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Preface
This book is directed to people who have a good understanding of the concepts of one
variable calculus including the notions of limit of a sequence and completeness of R. It
develops real analysis for functions of many real variables. It is intended to follow my
book on real analysis of functions of one variable. The emphasis is on basic concepts from
topology, the derivative and the integral. It does not go into functional analysis.

In order to do multivariable calculus correctly, you must first understand some linear
algebra. One cannot escape the fact that the derivative is a linear transformation, for exam-
ple. Therefore, a condensed course in linear algebra is presented first, emphasizing those
topics in linear algebra which are useful in analysis, not those topics which are primarily
dependent on row operations. It is best to have had a good linear algebra course before
attempting a book like this one, however.

I chose to feature the Lebesgue integral because I have gone through the theory of
the Riemann integral for a function of n variables and ended up thinking it was too fussy
and that the extra abstraction of the Lebesgue integral was worthwhile in order to avoid
this fussiness and to also get much better theorems. Also, it seemed to me that this book
should be in some sense “more advanced” than my Engineering Math book which has a
development of the Riemann integral as an appendix.
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Chapter 1

Review of Some Linear Algebra
This material can be referred to as needed. It is here in order to make the book self con-
tained.

1.1 The Matrix of a Linear Map
Recall the definition of a linear map. First of all, these need to be defined on a linear space
and have values in a linear space.

Definition 1.1.1 Let T : V →W be a function. Here V and W are linear spaces.
Then T ∈L (V,W ) and is a linear map means that for α,β scalars and v1,v2 vectors,

T (αv1 +βv2) = αT v1 +βT v2

Also recall from linear algebra that if you have T ∈L (Fn,Fm) it can always be un-
derstood in terms of a matrix. That is, there exists an m× n matrix A such that for all
x ∈ Fn,

Ax= Tx

Recall that, from the way we multiply matrices,

A =
(

Te1 · · · Ten
)

That is, the ith column is just Tei.

1.2 Block Multiplication of Matrices
Consider the following problem(

A B
C D

)(
E F
G H

)
.

You know how to do this. You get(
AE +BG AF +BH
CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E,F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case?

Suppose A is a matrix of the form

A =

 A11 · · · A1m
...

. . .
...

Ar1 · · · Arm

 (1.1)

where Ai j is a si× p j matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · ,r. Such
a matrix is called a block matrix, also a partitioned matrix. How do you get the block

9
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Ai j? Here is how for A an m×n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×p j︷ ︸︸ ︷ 0
Ip j×p j

0

. (1.2)

In the block column matrix on the right, you need to have c j− 1 rows of zeros above the
small p j× p j identity matrix where the columns of A involved in Ai j are c j, · · · ,c j + p j−1
and in the block row matrix on the left, you need to have ri− 1 columns of zeros to the
left of the si× si identity matrix where the rows of A involved in Ai j are ri, · · · ,ri + si. An
important observation to make is that the matrix on the right specifies columns to use in the
block and the one on the left specifies the rows. Thus the block Ai j, in this case, is a matrix
of size si× p j. There is no overlap between the blocks of A. Thus the identity n×n identity
matrix corresponding to multiplication on the right of A is of the form Ip1×p1 0

. . .
0 Ipm×pm

 ,

where these little identity matrices don’t overlap. A similar conclusion follows from con-
sideration of the matrices Isi×si . Note that in (1.2), the matrix on the right is a block column
matrix for the above block diagonal matrix, and the matrix on the left in (1.2) is a block
row matrix taken from a similar block diagonal matrix consisting of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form  B11 · · · B1p

...
. . .

...
Br1 · · · Brp

 (1.3)

and A is a block matrix of the form A11 · · · A1m
...

. . .
...

Ap1 · · · Apm

 (1.4)

such that for all i, j, it makes sense to multiply BisAs j for all s ∈ {1, · · · , p}. (That is the
two matrices Bis and As j are conformable.) and that for fixed i j, it follows that BisAs j is the
same size for each s so that it makes sense to write ∑s BisAs j.

The following theorem says essentially that when you take the product of two matrices,
you can partition both matrices, formally multiply the blocks to get another block matrix
and this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 1.2.1 Consider the following product. 0
I
0

( 0 I 0
)
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where the first is n× r and the second is r×n. The small identity matrix I is an r× r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form 0 0 0

0 I 0
0 0 0

 .

Proof: From the definition of matrix multiplication, the product is  0
I
0

0 · · ·

 0
I
0

e1 · · ·

 0
I
0

er · · ·

 0
I
0

0


which yields the claimed result. In the formula e j refers to the column vector of length r
which has a 1 in the jth position. This proves the lemma. ■

Theorem 1.2.2 Let B be a q× p block matrix as in (1.3) and let A be a p×n block
matrix as in (1.4) such that Bis is conformable with As j and each product, BisAs j for s =
1, · · · , p is of the same size, so that they can be added. Then BA can be obtained as a block
matrix such that the i jth block is of the form

∑
s

BisAs j. (1.5)

Proof: From (1.2)

BisAs j =
(
0 Iri×ri 0

)
B

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0


where here it is assumed Bis is ri× ps and As j is ps×q j. The product involves the sth block
in the ith row of blocks for B and the sth block in the jth column of A. Thus there are the
same number of rows above the Ips×ps as there are columns to the left of Ips×ps in those two
inside matrices. Then from Lemma 1.2.1 0

Ips×ps

0

( 0 Ips×ps 0
)
=

 0 0 0
0 Ips×ps 0
0 0 0

 .

Since the blocks of small identity matrices do not overlap,

∑
s

 0 0 0
0 Ips×ps 0
0 0 0

=

 Ip1×p1 0
. . .

0 Ipp×pp

= I,

and so,

∑
s

BisAs j = ∑
s

(
0 Iri×ri 0

)
B

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0


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=
(
0 Iri×ri 0

)
B∑

s

 0
Ips×ps

0

( 0 Ips×ps 0
)

A

 0
Iq j×q j

0



=
(
0 Iri×ri 0

)
BIA

 0
Iq j×q j

0

=
(
0 Iri×ri 0

)
BA

 0
Iq j×q j

0


which equals the i jth block of BA. Hence the i jth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s

BisAs j.

This proves the theorem. ■

Example 1.2.3 Multiply the following pair of partitioned matrices using the above theo-
rem by multiplying the blocks as described above and then in the conventional manner. 1 2 3

−1 2
3 −2

3
1

 1
2

−1 2
3 0

−2 2 1


Doing it in terms of the blocks, this yields, after the indicated multiplications of the

blocks,  5+(−6)
(

5 2
)
+3
(

2 1
)(

3
−1

)
+

(
3
1

)
(−2)

(
7 −2
−9 6

)
+

(
6 3
2 1

) 
This is  −1

(
11 5

)(
−3
−3

) (
13 1
−7 7

) 
Multiplying it out the usual way, you have 1 2 3

−1 2 3
3 −2 1

 1 −1 2
2 3 0
−2 2 1

=

 −1 11 5
−3 13 1
−3 −7 7


you see this is the same thing without the partition lines.

1.3 Schur’s Theorem
For some reason, not understood by me, Schur’s theorem is often neglected in beginning
linear algebra. This is too bad because it is one of the best theorems in linear algebra. Here
|·| denotes the usual norm in Cn given by

|x|2 ≡
n

∑
j=1

∣∣x j
∣∣2
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Definition 1.3.1 A complex n× n matrix U is said to be unitary if U∗U = I. Here
U∗ is the transpose of the conjugate of U. The matrix is unitary if and only if its columns
form an orthonormal set in Cn. This follows from the way we multiply matrices in which
the i jth entry of U∗U is obtained by taking the conjugate of the ith row of U times the jth

column of U.

Theorem 1.3.2 (Schur) Let A be a complex n×n matrix. Then there exists a unitary
matrix U such that

U∗AU = T, (1.6)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal,
listed with multiplicity1.

Proof: The theorem is clearly true if A is a 1×1 matrix. Just let U = 1, the 1×1 matrix
which has entry 1. Suppose it is true for (n−1)× (n−1) matrices and let A be an n× n
matrix. Then let v1 be a unit eigenvector for A. Then there exists λ 1 such that

Av1 = λ 1v1, |v1|= 1.

Extend {v1} to a basis and then use the Gram - Schmidt process to obtain

{v1, · · · ,vn}

an orthonormal basis of Cn. Let U0 be a matrix whose ith column is vi. Then from the
definition of a unitary matrix Definition 1.3.1, it follows that U0 is unitary. Consider U∗0 AU0.

U∗0 AU0 =

 v∗1
...
v∗n

( Av1 · · · Avn
)
=

 v∗1
...
v∗n

( λ 1v1 · · · Avn
)

Thus U∗0 AU0 is of the form (
λ 1 a
0 A1

)
where A1 is an n− 1× n− 1 matrix. Now by induction, there exists an (n−1)× (n−1)
unitary matrix Ũ1 such that

Ũ∗1 A1Ũ1 = Tn−1,

an upper triangular matrix. Consider

U1 ≡
(

1 0

0 Ũ1

)
.

