q ∥F−Fn∥p′,[0,T ] <
ε

3

because Fn converges to F in V p′ . Also, there exists δ such that if |P| , |P ′|< δ ,∣∣∣∣∫
P

Y dFN−
∫

P ′
Y dFN

∣∣∣∣< ε

3

Then you have, for such P , P ′,∣∣∣∣∫
P

Y dF−
∫

P ′
Y dF

∣∣∣∣≤ ∣∣∣∣∫
P

Y dF−
∫

P
Y dFN

∣∣∣∣
+

∣∣∣∣∫
P

Y dFN−
∫

P ′
Y dFN

∣∣∣∣+ ∣∣∣∣∫
P ′

Y dFN−
∫

P ′
Y dF

∣∣∣∣< ε

3
+

ε

3
+

ε

3
= ε

Showing that the limit of the
∫
P Y dF exists as |P| → 0.

All of the above applies for any sub interval of [0,T ]. Also from 2.5, you can take a
limit as |P| → 0 and conclude that

∫ t
s Y dF exists and that∣∣∣∣∫ t

s
Y dF

∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[s,t] (2.6)

This proves the existence of the integral. Does it have the usual properties of an integral? In
particular, if 0< a< T, is

∫ a
0 Y dF+

∫ T
a Y dF =

∫ T
0 Y dF? This is clearly true for the ordinary

Stieltjes integral coming from Fn. Thus from the above estimate, let {Fn} be a sequence of
piecewise linear functions converging to F in V p ([0,T ]). Then this convergence takes place
in V p ([0,a]) and V p ([a,T ]) also. Then∣∣∣∣∫ a

0
Y dF−

∫ a

0
Y dFn

∣∣∣∣ ≤ Cpq ∥Y∥V q([0,T ]) ∥F−Fn∥p,[0,a]∣∣∣∣∫ T

a
Y dF−

∫ T

a
Y dFn

∣∣∣∣ ≤ Cpq ∥Y∥V q([0,T ]) ∥F−Fn∥p,[a,T ]∣∣∣∣∫ T

0
Y dFn−

∫ T

0
Y dF

∣∣∣∣ ≤ Cpq ∥Y∥V q([0,T ]) ∥F−Fn∥p,[0,T ]

Then letting n be large enough, the right sides of the above are all less than ε. Hence, from
the triangle inequality,∣∣∣∣∣∣

∫ a
0 Y dF−

∫ a
0 Y dFn +

(∫ T
a Y dF−

∫ T
a Y dFn

)
+
(∫ T

0 Y dFn−
∫ T

0 Y dF
) ∣∣∣∣∣∣< 3ε
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but that on the inside equals
∣∣∣∫ a

0 Y dF +
∫ T

a Y dF−
∫ T

0 Y dF
∣∣∣ because this property of the

integral holds for Stieltjes integrals. Thus the claim holds. Other properties of the integral
can also be inferred from this approximation with the Stieltjes integrals for piecewise linear
Fn. It follows that∣∣∣∣∫ t

s
Y dF

∣∣∣∣= ∣∣∣∣∫ t

0
Y dF−

∫ s

0
Y dF

∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[s,t]

What of continuity of t→
∫ t

0 Y dF? Letting Fn be the sequence of piecewise linear func-
tions described above, t→

∫ t
0 Y dFn is continuous and letting p′ > p∣∣∣∣∫ t

0
Y dF−

∫ t

0
Y dFn

∣∣∣∣= ∣∣∣∣∫ t

0
Y d (F−Fn)

∣∣∣∣≤Cp′q ∥Y∥V q([0,T ]) ∥F−Fn∥p′,[0,T ]

Thus, as n→ ∞, one has uniform convergence of the continuous functions t →
∫ t

0 Y dFn to
t→

∫ t
0 Y dF thanks to Theorem B.2.3 which implies that the right side converges to 0 since

p′ > p.
Consider the other estimate 2.4. Let P be a dissection 0 = t0 < t1 < · · ·< tn = T . Let

Ψ(t)≡
∫ t

0 Y dF . From the definition of the integral in terms of a limit as |P|→ 0, it follows
that, since p≥ 1,

n−1

∑
i=0
|Ψ(ti+1)−Ψ(ti)|p ≤

n−1

∑
i=0

∣∣∣∣∫ ti+1

ti
Y dF

∣∣∣∣p ≤ n−1

∑
i=0

Cp
pq ∥Y∥

p
V q([0,T ]) ∥F∥

p
p,[ti,ti+1]

≤ Cp
pq ∥Y∥

p
V q([0,T ])

n−1

∑
i=0
∥F∥p

p,[ti,ti+1]
≤Cp

pq ∥Y∥
p
V q([0,T ])