An application of block multiplication shows that U1 is a unitary matrix and also that

U∗1 U∗0 AU0U1 =

(
1 0

0 Ũ∗1

)(
λ 1 ∗
0 A1

)(
1 0

0 Ũ1

)
=

(
λ 1 ∗
0 Tn−1

)
= T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗ = U∗1 U∗0 , it follows that

A is similar to T and that U0U1 is unitary. Hence A and T have the same characteristic
1‘Listed with multiplicity’ means that the diagonal entries are repeated according to their multiplicity as roots

of the characteristic equation.
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polynomials, and since the eigenvalues of T are the diagonal entries listed with multiplicity,
this proves the theorem. ■

The same argument yields the following corollary in the case where A has real entries.
The only difference is the use of the real inner product instead of the complex inner product.

Corollary 1.3.3 Let A be a real n× n matrix which has only real eigenvalues. Then
there exists a real orthogonal matrix Q such that

QT AQ = T

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal,
listed with multiplicity.

Proof: This follows by observing that if all eigenvalues are real, then corresponding
to each real eigenvalue, there exists a real eigenvector. Thus the argument of the above
theorem applies with the real inner product in Rn. ■

1.4 Hermitian and Symmetric Matrices
A complex n×n matrix A with A∗ = A is said to be Hermitian. A real n×n matrix A with
AT = A is said to be symmetric. In either case, note that for ⟨·, ·⟩ the inner product in Cn,

⟨Au,v⟩= (Au)T v̄ = uT AT v̄ = uT Av̄ = ⟨u,Av⟩.

Thus, as a numerical example, the matrix(
1 1− i

1+ i 2

)
is Hermitian, while  1 −1 −2

−1 2 4
−2 4 3


is symmetric. Hermitian matrices are named in honor of the French mathematician Charles
Hermite (1822–1901).

With Schur’s theorem, the theorem on diagonalization of a Hermitian matrix follows.

Theorem 1.4.1 Let A be Hermitian. Then the eigenvalues of A are all real, and
there exists a unitary matrix U such that

U∗AU = D,

a diagonal matrix whose diagonal entries are the eigenvalues of A listed with multiplicity.
In case A is symmetric, U may be taken to be an orthogonal matrix. The columns of U form
an orthonormal basis of eigenvectors of A.

Proof: By Schur’s theorem and the assumption that A is Hermitian, there exists a tri-
angular matrix T, whose diagonal entries are the eigenvalues of A listed with multiplicity,
and a unitary matrix U such that

T =U∗AU =U∗A∗U = (U∗AU)∗ = T ∗.
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It follows from this that T is a diagonal matrix and has all real entries down the main
diagonal. Hence the eigenvalues of A are real. If A is symmetric (real and Hermitian) it
follows from Corollary 1.3.3 that U may be taken to be orthogonal (The columns are an
orthonormal set in the inner product of Rn).

That the columns of U form an orthonormal basis of eigenvectors of A, follows right
away from the definition of matrix multiplication which implies that if ui is a column of
U, then Aui = column i of (UD) = λ iui. ■

1.5 The Right Polar Factorization
The right polar factorization involves writing a matrix as a product of two other matrices,
one which preserves distances and the other which stretches and distorts. First here are
some lemmas which review and add to many of the topics discussed so far about adjoints
and orthonormal sets and such things. This is of fundamental significance in geometric
measure theory and also in continuum mechanics. Not surprisingly the stress should depend
on the part which stretches and distorts. See [20].

Lemma 1.5.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative.
Then there exists a Hermitian matrix A1/2 such that A1/2 has all nonnegative eigenvalues
and

(
A1/2

)2
= A.

Proof: Since A is Hermitian, there exists a diagonal matrix D having all real nonnega-
tive entries and a unitary matrix U such that A =U∗DU. This is from Theorem 1.4.1 above.
Then denote by D1/2 the matrix which is obtained by replacing each diagonal entry of D
with its square root. Thus D1/2D1/2 = D. Then define

A1/2 ≡U∗D1/2U.

Then (
A1/2

)2
=U∗D1/2UU∗D1/2U =U∗DU = A.

Since D1/2 is real, (
U∗D1/2U

)∗
=U∗

(
D1/2

)∗
(U∗)∗ =U∗D1/2U

so A1/2 is Hermitian. ■
Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property

stated in the next lemma.

Lemma 1.5.2 Suppose
{
w1, · · · ,wr,vr+1, · · · ,vp

}
is a linearly independent set of vec-

tors such that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of the w1, · · · ,wr.

Proof: Let
{
u1, · · · ,up

}
be the orthonormal set delivered by the Gram Schmidt pro-

cess. Then u1 =w1 because by definition, u1 ≡w1/ |w1| =w1. Now suppose u j =w j
for all j ≤ k ≤ r. Then if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1−∑

k+1
j=1 (wk+1,u j)u j∣∣∣wk+1−∑
k+1
j=1 (wk+1,u j)u j

∣∣∣
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By induction, u j =w j and so this reduces to wk+1/ |wk+1|=wk+1. ■
This lemma immediately implies the following lemma.

Lemma 1.5.3 Let V be a subspace of dimension p and let {w1, · · · ,wr} be an or-
thonormal set of vectors in V . Then this orthonormal set of vectors may be extended to
an orthonormal basis for V, {

w1, · · · ,wr,yr+1, · · · ,yp
}

Proof: First extend the given linearly independent set {w1, · · · ,wr} to a basis for V
and then apply the Gram Schmidt theorem to the resulting basis. Since {w1, · · · ,wr} is
orthonormal it follows from Lemma 1.5.2 the result is of the desired form, an orthonormal
basis extending {w1, · · · ,wr}. ■

Here is another lemma about preserving distance.

Lemma 1.5.4 Suppose R is an m×n matrix with m≥ n and R preserves distances. Then
R∗R = I. Also, if R takes an orthonormal basis to an orthonormal set, then R must preserve
distances.

Proof: Since R preserves distances, |Rx|= |x| for every x. Therefore from the axioms
of the dot product,

|x|2 + |y|2 +(x,y)+(y,x) = |x+y|2 = (R(x+y) ,R(x+y))

= (Rx,Rx)+(Ry,Ry)+(Rx,Ry)+(Ry,Rx)

= |x|2 + |y|2 +(R∗Rx,y)+(y,R∗Rx)

and so for all x,y,
(R∗Rx−x,y)+(y,R∗Rx−x) = 0

Hence for all x,y, Re(R∗Rx−x,y) = 0. Now for a x,y given, choose α ∈ C such that

α (R∗Rx−x,y) = |(R∗Rx−x,y)|

Then
0 = Re(R∗Rx−x,αy) = Reα (R∗Rx−x,y) = |(R∗Rx−x,y)|

Thus |(R∗Rx−x,y)| = 0 for all x,y because the given x,y were arbitrary. Let y =
R∗Rx−x to conclude that for all x,

R∗Rx−x= 0

which says R∗R = I since x is arbitrary.
Consider the last claim. Let R : Fn→ Fm such that {u1, · · · ,un} is an orthonormal basis

for Fn and {Ru1, · · · ,Run} is also an orthormal set, then∣∣∣∣∣R
(

∑
i

xiui

)∣∣∣∣∣
2

=

∣∣∣∣∣∑i
xiRui

∣∣∣∣∣
2

= ∑
i
|xi|2 =

∣∣∣∣∣∑i
xiui

∣∣∣∣∣
2

■

With this preparation, here is the big theorem about the right polar factorization.
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Theorem 1.5.5 Let F be an m×n matrix where m≥ n. Then there exists a Hermi-
tian n× n matrix U which has all nonnegative eigenvalues and an m× n matrix R which
satisfies R∗R = I such that F = RU.

Proof: Consider F∗F. This is a Hermitian matrix because

(F∗F)∗ = F∗ (F∗)∗ = F∗F

Also the eigenvalues of the n×n matrix F∗F are all nonnegative. This is because if x is an
eigenvalue,

λ (x,x) = (F∗Fx,x) = (Fx,Fx)≥ 0.

Therefore, by Lemma 1.5.1, there exists an n×n Hermitian matrix U having all nonnegative
eigenvalues such that

U2 = F∗F.

Consider the subspace U (Fn). Let {Ux1, · · · ,Uxr} be an orthonormal basis for

U (Fn)⊆ Fn.

Note that U (Fn) might not be all of Fn. Using Lemma 1.5.3, extend to an orthonormal
basis for all of Fn,

{Ux1, · · · ,Uxr,yr+1, · · · ,yn} .

Next observe that {Fx1, · · · ,Fxr} is also an orthonormal set of vectors in Fm. This is
because

(Fxk,Fx j) = (F∗Fxk,x j) =
(
U2xk,x j

)
= (Uxk,U∗x j) = (Uxk,Ux j) = δ jk

Therefore, from Lemma 1.5.3 again, this orthonormal set of vectors can be extended to an
orthonormal basis for Fm,

{Fx1, · · · ,Fxr,zr+1, · · · ,zm}

Thus there are at least as many zk as there are y j. Now for x ∈ Fn, since

{Ux1, · · · ,Uxr,yr+1, · · · ,yn}

is an orthonormal basis for Fn, there exist unique scalars,

c1 · · · ,cr,dr+1, · · · ,dn

such that

x=
r

∑
k=1

ckUxk +
n

∑
k=r+1

dkyk

Define

Rx≡
r

∑
k=1

ckFxk +
n

∑
k=r+1

dkzk (1.7)

Then also there exist scalars bk such that

U x=
r

∑
k=1

bkUxk
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and so from 1.7,

RU x=
r

∑
k=1

bkFxk = F

(
r

∑
k=1

bkxk

)
Is F (∑r

k=1 bkxk) = F (x)?(
F

(
r

∑
k=1

bkxk

)
−F (x) ,F

(
r

∑
k=1

bkxk

)
−F (x)

)

=

(
(F∗F)

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U2

(
r

∑
k=1

bkxk−x

)
,

(
r

∑
k=1

bkxk−x

))

=

(
U

(
r

∑
k=1

bkxk−x

)
,U

(
r

∑
k=1

bkxk−x

))

=

(
r

∑
k=1

bkUxk−Ux,
r

∑
k=1

bkUxk−Ux

)
= 0

Therefore, F (∑r
k=1 bkxk) = F (x) and this shows RUx = Fx. From 1.7 it follows that R

maps an orthonormal set to an orthonormal set and so R preserves distances. Therefore, by
Lemma 1.5.4 R∗R = I. ■

1.6 Elementary matrices
The elementary matrices result from doing a row operation to the identity matrix.

As before, everything will apply to matrices having coefficients in an arbitrary field of
scalars, although we will mainly feature the real numbers in the examples.

Definition 1.6.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by the same row added to a multiple of another row.

We refer to these as the row operations of type 1,2, and 3 respectively.

The elementary matrices are given in the following definition.

Definition 1.6.2 The elementary matrices consist of those matrices which result by
applying a row operation to an identity matrix. Those which involve switching rows of the
identity are called permutation matrices. More generally, a permutation matrix is a matrix
which comes by permuting the rows of the identity matrix, not just switching two rows.
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As an example of why these elementary matrices are interesting, consider the following.
Letting ri be the row vector of all zeros except for a 1 in the ith slot, r2

r1
r3

 a b c d
x y z w
f g h i

=

 x y z w
a b c d
f g h i

 .

A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to switching the first two rows of the identity matrix. This resulted
in applying the operation 1 to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. They are obtained from switch-
ing a couple of rows of the identity matrix. First Pi j, which involves switching row i and
row j of the identity where Let i < j. Then, as above, Pi j =

r1
...
r j
...
ri
...
rn


where

r j = (0 · · ·1 · · ·0)

with the 1 in the jth position from the left.
For Pi j this matrix which involves switching the i and j rows of the identity. Now

consider what this does to a column vector.

r1
...
r j
...
ri
...
rn





v1
...
vi
...

v j
...

vn


=



v1
...

v j
...
vi
...

vn


.

Now we try multiplication of a matrix on the left by this elementary matrix Pi j. Thus,

Pi j



a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

a j1 a j2 · · · · · · · · · · · · a jp
...

...
...

an1 an2 · · · · · · · · · · · · anp


.
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has the indicated columns listed in order:
Pi j



a11
...

ai1
...

a j1
...

an1


,Pi j



a12
...

ai2
...

a j2
...

an2


, · · · ,Pi j



a1p
...

aip
...

a jp
...

anp





=





a11
...

a j1
...

ai1
...

an1


,



a12
...

a j2
...

ai2
...

an2


, · · · ,



a1p
...

a jp
...

aip
...

anp




and so the resulting matrix is

=



a11 a12 · · · · · · · · · · · · a1p
...

...
...

a j1 a j2 · · · · · · · · · · · · a jp
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

an1 an2 · · · · · · · · · · · · anp


.

This has established the following lemma.

Lemma 1.6.3 Let Pi j denote the elementary matrix which involves switching the ith and
the jth rows of I. Then if Pi j, A are conformable, we have

Pi jA = B

where B is obtained from A by switching the ith and the jth rows.

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. We write

I =


r1
r2
...
rn


where

r j = (0 · · ·1 · · ·0)
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with the 1 in the jth position from the left. The elementary matrix which results from
applying this operation to the ith row of the identity matrix is of the form

E (c, i) =


r1
...

cri
...
rn

 .

Now consider what this does to a column vector.
r1
...

cri
...
rn




v1
...
vi
...

vn

=


v1
...

cvi
...

vn

 .

Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the
nonzero constant, c. Then from what was just discussed and the way matrices are multi-
plied,

E (c, i)


a11 a12 · · · a1p

...
...

...
ai1 ai2 · · · aip
...

...
...

an1 an2 · · · anp


equals a matrix having the columns indicated below.

=


a11 a12 · · · a1p

...
...

...
cai1 cai2 · · · caip

...
...

...
an1 an2 · · · anp

 .

This proves the following lemma.

Lemma 1.6.4 Let E (c, i) denote the elementary matrix corresponding to the row op-
eration in which the ith row is multiplied by the nonzero constant c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Letting r j be the jth row of the
identity matrix, denote by E (c× i+ j) the elementary matrix obtained from the identity
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matrix by replacing r j with r j + cri. In case i < j this will be of the form

Pi j =



r1
...
ri
...

cri +r j
...
rn


.

Consider what this does to a column vector.



r1
...
ri
...

cri +r j
...
rn





v1
...
vi
...

v j
...

vn


=



v1
...
vi
...

cvi + v j
...

vn


.

From this and the way matrices are multiplied,

E (c× i+ j)



a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

a j2 a j2 · · · · · · · · · · · · a jp
...

...
...

an1 an2 · · · · · · · · · · · · anp


equals a matrix having the indicated columns listed in order.


E (c× i+ j)



a11
...

ai1
...

a j2
...

an1


,E (c× i+ j)



a12
...

ai2
...

a j2
...

an2


, · · ·E (c× i+ j)



a1p
...

aip
...

a jp
...

anp




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=



a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

a j2 + cai1 a j2 + cai2 · · · a jp + caip
...

...
...

an1 an2 · · · anp


.

The case where i > j is similar. This proves the following lemma in which, as above, the
ith row of the identity is ri.

Lemma 1.6.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replac-
ing the jth row of the identity r j with cri +r j. Letting the kth row of A be ak,

E (c× i+ j)A = B

where B has the same rows as A except the jth row of B is cai +a j.

The above lemmas are summarized in the following theorem.

Theorem 1.6.6 To perform any of the three row operations on a matrix A it suffices
to do the row operation on the identity matrix, obtaining an elementary matrix E, and then
take the product, EA. In addition to this, the following identities hold for the elementary
matrices described above.

E (c× i+ j)E (−c× i+ j) = E (−c× i+ j)E (c× i+ j) = I. (1.8)

E (c, i)E
(
c−1, i

)
= E

(
c−1, i

)
E (c, i) = I. (1.9)

Pi jPi j = I. (1.10)

Proof: Consider (1.8). Starting with I and taking −c times the ith row added to the jth

yields E (−c× i+ j) which differs from I only in the jth row. Now multiplying on the left
by E (c× i+ j) takes c times the ith row and adds to the jth thus restoring the jth row to its
original state. Thus E (c× i+ j)E (−c× i+ j) = I. Similarly E (−c× i+ j)E (c× i+ j) =
I. The reasoning is similar for (1.9) and (1.10). ■

Each of these elementary matrices has a significant geometric significance. The effect
of doing E

( 1
2 ×3+1

)
shears the box in one direction. Of course there would be corre-

sponding shears in the other directions also. Note that this does not change the volume.
You should think about the geometric effect of the other elementary matrices on a box.

Definition 1.6.7 For an n× n matrix A, an n× n matrix B which has the property
that AB = BA = I is denoted by A−1. Such a matrix is called an inverse. When A has an
inverse, it is called invertible.

The following lemma says that if a matrix acts like an inverse, then it is the inverse.
Also, the product of invertible matrices is invertible.
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Lemma 1.6.8 If B,C are both inverses of A, then B = C. That is, there exists at most
one inverse of a matrix. If A1, · · · ,Am are each invertible m×m matrices, then the product
A1A2 · · ·Am is also invertible and

(A1A2 · · ·Am)
−1 = A−1

m A−1
m−1 · · ·A

−1
1 .

Proof. From the definition and associative law of matrix multiplication,

B = BI = B(AC) = (BA)C = IC =C.

This proves the uniqueness of the inverse.
Next suppose A,B are invertible. Then

AB
(
B−1A−1)= A

(
BB−1)A−1 = AIA−1 = AA−1 = I

and also (
B−1A−1)AB = B−1 (A−1A

)
B = B−1IB = B−1B = I.