(
n−1

∑
i=0
∥F∥p,[ti,ti+1]

)p

≤ Cp
pq ∥Y∥

p
V q([0,T ]) ∥F∥

p
p,[0,T ]

Recall that since p ≥ 1, if each ai ≥ 0,∑i ap
i ≤ (∑i ai)

p. Then taking the sup over all such

dissections, it follows that
∥∥∥∫ (·)0 Y dF

∥∥∥
p,[0,T ]

≤ Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]. Also, from the

estimate, ∣∣∣∣∫ t

0
Y dF

∣∣∣∣≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,t] ≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]

Taking sup for all t,
∥∥∥∫ (·)0 Y dF

∥∥∥
∞

≤Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ] and so∥∥∥∥∫ (·)

0
Y dF

∥∥∥∥
V p([0,T ])

≤ 2Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ] ■
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∩, 13
∪, 13
δ fine, 303
π systems, 326
nth term test, 91

absolute convergence, 94
rearrangement, 88

absolute convergence, 87
alternating series, 93
alternating series test, 93
analytic, 258
analytic function, 258
analytic functions, 161

counting zeros, 271
zeros, 270

annuity
ordinary, 24

antiderivative, 189
Archimedian property, 21
Ascoli Arzela, 122
at most countable, 48
axiom of choice, 43, 47
axiom of extension, 43
axiom of specification, 43
axiom of unions, 43

Bair theorem, 81
Bernstein polynomials, 121
Bessel’s inequality, 292
binomial series, 168
binomial theorem, 19, 25

infinite series, 170
Borel sets, 327
bounded, 70
bounded variation, 194
Bromwich integral, 298

Cantor, 357
Cantor diagonal process, 123
Cantor function, 145, 352
Cantor set, 74, 144

continuous image, 128
Casorati Weierstrass, 260
Cauchy, 102

product, 179
Cauchy condensation test, 90
Cauchy criterion for sums, 87
Cauchy Goursat theorem, 255
Cauchy integral formula, 258

Cauchy mean value theorem, 146
Cauchy principal value, 276
Cauchy product, 98
Cauchy Riemann equations, 273
Cauchy sequence

completeness, 76
convergent subsequence, 64

Cauchy sequence, 64
cauchy sequence

bounded, 64
Ceasaro summability, 293
chain, 50
chain rule, 140
change of variables, 209
chi-squared, 248
closed set, 68
closed sets

limit points, 70
closed subset of compact set, 70
closure, 110
commutative ring, 362
compact, 72
compactness

preservation, 108
continuous function, 108

comparison test, 89
comparison test, 87
completely seperable

R, 73
completeness

axiom, 26
equivalent conditions, 76
monotone sequences, 76

completing the square, 30
complex conjugate, 32
complex numbers

sequentially compact sets, 71
complex numbers, 31
conditional convergence, 87
connected, 110

components of open set, 112
continuous image, 111
on the real line, 111
union, 111

connected open set, 270
connected set

preservation, 111
continuity

convergent sequences, 102
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inverse function, 110
limits, 131
litany of properties, 104
on a compact set, 114
one to one, 109
preservation of inequality, 104
uniform, 114
uniform convergence, 117

continuous
at one point, 103
not differentiable anywhere, 138

continuous and one to one
monotone, 109

continuous function, 102
only at irrationals, 106

continuous functions
combinations of, 104
supremum and infimum, 116

continuous image of compact set, 108
contitional convergence, 94
contour integral, 253
convergence

of derivatives, 152
convergent sequences

continuity, 102
convex, 154
convex sets

in C, 256
cosine and sine

periodic, 164
countable, 48
countable basis, 73
countable intersection of dense open sets, 81
counting zeros, 271
critical points, 142
curve

piecewise smooth, 251

Darboux integrability, 200
Darboux theorem, 200
decimal expansion of a number, 77
Dedekind cuts, 357
dense, 21
density of rationals, 21
derivative

chain rule, 140
complex variable, 251
definition, 135

equals zero, then function is constant,
146

equivalent difference quotient, 140
higher order derivatives, 141
intermediate value property, 148
inverse function, 150
mean value theorem, 145
product rule, 139
quotient rule, 141
sum, product, quotient, chain rule, 139
well defined, 135

derivative exists
continuous, 136

derivatives
cosine and sine, 162
right and left, 135

derived series, 159
diameter of a set, 80
differentiable

continuous, 136
differential equations

Peano existence theorem, 230
differentiation almost everywhere

monotone function, 349
differentiation rules, 139
Dini condition, 239
Dini derivates, 348
Dirichlet function, 55
Dirichlet integral, 248
Dirichlet kernel, 280
Dirichlet series, 274
Dirichlet test, 93
Dirichlet’s estimate, 37
discriminant, 31
disk of convergence, 158
domain, 55
dominated convergence theorem, 341
double series

absolute convergence, 97
interchange order of summation, 97

double sum
interchange of order, 97

Dynkin’s lemma, 326

elementary symmetric polynomials, 363
entire, 274
epigraph, 116
equicontinuous, 122
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equivalence class, 50
equivalence relation, 49
Euclidean algorithm, 22
Euler’s constant, 229
even, 293
exponential function, 165

properties, 166
exponential growth, 241
exponential sine and cosine functions, 162
extreme value theorem, 108