It follows from Definition 1.6.7 that AB has an inverse and it is B−1A−1. Thus the case of
m = 1,2 in the claim of the lemma is true. Suppose this claim is true for k. Then

A1A2 · · ·AkAk+1 = (A1A2 · · ·Ak)Ak+1.

By induction, the two matrices (A1A2 · · ·Ak) , Ak+1 are both invertible and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A
−1
2 A−1

1 .

By the case of the product of two invertible matrices shown above,

((A1A2 · · ·Ak)Ak+1)
−1 = A−1

k+1 (A1A2 · · ·Ak)
−1 = A−1

k+1A−1
k · · ·A

−1
2 A−1

1 .

This proves the lemma. ■
We will discuss methods for finding the inverse later. For now, observe that Theorem

1.6.6 says that elementary matrices are invertible and that the inverse of such a matrix is
also an elementary matrix. The major conclusion of the above Lemma and Theorem is the
following lemma about linear relationships.

Definition 1.6.9 Let v1, · · · ,vk,u be vectors. Then u is said to be a linear combi-
nation of the vectors {v1, · · · ,vk} if there exist scalars c1, · · · ,ck such that

u=
k

∑
i=1

civi.

We also say that when the above holds for some scalars c1, · · · ,ck, there exists a linear
relationship between the vector u and the vectors {v1, · · · ,vk}.

We will discuss this more later, but the following picture illustrates the geometric sig-
nificance of the vectors which have a linear relationship with two vectors u,v pointing in
different directions.
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y

z

x

u

v

The following lemma states that linear relationships between columns in a matrix are
preserved by row operations. This simple lemma is the main result in understanding all the
major questions related to the row reduced echelon form as well as many other topics.

Lemma 1.6.10 Let A and B be two m× n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combinations are the same. (The
linear relationship between the kth column of A and the i1, · · · , ir columns of A is the same
as the linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A be the following matrix in which the ak are the columns(
a1 a2 · · · an

)
and let B be the following matrix in which the columns are given by the bk(

b1 b2 · · · bn
)
.

Then by Theorem 1.6.6 on Page 23, bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak = c1ai1 + · · ·+ crair .

Then multiplying by E,

bk = Eak = c1Eai1 + · · ·+ crEair = c1bi1 + · · ·+ crbir .

This proves the lemma. ■

Example 1.6.11 Find linear relationships between the columns of the matrix

A =

 1 3 11 10 36
1 2 8 9 23
1 1 5 8 10

 .

It is not clear what the relationships are, so we do row operations to this matrix. Lemma
1.6.10 says that all the linear relationships between columns are preserved, so the idea is to
do row operations until a matrix results which has the property that the linear relationships
are obvious. First take −1 times the top row and add to the two bottom rows. This yields 1 3 11 10 36

0 −1 −3 −1 −13
0 −2 −6 −2 −26


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Next take −2 times the middle row and add to the bottom row followed by multiplying the
middle row by −1 :  1 3 11 10 36

0 1 3 1 13
0 0 0 0 0

 .

Next take −3 times the middle row added to the top: 1 0 2 7 −3
0 1 3 1 13
0 0 0 0 0

 . (1.11)

At this point it is clear that the last column is −3 times the first column added to 13 times
the second. By Lemma 1.6.10, the same is true of the corresponding columns in the original
matrix A. As a check,

−3

 1
1
1

+13

 3
2
1

=

 36
23
10

 .

You should notice that other linear relationships are also easily seen from (1.11). For
example the fourth column is 7 times the first added to the second. This is obvious from
(1.11) and Lemma 1.6.10 says the same relationship holds for A.

This is really just an extension of the technique for finding solutions to a linear system of
equations. In solving a system of equations earlier, row operations were used to exhibit the
last column of an augmented matrix as a linear combination of the preceding columns. The
row reduced echelon form just extends this by making obvious the linear relationships
between every column, not just the last, and those columns preceding it. The matrix in
1.11 is in row reduced echelon form. The row reduced echelon form is the topic of the next
section.

1.7 The Row Reduced Echelon Form Of A Matrix
When you do row operations on a matrix, there is an ultimate conclusion. It is called
the row reduced echelon form. We show here that every matrix has such a row reduced
echelon form and that this row reduced echelon form is unique. The significance is that it
becomes possible to use the definite article in referring to the row reduced echelon form.
Hence important conclusions about the original matrix may be logically deduced from an
examination of its unique row reduced echelon form. First we need the following definition.

Definition 1.7.1 Define special column vectors ei as follows.

ei =
(

0 · · · 1 · · · 0
)T

.

Recall that T says to take the transpose. Thus ei is the column vector which has all zero
entries except for a 1 in the ith position down from the top.

Now here is the description of the row reduced echelon form.

Definition 1.7.2 An m× n matrix is said to be in row reduced echelon form if,
in viewing successive columns from left to right, the first nonzero column encountered is
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e1 and if, in viewing the columns of the matrix from left to right, you have encountered
e1,e2, · · · ,ek, the next column is either ek+1 or this next column is a linear combination of
the vectors, e1,e2, · · · ,ek.

Example 1.7.3 The following matrices are in row reduced echelon form.

 1 0 4 0
0 1 3 0
0 0 0 1

 ,


0 1 0 0 7
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

 ,

 0 1 0 3
0 0 1 −5
0 0 0 0

 .

Definition 1.7.4 Given a matrix A, row reduction produces one and only one row
reduced matrix B with A∼ B. See Corollary 1.7.9. We call B the row reduced echelon form
of A.

Theorem 1.7.5 Let A be an m×n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof. Viewing the columns of A from left to right, take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this equal to zero. Thus the first
nonzero column is now e1. Denote the resulting matrix by A1. Consider the sub-matrix
of A1 to the right of this column and below the first row. Do exactly the same thing for
this sub-matrix that was done for A. This time the e1 will refer to Fm−1. Use the first 1
obtained by the above process which is in the top row of this sub-matrix and row operations,
to produce a zero in place of every entry above it and below it. Call the resulting matrix A2.
Thus A2 satisfies the conditions of the above definition up to the column just encountered.
Continue this way till every column has been dealt with and the result must be in row
reduced echelon form. ■

Here is some terminology about pivot columns.

Definition 1.7.6 The first pivot column of A is the first nonzero column of A which
becomes e1 in the row reduced echelon form. The next pivot column is the first column
after this which becomes e2 in the row reduced echelon form. The third is the next column
which becomes e3 in the row reduced echelon form and so forth.

The algorithm just described for obtaining a row reduced echelon form shows that these
columns are well defined, but we will deal with this issue more carefully in Corollary 1.7.9
where we show that every matrix corresponds to exactly one row reduced echelon form.

Definition 1.7.7 Two matrices A,B are said to be row equivalent if B can be ob-
tained from A by a sequence of row operations. When A is row equivalent to B, we write
A∼ B.

Proposition 1.7.8 In the notation of Definition 1.7.7. A ∼ A. If A ∼ B, then B ∼ A. If
A∼ B and B∼C, then A∼C.
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Proof.That A∼ A is obvious. Consider the second claim. By Theorem 1.6.6, there exist
elementary matrices E1,E2, · · · ,Em such that

B = E1E2 · · ·EmA.

It follows from Lemma 1.6.8 that (E1E2 · · ·Em)
−1 exists and equals the product of the

inverses of these matrices in the reverse order. Thus

E−1
m E−1

m−1 · · ·E
−1
1 B = (E1E2 · · ·Em)

−1 B

= (E1E2 · · ·Em)
−1 (E1E2 · · ·Em)A = A.

By Theorem 1.6.6, each E−1
k is an elementary matrix. By Theorem 1.6.6 again, the above

shows that A results from a sequence of row operations applied to B. The last claim is left
for an exercise. This proves the proposition. ■

There are three choices for row operations at each step in Theorem 1.7.5. A natural
question is whether the same row reduced echelon matrix always results in the end from
following any sequence of row operations.

We have already made use of the following observation in finding a linear relationship
between the columns of the matrix A, but here it is stated more formally. x1

...
xn

= x1e1 + · · ·+ xnen,

so to say two column vectors are equal, is to say the column vectors are the same linear
combination of the special vectors e j.

Corollary 1.7.9 The row reduced echelon form is unique. That is if B,C are two ma-
trices in row reduced echelon form and both are obtained from A by a sequence of row
operations, then B =C.

Proof.Suppose B and C are both row reduced echelon forms for the matrix A. It follows
that B and C have zero columns in the same positions because row operations do not affect
zero columns. By Proposition 1.7.8, B and C are row equivalent. In reading from left
to right in B, suppose e1, · · · ,er occur first in positions i1, · · · , ir respectively. Then from
the description of the row reduced echelon form, each of these columns of B, in positions
i1, · · · , ir, is not a linear combination of the preceding columns. Since C is row equivalent
to B, it follows from Lemma 1.6.10, that each column of C in positions i1, · · · , ir is not a
linear combination of the preceding columns of C. By the description of the row reduced
echelon form, e1, · · · ,er occur first in C, in positions i1, · · · , ir respectively. Therefore,
both B and C have the sequence e1,e2, · · · ,er occurring first (reading from left to right) in
the positions, i1, i2, · · · , ir. Since these matrices are row equivalent, it follows from Lemma
1.6.10, that the columns between the ik and ik+1 position in the two matrices are linear
combinations involving the same scalars, of the columns in the i1, · · · , ik position. Similarly,
the columns after the ir position are linear combinations of the columns in the i1, · · · , ir
positions involving the same scalars in both matrices. This is equivalent to the assertion
that each of these columns is identical in B and C. ■

Now with the above corollary, here is a very fundamental observation. The number of
nonzero rows in the row reduced echelon form is the same as the number of pivot columns.
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Namely, this number is r in both cases where e1, · · · ,er are the pivot columns in the row
reduced echelon form. This number r is called the rank of the matrix. This is discussed
more later, but first here are some other applications.

Consider a matrix which looks like this: (More columns than rows.)

Corollary 1.7.10 Suppose A is an m× n matrix and that m < n. That is, the number
of rows is less than the number of columns. Then one of the columns of A is a linear
combination of the preceding columns of A. Also, there exists x ∈ Fn such that x ̸= 0 and
Ax= 0.

Proof: Since m < n, not all the columns of A can be pivot columns. In reading from
left to right, pick the first one which is not a pivot column. Then from the description of the
row reduced echelon form, this column is a linear combination of the preceding columns.
Say

a j = x1a1 + · · ·+ x j−1a j−1.

Therefore, from the way we multiply a matrix times a vector,

A



x1
...

x j−1
−1
0
...
0


=
(
a1 · · ·a j−1a j · · ·an

)


x1
...

x j−1
−1
0
...
0


= 0. ■

1.8 Finding the Inverse of a Matrix
Recall that the inverse of an n×n matrix A is a matrix B such that

AB = BA = I

where I is the identity matrix. It was shown that an elementary matrix is invertible and that
its inverse is also an elementary matrix. Also the product of invertible matrices is invertible
and its inverse is the product of the inverses in the reverse order. In this section, we consider
the problem of finding an inverse for a given n×n matrix.

Example 1.8.1 Let A =

(
1 1
1 2

)
. Show that

(
2 −1
−1 1

)
is the inverse of A.

To check this, multiply(
1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)
,
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and (
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)
,

showing that this matrix is indeed the inverse of A.

In the last example, how would you find A−1? You wish to find a matrix
(

x z
y w

)
such that (

1 1
1 2

)(
x z
y w

)
=

(
1 0
0 1

)
.

This requires the solution of the systems of equations,

x+ y = 1,x+2y = 0

and
z+w = 0,z+2w = 1.

Writing the augmented matrix for these two systems gives(
1 1 | 1
1 2 | 0

)
(1.12)

for the first system and (
1 1 | 0
1 2 | 1

)
(1.13)

for the second. Let’s solve the first system. Take (−1) times the first row and add to the
second to get (

1 1 | 1
0 1 | −1

)
Now take (−1) times the second row and add to the first to get(

1 0 | 2
0 1 | −1

)
.

Putting in the variables, this says x = 2 and y =−1.
Now solve the second system, (1.13) to find z and w. Take (−1) times the first row and

add to the second to get (
1 1 | 0
0 1 | 1

)
.

Now take (−1) times the second row and add to the first to get(
1 0 | −1
0 1 | 1

)
.

Putting in the variables, this says z =−1 and w = 1. Therefore, the inverse is(
2 −1
−1 1

)
.

Didn’t the above seem rather repetitive? Exactly the same row operations were used in
both systems. In each case, the end result was something of the form (I|v) where I is the
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identity and v gave a column of the inverse. In the above
(

x
y

)
, the first column of the

inverse was obtained first and then the second column
(

z
w

)
.

To simplify this procedure, you could have written(
1 1 | 1 0
1 2 | 0 1

)
and row reduced till you obtained(

1 0 | 2 −1
0 1 | −1 1

)
.

Then you could have read off the inverse as the 2×2 matrix on the right side. You should
be able to see that it is valid by adapting the argument used in the simple case above.

This is the reason for the following simple procedure for finding the inverse of a matrix.
This procedure is called the Gauss-Jordan procedure.

Procedure 1.8.2 Suppose A is an n× n matrix. To find A−1 if it exists, form the
augmented n×2n matrix

(A|I)

and then if possible, do row operations until you obtain an n×2n matrix of the form

(I|B) . (1.14)

When this has been done, B = A−1. If it is impossible to row reduce to a matrix of the form
(I|B) , then A has no inverse.

The procedure just described along with the preceding explanation shows that this pro-
cedure actually yields a right inverse. This is a matrix B such that AB = I. We will show
in Theorem 1.8.4 that this right inverse is really the inverse. This is a stronger result than
that of Lemma 1.6.8 about the uniqueness of the inverse. For now, here is an example.

Example 1.8.3 Let A =

 1 2 2
1 0 2
3 1 −1

. Find A−1 if it exists.

Set up the augmented matrix (A|I) : 1 2 2 | 1 0 0
1 0 2 | 0 1 0
3 1 −1 | 0 0 1


Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields 1 2 2 | 1 0 0

0 −2 0 | −1 1 0
0 −5 −7 | −3 0 1

 .
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Then take 5 times the second row and add to −2 times the last row. 1 2 2 | 1 0 0
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


Next take the last row and add to (−7) times the top row. This yields −7 −14 0 | −6 5 −2

0 −10 0 | −5 5 0
0 0 14 | 1 5 −2

 .

Now take (−7/5) times the second row and add to the top. −7 0 0 | 1 −2 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2

 .

Finally divide the top row by -7, the second row by -10 and the bottom row by 14, which
yields 

1 0 0 | − 1
7

2
7

2
7

0 1 0 | 1
2 − 1

2 0

0 0 1 | 1
14

5
14 − 1

7

 .

Therefore, the inverse is 
− 1

7
2
7

2
7

1
2 − 1

2 0

1
14

5
14 − 1

7

 .

What you have really found in the above algorithm is a right inverse. Is this right
inverse matrix, which we have called the inverse, really the inverse, the matrix which when
multiplied on both sides gives the identity?

Theorem 1.8.4 Suppose A,B are n× n matrices and AB = I. Then it follows that
BA = I also, and so B = A−1. For n×n matrices, the left inverse, right inverse and inverse
are all the same thing.

Proof. If AB = I for A,B n× n matrices, is BA = I? If AB = I, there exists a unique
solution x to the equation

Bx= y

for any choice of y. In fact,
x= A(Bx) = Ay.

This means the row reduced echelon form of B must be I. Thus every column is a pivot
column. Otherwise, there exists a free variable and the solution, if it exists, would not be
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unique, contrary to what was just shown must happen if AB = I. It follows that a right
inverse B−1 for B exists. The above procedure yields(

B I
)
→
(

I B−1
)
.

Now multiply both sides of the equation AB = I on the right by B−1. Then

A = A
(
BB−1)= (AB)B−1 = B−1.

Thus A is the right inverse of B, and so BA = I. This shows that if AB = I, then BA = I also.
Exchanging roles of A and B, we see that if BA = I, then AB = I. This proves the theorem.
■

This has shown that in the context of n× n matrices, right inverses, left inverses and
inverses are all the same and this matrix is called A−1.

The following corollary is also of interest.

Corollary 1.8.5 An n×n matrix A has an inverse if and only if the row reduced echelon
form of A is I.

Proof. First suppose the row reduced echelon form of A is I. Then Procedure 1.8.2
yields a right inverse for A. By Theorem 1.8.4 this is the inverse. Next suppose A has an
inverse. Then there exists a unique solution x to the equation Ax= y. given by x= A−1y.
It follows that in the augmented matrix (A|0) there are no free variables, and so every
column to the left of the zero column is a pivot column. Therefore, the row reduced echelon
form of A is I. ■

1.9 The Mathematical Theory of Determinants
It is easiest to give a definition of the determinant which is clearly well defined and then
prove the Laplace expansion gives the same thing. Let (i1, · · · , in) be an ordered list of
numbers from {1, · · · ,n} . This means the order is important so (1,2,3) and (2,1,3) are
different. Two books which give a good introduction to determinants are Apostol [1] and
Rudin [38]. A recent book which also has a good introduction is Baker [4]

1.9.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 1.9.1 There exists a function, sgnn which maps each ordered list of numbers
from {1, · · · ,n} to one of the three numbers, 0,1, or −1 which also has the following prop-
erties.

sgnn (1, · · · ,n) = 1 (1.15)

sgnn (i1, · · · , p, · · · ,q, · · · , in) =−sgnn (i1, · · · ,q, · · · , p, · · · , in) (1.16)

In words, the second property states that if two of the numbers are switched, the value of
the function is multiplied by−1. Also, in the case where n > 1 and {i1, · · · , in}= {1, · · · ,n}
so that every number from {1, · · · ,n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in)≡