F sigma, 330
Fatou’s lemma, 339
Fibonacci sequence, 58
field axioms, 10
finite intersection property, 74
first mean value theorem integrals, 215
first order linear differential euqations, 222
Fourier cosine formula, 295
Fourier cosine transform, 297
Fourier series, 279

pointwise convergence, 281
uniform convergence, 293

Fourier sine transform, 297
Fourier transform, 294
Fresnel integrals, 248

contour integration, 275
Fubini’s theorem., 216
function, 46

even, 143
odd, 143
uniformly continuous, 114

function of many variables
continuous, 335

fundamental theorem of algebra, 183, 184
fundamental theorem of arithmetic, 23
fundamental theorem of calculus, 208, 209

Lebesgue, 354
future value of an annuity, 24

G delta, 330
G delta set, 81
gamma function, 322

existence and convergence, 240
properties, 241

gauge function, 303
generalized Riemann integral

Cauchy criterion, 304

geometric series, 86
geometric series, 86
greatest common divisor, 22

characterization, 22
greatest lower bound, 27
Gronwall’s inequality, 229

Hardy Littlewood maximal function
estimate, 346

Hausdorff
maximal principle, 50

Heine Borel, 67
Heine Borel theorem, 72
Henstock, 303
Henstock’s lemma, 308
Holder condition, 128
Holder continuous, 376
Holder functions, 128
Holder’s inequality, 221, 375
holomorphic, 258

identities
cosine and sine, 162

improper integral, 222
infinite series

raised to a power, 186
infinite sums

properties, 86
integer combinations of irrational numbers,

39
integral

continuous function, 191
continuous functions, 155
decreasing function, 201, 336
finding them, 211
mean value theorem, 239
p variation integrator, 382
piecewise continuous, 192
uniform convergence, 210

integration by parts, 208, 220
integration by parts formula, 205
interest

compounded continuously, 176
interior point, 68
intermediate value theorem, 108, 109
intersection of dense open sets, 81
intervals, 13

connected, 111
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inverse Fourier transform, 294
inverse image, 46, 56
iterated integrals, 216

Jordan condition, 239
jump discontinuity, 133

Kurzweil, 303

L’Hopital’s rule, 172
L’Hopitals rule, 174
Laplace transform

obvious properties, 242
unique, 298

Laplace transforms
justification of method, 246

Laplace transorm
inverse, 298

least upper bound, 27
Lebesgue

fundamental theorem of calculus, 354
Lebesgue integral

desires to be linear, 340
nonnegative function, 337
simple function, 338

lim inf, 78
properties, 79

lim sup, 78
properties, 79

limit comparison test, 89
limit of a sequence

derivative, 152
limit of a subsequence, 63
limit of nth root of n, 157
limit point, 69
limit points, 110

closed sets, 70
limits

continuity, 131
cosine and sine, 163
existence of limits, 79
properties, 130
squeezing theorem, 63, 130
uniqueness, 61, 129
well defined, 129

limits of sequences
preservation of order, 63
properties, 62

Lindemann Weierstrass theorem, 373

Lindemannn Weierstrass theorem, 366
Liouville’s theorem, 274
Lipschitz, 201
Lipschitz constant, 201
little o notation, 134
ln, 166

derivative, properties, 166
local extrema, 142
local extremum

derivative equals 0, 142
local maximum, 142
local minimum, 142
locally finite, 75
logarithm

analytic, 263
branch, 263
branches, 262
principal branch, 262, 263

logarithms
other bases, 167
properties, 167

lower semicontinuous, 115

mathematical induction, 19
max. min.theorem, 108
maximal chain, 50
maximal function