(−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (1.17)

where n = iθ in the ordered list, (i1, · · · , in) .
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Proof: Define sign(x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1)≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in)≡ sign

(
∏
r<s

(is− ir)

)

This delivers either −1,1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as ( j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p,q} , jr = ir. See the following illustration

i1
1

i2
2 · · · ip

p · · · iq
q · · · in

n
i1
1

i2
2 · · · iq

p · · · ip
q · · · in

n
j1
1

j2
2 · · · jp

p · · · jq
q · · · jn

n

Then

sgnn ( j1, · · · , jn)≡ sign

(
∏
r<s

( js− jr)

)

= sign

(
both p,q
(ip− iq)

one of p,q

∏
p< j<q

(i j− iq) ∏
p< j<q

(ip− i j)
neither p nor q

∏
r<s,r,s/∈{p,q}

(is− ir)

)
The last product consists of the product of terms which were in ∏r<s (is− ir) while the
two products in the middle both introduce q− p− 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) .
Therefore, this switch introduced a minus sign and

sgnn ( j1, · · · , jn) =−sgnn (i1, · · · , in)

Now consider the last claim. In computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) there will
be the product of n−θ negative terms

(iθ+1−n) · · ·(in−n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) are those
which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms of the
form (n− i j) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) = (−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)

It is obvious that if there are repeats in the list the function gives 0. ■

Lemma 1.9.2 Every ordered list of distinct numbers from {1,2, · · · ,n} can be obtained
from every other ordered list of distinct numbers by a finite number of switches. Also, sgnn
is unique.
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Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n− 1
elements. Take two ordered lists of numbers, P1,P2. Make one switch in both to place n at
the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely many switches

in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to where it was in
P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 1.15 and
1.16, you could start with f (1, · · · ,n) = g(1, · · · ,n) = 1 and applying the same sequence
of switches, eventually arrive at f (i1, · · · , in) = g(i1, · · · , in) . If any numbers are repeated,
then 1.16 gives both functions are equal to zero for that ordered list. ■

Definition 1.9.3 Given an ordered list of distinct numbers from {1,2, · · · ,n} , say

(i1, · · · , in) ,

this ordered list is called a permutation. The symbol for all such permutations is Sn. The
number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1,2, · · · ,n} to {1,2, · · · ,n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

1.9.2 The Definition of the Determinant

Definition 1.9.4 Let f be a real valued function which has the set of ordered lists
of numbers from {1, · · · ,n} as its domain. Define

∑
(k1,··· ,kn)

f (k1 · · ·kn)

to be the sum of all the f (k1 · · ·kn) for all possible choices of ordered lists (k1, · · · ,kn) of
numbers of {1, · · · ,n} . For example,

∑
(k1,k2)

f (k1,k2) = f (1,2)+ f (2,1)+ f (1,1)+ f (2,2) .

Definition 1.9.5 Let (ai j) = A denote an n× n matrix. The determinant of A, de-
noted by det(A) is defined by

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·ankn

where the sum is taken over all ordered lists of numbers from {1, · · · ,n}. Note it suffices
to take the sum over only those ordered lists in which there are no repeats because if there
are, sgn(k1, · · · ,kn) = 0 and so that term contributes 0 to the sum.
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Let A be an n×n matrix A=(ai j) and let (r1, · · · ,rn) denote an ordered list of n numbers
from {1, · · · ,n}. Let A(r1, · · · ,rn) denote the matrix whose kth row is the rk row of the
matrix A. Thus

det(A(r1, · · · ,rn)) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (1.18)

and A(1, · · · ,n) = A.

Proposition 1.9.6 Let (r1, · · · ,rn) be an ordered list of numbers from

{1, · · · ,n}

Then

sgn(r1, · · · ,rn)det(A) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (1.19)

= det(A(r1, · · · ,rn)) . (1.20)

Proof: Let (1, · · · ,n) = (1, · · · ,r, · · ·s, · · · ,n) so r < s.

det(A(1, · · · ,r, · · · ,s, · · · ,n)) = (1.21)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kr, · · · ,ks, · · · ,kn)a1k1 · · ·arkr · · ·asks · · ·ankn ,

and renaming the variables, calling ks,kr and kr, ks, this equals

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,ks, · · · ,kr, · · · ,kn)a1k1 · · ·arks · · ·askr · · ·ankn

= ∑
(k1,··· ,kn)

−sgn

k1, · · · ,
These got switched︷ ︸︸ ︷

kr, · · · ,ks , · · · ,kn

a1k1 · · ·askr · · ·arks · · ·ankn

=−det(A(1, · · · ,s, · · · ,r, · · · ,n)) . (1.22)

Consequently,

det(A(1, · · · ,s, · · · ,r, · · · ,n)) =−det(A(1, · · · ,r, · · · ,s, · · · ,n)) =−det(A)

Now letting A(1, · · · ,s, · · · ,r, · · · ,n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det(A(r1, · · · ,rn)) = (−1)p det(A)

where it took p switches to obtain(r1, · · · ,rn) from (1, · · · ,n). By Lemma 1.9.1, this implies

det(A(r1, · · · ,rn)) = (−1)p det(A) = sgn(r1, · · · ,rn)det(A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · ,rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 1.21 -1.22 shows that det(A(r1, · · · ,rn)) = 0 and also sgn(r1, · · · ,rn) = 0 so
the formula holds in this case also. ■
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Observation 1.9.7 There are n! ordered lists of distinct numbers from

{1, · · · ,n}

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n−1 choices for the second. Thus there are n(n−1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · ,n} as
stated in the observation.

1.9.3 A Symmetric Definition
With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det(A) = det

(
AT
)
.

Corollary 1.9.8 The following formula for det(A) is valid.

det(A) =
1
n!
· ∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn . (1.23)

And also det
(
AT
)
= det(A) where AT is the transpose of A. (Recall that for AT =

(
aT

i j

)
,

aT
i j = a ji.)

Proof: From Proposition 1.9.6, if the ri are distinct,

det(A) = ∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

Summing over all ordered lists, (r1, · · · ,rn) where the ri are distinct, (If the ri are not
distinct, sgn(r1, · · · ,rn) = 0 and so there is no contribution to the sum.)

n!det(A) = ∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
■

Corollary 1.9.9 If two rows or two columns in an n× n matrix A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original ma-
trix. If A is an n× n matrix in which two rows are equal or two columns are equal then
det(A) = 0. Suppose the ith row of A equals

(xa1 + yb1, · · · ,xan + ybn)

Then
det(A) = xdet(A1)+ ydet(A2)

where the ith row of A1 is (a1, · · · ,an) and the ith row of A2 is (b1, · · · ,bn) , all other rows of
A1 and A2 coinciding with those of A. In other words, det is a linear function of each row
A. The same is true with the word “row” replaced with the word “column”.
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Proof: By Proposition 1.9.6 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 1.9.8 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det(A) = det
(
AT )=−det

(
AT

1
)
=−det(A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det(A) =−det(A) and so det(A) = 0.

It remains to verify the last assertion.

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·
(
xarki + ybrki

)
· · ·ankn

= x ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·arki · · ·ankn

+y ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·brki · · ·ankn ≡ xdet(A1)+ ydet(A2) .

The same is true of columns because det
(
AT
)
= det(A) and the rows of AT are the columns

of A. ■

1.9.4 Basic Properties of the Determinant

Definition 1.9.10 A vector, w, is a linear combination {v1, · · · ,vr} if there exist
scalars c1, · · ·cr such that w= ∑

r
k=1 ckvk. This is the same as saying

w ∈ span(v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 1.9.11 Suppose A is an n× n matrix and some column (row) is a linear
combination of r other columns (rows). Then det(A) = 0.

Proof: Let A =
(
a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Say ai = ∑ j ̸=i c ja j. Then
by Corollary 1.9.9, det(A) =

det
(
a1 · · · ∑ j ̸=i c ja j · · · an

)
= ∑

j ̸=i
c j det

(
a1 · · · a j · · · an

)
= 0

because each of these determinants in the sum has two equal rows. ■
Recall the following definition of matrix multiplication.

Definition 1.9.12 If A and B are n×n matrices, A= (ai j) and B= (bi j), AB= (ci j)
where ci j ≡ ∑

n
k=1 aikbk j.

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.
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Theorem 1.9.13 Let A and B be n×n matrices. Then det(AB) = det(A)det(B) .

Proof: Let ci j be the i jth entry of AB. Then by Proposition 1.9.6,

det(AB) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)c1k1 · · ·cnkn

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)

(
∑
r1

a1r1br1k1

)
· · ·

(
∑
rn

anrnbrnkn

)

= ∑
(r1··· ,rn)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)br1k1 · · ·brnkn (a1r1 · · ·anrn)

= ∑
(r1··· ,rn)

sgn(r1 · · ·rn)a1r1 · · ·anrn det(B) = det(A)det(B) .■

The Binet Cauchy formula is a generalization of the theorem which says the deter-
minant of a product is the product of the determinants. The situation is illustrated in the
following picture where A,B are matrices.

B A

Theorem 1.9.14 Let A be an n×m matrix with n≥ m and let B be a m×n matrix.
Also let Ai, i = 1, · · · ,C (n,m) be the m×m submatrices of A which are obtained by delet-
ing n−m rows and let Bi be the m×m submatrices of B which are obtained by deleting
corresponding n−m columns. Then

det(BA) =
C(n,m)

∑
k=1

det(Bk)det(Ak)

Proof: This follows from a computation. By Corollary 1.9.8 on Page 37, det(BA) =

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm)(BA)i1 j1 (BA)i2 j2 · · ·(BA)im jm =

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

n

∑
r1=1

Bi1r1Ar1 j1

n

∑
r2=1

Bi2r2 Ar2 j2 · · ·
n

∑
rm=1

BimrmArm jm

Now denote by Ik one of the subsets of {1, · · · ,n} which has m elements. Thus there are
C (n,m) of these.

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
∑

( j1··· jm)
sgn(i1 · · · im)sgn( j1 · · · jm) ·

Bi1r1 Ar1 j1Bi2r2Ar2 j2 · · ·BimrmArm jm
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=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m! ∑

(i1···im)
sgn(i1 · · · im)Bi1r1 Bi2r2 · · ·Bimrm ·

∑
( j1··· jm)

sgn( j1 · · · jm)Ar1 j1Ar2 j2 · · ·Arm jm

=
C(n,m)

∑
k=1

∑
{r1,··· ,rm}=Ik

1
m!

sgn(r1 · · ·rm)
2 det(Bk)det(Ak) =

C(n,m)

∑
k=1

det(Bk)det(Ak)

since there are m! ways of arranging the indices {r1, · · · ,rm}. ■

1.9.5 Expansion Using Cofactors

Lemma 1.9.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or
(

A 0
∗ a

)
(1.24)

where a is a number and A is an (n−1)× (n−1) matrix and ∗ denotes either a column
or a row having length n− 1 and the 0 denotes either a column or a row of length n− 1
consisting entirely of zeros. Then det(M) = adet(A) .

Proof: Denote M by (mi j) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while in
the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det(M)≡ ∑
(k1,··· ,kn)

sgnn (k1, · · · ,kn)m1k1 · · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · ,kn) then using the earlier
conventions used to prove Lemma 1.9.1, det(M) equals

∑
(k1,··· ,kn)

(−1)n−θ sgnn−1

(
k1, · · · ,kθ−1,

θ

kθ+1, · · · ,
n−1
kn

)
m1k1 · · ·mnkn

Now suppose the second case. Then if kn ̸= n, the term involving mnkn in the above expres-
sion equals zero. Therefore, the only terms which survive are those for which θ = n or in
other words, those for which kn = n. Therefore, the above expression reduces to

a ∑
(k1,··· ,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet(A) .

To get the assertion in the first case, use Corollary 1.9.8 to write

det(M) = det
(
MT )= det

((
AT 0
∗ a

))
= adet

(
AT )= adet(A) .■

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of
a determinant.
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Definition 1.9.16 Let A = (ai j) be an n× n matrix. Then a new matrix called the
cofactor matrix cof(A) is defined by cof(A) = (ci j) where to obtain ci j delete the ith row
and the jth column of A, take the determinant of the (n−1)× (n−1) matrix which results,
(This is called the i jth minor of A. ) and then multiply this number by (−1)i+ j. To make
the formulas easier to remember, cof(A)i j will denote the i jth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outra-
geous totally unjustified assertion was made that the same number would be obtained by
expanding the determinant along any row or column. The following theorem proves this
assertion.

Theorem 1.9.17 Let A be an n×n matrix where n≥ 2. Then

det(A) =
n

∑
j=1

ai j cof(A)i j =
n

∑
i=1

ai j cof(A)i j . (1.25)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · ,ain) be the ith row of A. Let B j be the matrix obtained from A by
leaving every row the same except the ith row which in B j equals (0, · · · ,0,ai j,0, · · · ,0) .
Then by Corollary 1.9.9,

det(A) =
n

∑
j=1

det(B j)

For example if

A =

 a b c
d e f
h i j


and i = 2, then

B1 =

 a b c
d 0 0
h i j

 ,B2 =

 a b c
0 e 0
h i j

 ,B3 =

 a b c
0 0 f
h i j


Denote by Ai j the (n−1)× (n−1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof(A)i j ≡ (−1)i+ j det
(
Ai j
)
. At this point, recall that from Proposition

1.9.6, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 1.9.15,

det(B j) = (−1)n− j (−1)n−i det
((

Ai j ∗
0 ai j

))
= (−1)i+ j det

((
Ai j ∗
0 ai j

))
= ai j cof(A)i j .

Therefore,

det(A) =
n

∑
j=1

ai j cof(A)i j
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which is the formula for expanding det(A) along the ith row. Also,

det(A) = det
(
AT )= n

∑
j=1

aT
i j cof

(
AT )

i j =
n

∑
j=1

a ji cof(A) ji

which is the formula for expanding det(A) along the ith column. ■

1.9.6 A Formula for the Inverse
Note that this gives an easy way to write a formula for the inverse of an n×n matrix. Recall
the definition of the inverse of a matrix in Definition 1.6.7 on Page 23.

Theorem 1.9.18 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =(
a−1

i j

)
where

a−1
i j = det(A)−1 cof(A) ji

for cof(A)i j the i jth cofactor of A.

Proof: By Theorem 1.9.17 and letting (air) = A, if det(A) ̸= 0,

n

∑
i=1

air cof(A)ir det(A)−1 = det(A)det(A)−1 = 1.

Now in the matrix A, replace the kth column with the rth column and then expand along the
kth column. This yields for k ̸= r,

n

∑
i=1

air cof(A)ik det(A)−1 = 0

because there are two equal columns by Corollary 1.9.9. Summarizing,

n

∑
i=1

air cof(A)ik det(A)−1 = δ rk.

Using the other formula in Theorem 1.9.17, and similar reasoning,

n

∑
j=1

ar j cof(A)k j det(A)−1 = δ rk

This proves that if det(A) ̸= 0, then A−1 exists with A−1 =
(

a−1
i j

)
, where

a−1
i j = cof(A) ji det(A)−1 .

Now suppose A−1 exists. Then by Theorem 1.9.13,

1 = det(I) = det
(
AA−1)= det(A)det

(
A−1)

so det(A) ̸= 0. ■
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.
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Corollary 1.9.19 Let A be an n×n matrix and suppose there exists an n×n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n×n matrix such
that AC = I, then A−1 exists and A−1 =C.

Proof: Since BA = I, Theorem 1.9.13 implies detBdetA = 1 and so detA ̸= 0. There-
fore from Theorem 1.9.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1)= BI = B.

The case where CA = I is handled similarly. ■
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n×n matrices.
Theorem 1.9.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

1.9.7 Cramer’s Rule

In case you are solving a system of equations, Ax= y for x, it follows that if A−1 exists,

x=
(
A−1A

)
x= A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n

∑
j=1

a−1
i j y j =

n

∑
j=1

1
det(A)

cof(A) ji y j.

By the formula for the expansion of a determinant along a column,

xi =
1

det(A)
det

 ∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·,yn)
T , and the

determinant of this modified matrix is taken and divided by det(A). This formula is known
as Cramer’s rule.

Definition 1.9.20 A matrix M, is upper triangular if Mi j = 0 whenever i > j. Thus
such a matrix equals zero below the main diagonal, the entries of the form Mii as shown.

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.



44 CHAPTER 1. REVIEW OF SOME LINEAR ALGEBRA

With this definition, here is a simple corollary of Theorem 1.9.17.

Corollary 1.9.21 Let M be an upper (lower) triangular matrix. Then det(M) is ob-
tained by taking the product of the entries on the main diagonal.

1.9.8 Rank of a Matrix

Definition 1.9.22 A submatrix of a matrix A is the rectangular array of numbers
obtained by deleting some rows and columns of A. Let A be an m× n matrix. The deter-
minant rank of the matrix equals r where r is the largest number such that some r× r
submatrix of A has a non zero determinant. The row rank is defined to be the dimension
of the span of the rows. The column rank is defined to be the dimension of the span of the
columns.

Theorem 1.9.23 If A, an m× n matrix has determinant rank r, then there exist r
rows of the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (ai j) equals r. Thus some r× r subma-
trix has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are

j1 < · · ·< jr

and the r rows whose indices are
i1 < · · ·< ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r+1)× (r+1) matrix

ai1 j1 · · · ai1 jr ai1 p
...