Hardy Littlewood, 346
mean square convergence, 287
mean value theorem

Cauchy, 146
for integrals, 222
usual version, 146

measurability
limit of simple functions, 334

measurable function, 333
measurable functions

continuous composition, 335
measurable sets, 325
measurable space, 323
measure, 323

properties, 324
measure of intervals, 321
measure space, 323
measures

decreasing sequences of sets, 324
increasing sequences of sets, 324

Merten’s theorem, 98, 185
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modular group, 273
monic

polynomial, 35
monotone convergence theorem, 339
monotone decreasing, 75
monotone function

differentiable, 349
monotone increasing, 75
Morera’s theorem, 256
multinomial expansion, 30

nested closed sets
shrinking diameters, 80

nested interval lemma, 65
nonremovable discontinuity, 101
norms, 377
nowhere differentiable function, 139

odd, 293
open set, 68

connected components, 112
order, 13
ordered

partial, 50
totally ordered, 50

oriented interval, 190
outer measure, 346

p series, 91
p variation, 376

approximation, 379
partial fractions

expansion, 40
theory, 40

partial order, 50
partial summation formula, 93
partially ordered set, 50
partition

ordered, 252
perfect sets, 114
periodic function, 279
permutations, 18
permutations and combinations, 30
pi systems, 326
piecewise continuous, 192, 284
piecewise smooth curve, 251
pointwise convergence

sequence, 116
series, 119

pole, 260, 264
polynomial, 34

addition, 34
degree, 34
division, 34
equality, 34
leading term, 34
monic, 34, 35
multiplication, 34
root, 34
zero, 34

polynomials
greatest common divisor, 35
relatively prime, 35

power series, 157
exponential sine and cosine, 162
multiplication, 179
of a quotient, 188
raising to a power, 186

power set, 43, 52
present value of an annuity, 25
preservation of compactness, 108
prime number, 22

less than a given number, 100
product rule, 139

quadratic formula, 30
quotient rule, 141

Raabe’s test, 153
Rademacher’s theorem, 353
radius of convergence, 158
raising a number to a power, 167
range, 55
ratio test, 94
rational function, 57
rational numbers, 9

density, 21
real numbers, 9

construction from Rationals, 357
rearranged series

convergence, 88
recurrence relation, 58
recursively defined sequence, 82
recursively defined sequence, 58
region, 270
regular measures, 331
regular Sturm Liouville problem, 225
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relatively closed, 105
relatively open, 105
relatively prime, 22
removable discontinuity, 101
removable singularity, 260
residue, 264
residues

method, 264
Rieman Stieltjes integral

existence, 202
Riemann integral

improper, 231
without using sums, 155

Riemann Lebesgue lemma, 236
Riemann Stieltjes integral

existence, 197
properties, 196
uniqueness, 196

Rolle’s theorem, 146
root test, 94, 95
roots

existence, 28
roots of complex number, 184
Russell’s paradox, 45

Schroder Bernstein theorem, 47
second derivative test, 154
second mean value theorem, 226

integrals, 239
separated, 110
sequence

functions, 116
sequence of partial sums, 85
sequences, 57

terminating, 53
uncountable, 53

sequential compactness, 114
sequentially compact

closed and bounded, 70
in complex numbers, 71

series
absolute convergence, 87
conditional convergence, 87
convergence criterion, 87
double sum, 96
meaning of convergence, 85
multiplication of series, 98
nonnegative terms, 85

p series test, 91
ratio test, 94
root test, 95

series of functions
uniform convergence, 119

sets, 43
sigma algebra, 323
simple function, 333
Simpson’s rule, 223, 224
smooth and not analytic, 179
smooth curve, 251
smoothness not analytic, 178
space filling curve, 125
squeezing theorem, 130
squeezing theorem, 63
star shaped, 256
step function, 193
Stirling’s formula, 215, 356

real arguments, 250
sup

increasing sequence, 97
interchange of order, 28

symmetric polynomial theorem, 364
symmetric polynomials, 363

tagged division, 303
Tarski, 53
Taylor series, 157, 258

coefficients, 161
convergence and divergence, 157
differentiation, 159
exponential sine and cosine, 162
multiplication, 179
of quotient, 188
raising to a power, 186
uniqueness, 161

Taylor’s formula, 148, 224
Tietze extension theorem, 126
total variation, 194
totally ordered, 50
trapezoid rule, 224
triangle inequality, 33, 375
trichotomy, 14
trigonometric functions, 165

uncountable
unit interval, 78

uniform convergence, 287
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sequence, 117, 152
series, 119

uniformly bounded, 122
uniformly Cauchy, 118

sequence, 118
uniformly continuous, 114
unit interval

uncountable, 78
upper semicontinuous, 115

variation of constants formula, 302
Vitali covering, 347
Vitali covering theorem, 345

vitali covers, 347

Wallis formula, 214
Weierstrass, 102
Weierstrass approximation

estimate, 120
Weierstrass approximation theorem, 121
Weierstrass Bolzano theorem, 184
Weierstrass M test, 119, 292
well ordered, 19
winding number, 277

Young’s integral, 382
estimates, 382

Zermelo, 53
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