...
...

air j1 · · · air jr air p
al j1 · · · al jr al p


Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth row
is one of the chosen ones. The above matrix has determinant 0. This is because if p /∈
{ j1, · · · , jr} then the above would be a submatrix of A which is too large to have non zero
determinant. On the other hand, if p ∈ { j1, · · · , jr} then the above matrix has two columns
which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aik p. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with al p. This is given to be nonzero, it being the determinant of the matrix r× r matrix
in the upper left corner. Thus 0 = al pC+∑

r
k=1 Ckaik p which implies al p = ∑

r
k=1

−Ck
C aik p ≡

∑
r
k=1 mkaik p Since this is true for every p and since mk does not depend on p, this has shown

the lth row is a linear combination of the i1, i2, · · · , ir rows. ■

Corollary 1.9.24 The determinant rank equals the row rank.
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Proof: From Theorem 1.9.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so, it
follows from Theorem 1.9.23 that there exist p rows for p < r ≡ determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r× r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
4.2.3, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 1.9.11 the determinant
would be 0, a contradiction. ■

Corollary 1.9.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 1.9.24,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A. ■

The following theorem is of fundamental importance and ties together many of the
ideas presented above.

Theorem 1.9.26 Let A be an n×n matrix. Then the following are equivalent.

1. det(A) = 0.

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det(A) = 0. Then the determinant rank of A = r < n. Therefore, there
exist r columns such that every other column is a linear combination of these columns
by Theorem 1.9.23. In particular, it follows that for some m, the mth column is a linear
combination of all the others. Thus letting A =

(
a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars α i such that am =∑k ̸=m αkak. Now consider
the column vector, x≡

(
α1 · · · −1 · · · αn

)T . Then Ax = −am +∑k ̸=m αkak =

0. Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such
that ATx= 0. Taking the transpose of both sides yields xT A = 0T where the 0T is a 1×n
matrix or row vector. Now if Ay = x, then |x|2 = xT (Ay) =

(
xT A

)
y = 0y = 0 contrary

to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto. This
shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det(A) ̸= 0 but then from Theorem
1.9.18 A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax= y.
In fact x= A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). ■

Corollary 1.9.27 Let A be an n×n matrix. Then the following are equivalent.

1. det(A) ̸= 0.
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2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

1.9.9 An Identity of Cauchy

Theorem 1.9.28 Both the left and the right sides in the following yield the same
polynomial in the variables ai,bi for i≤ n.

∏
i, j

(ai +b j)

∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn
...

...
1

an+b1
· · · 1

an+bn

∣∣∣∣∣∣∣= ∏
j<i

(ai−a j)(bi−b j) . (1.26)

Proof: The theorem is true if n = 2. This follows from some computations. Suppose it
is true for n−1, n≥ 3.∣∣∣∣∣∣∣∣∣∣

1
a1+b1

1
a1+b2

· · · 1
a1+bn

...
... · · ·

...
1

an−1+b1
1

an−1+b2
1

an−1+bn
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

an−a1
(a1+b1)(b1+an)

an−a1
(a1+b2)(b2+an)

· · · an−a1
(a1+bn)(an+bn)

...
... · · ·

...
an−an−1

(an−1+b1)(an+b1)
an−an−1

(b2+an)(b2+an−1)
an−an−1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
Continuing to use the multilinear properties of determinants, this equals∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)(b1+an)

1
(a1+b2)(b2+an)

· · · 1
(a1+bn)(an+bn)

...
... · · ·

...
1

(an−1+b1)(an+b1)
1

(b2+an)(b2+an−1)
1

(an+bn)(bn+an−1)
1

an+b1
1

an+b2
· · · 1

an+bn

∣∣∣∣∣∣∣∣∣∣
n−1

∏
k=1

(an−ak)

and this equals ∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
(a1+bn)

...
... · · ·

...
1

(an−1+b1)
1

(b2+an−1)
1

(bn+an−1)

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

Now take −1 times the last column and add to each previous column. Thus it equals∣∣∣∣∣∣∣∣∣∣

bn−b1
(a1+b1)(a1+bn)

bn−b2
(a1+b2)(a1+bn)

· · · 1
(a1+bn)

...
... · · ·

...
bn−b1

(b1+an−1)(bn+an−1)
bn−b2

(b2+an−1)(bn+an−1)
1

(an−1+bn)

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)
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Now continue simplifying using the multilinear property of the determinant.∣∣∣∣∣∣∣∣∣∣

1
(a1+b1)

1
(a1+b2)

· · · 1
...

... · · ·
...

1
(b1+an−1)

1
(b2+an−1)

1
0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

Expanding along the bottom row, what has just resulted is∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn−1
... · · ·

...
1

an−1+b1
· · · 1

an−1+bn−1

∣∣∣∣∣∣∣∣
∏

n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

By induction this equals

∏ j<i≤n−1 (ai−a j)(bi−b j)

∏i, j≤n−1 (ai +b j)

∏
n−1
k=1 (an−ak)

∏
n
k=1 (an +bk)

∏
n−1
k=1 (bn−bk)

∏
n−1
k=1 (ak +bn)

=
∏ j<i≤n (ai−a j)(bi−b j)

∏i, j≤n (ai +b j)
■

1.10 The Cayley Hamilton Theorem
Definition 1.10.1 Let A be an n× n matrix. The characteristic polynomial is de-
fined as

qA (t)≡ det(tI−A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p(t) = tn +
an−1tn−1 + · · ·+a1t +a0, denote by p(A) the matrix defined by

p(A)≡ An +an−1An−1 + · · ·+a1A+a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra2. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 1.10.2 Suppose for all |λ | large enough,

A0 +A1λ + · · ·+Amλ
m = 0,

where the Ai are n×n matrices. Then each Ai = 0.

2A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time
later and a proof was given by Frobenius in 1878.
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Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ

−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. ■
With the lemma, here is a simple corollary.

Corollary 1.10.3 Let Ai and Bi be n×n matrices and suppose

A0 +A1λ + · · ·+Amλ
m = B0 +B1λ + · · ·+Bmλ

m

for all |λ | large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai,Bi then one can
substitute an n×n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. ■

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 1.10.4 Let A be an n×n matrix and let q(λ )≡ det(λ I−A) be the char-
acteristic polynomial. Then q(A) = 0.

Proof: Let C (λ ) equal the transpose of the cofactor matrix of (λ I−A) for |λ | large.
(If |λ | is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such
λ , (λ I−A)−1 exists.) Therefore, by Theorem 1.9.18

C (λ ) = q(λ )(λ I−A)−1 .

Say
q(λ ) = a0 +a1λ + · · ·+λ

n

Note that each entry in C (λ ) is a polynomial in λ having degree no more than n− 1. For
example, you might have something like

C (λ ) =

 λ
2−6λ +9 3−λ 0
2λ −6 λ

2−3λ 0
λ −1 λ −1 λ

2−3λ +2


=

 9 3 0
−6 0 0
−1 −1 2

+λ

 −6 −1 0
2 −3 0
1 1 −3

+λ
2

 1 0 0
0 1 0
0 0 1


Therefore, collecting the terms in the general case,

C (λ ) =C0 +C1λ + · · ·+Cn−1λ
n−1

for C j some n×n matrix. Then

C (λ )(λ I−A) =
(

C0 +C1λ + · · ·+Cn−1λ
n−1
)
(λ I−A) = q(λ ) I

Then multiplying out the middle term, it follows that for all |λ | sufficiently large,

a0I +a1Iλ + · · ·+ Iλ
n =C0λ +C1λ

2 + · · ·+Cn−1λ
n

−
[
C0A+C1Aλ + · · ·+Cn−1Aλ

n−1
]

=−C0A+(C0−C1A)λ +(C1−C2A)λ
2 + · · ·+(Cn−2−Cn−1A)λ

n−1 +Cn−1λ
n

Then, using Corollary 1.10.3, one can replace λ on both sides with A. Then the right side
is seen to equal 0. Hence the left side, q(A) I is also equal to 0. ■



Chapter 2

Some Basic Topics
This chapter contains basic definitions and a few fundamental theorems which will be used
throughout the book whenever convenient.

2.1 Basic Definitions
A set is a collection of things called elements of the set. For example, the set of integers,
the collection of signed whole numbers such as 1,2,−4, etc. This set whose existence
will be assumed is denoted by Z. Other sets could be the set of people in a family or the
set of donuts in a display case at the store. Sometimes parentheses, { } specify a set by
listing the things which are in the set between the parentheses. For example the set of
integers between−1 and 2, including these numbers could be denoted as {−1,0,1,2}. The
notation signifying x is an element of a set S, is written as x ∈ S. Thus, 1 ∈ {−1,0,1,2,3}.
Here are some axioms about sets. Axioms are statements which are accepted, not proved.

Axiom 2.1.1 Two sets are equal if and only if they have the same elements.

Axiom 2.1.2 To every set, A, and to every condition S (x) there corresponds a set, B, whose
elements are exactly those elements x of A for which S (x) holds.

Axiom 2.1.3 For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection. (You can take the union of a bunch of
sets.)

Axiom 2.1.4 The Cartesian product of a nonempty family of nonempty sets is nonempty.

Axiom 2.1.5 If A is a set there exists a set, P (A) such that P (A) is the set of all subsets
of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is merely
saying, for example, that {1,2,3} = {2,3,1} since these two sets have the same elements
in them. Similarly, it would seem you should be able to specify a new set from a given set
using some “condition” which can be used as a test to determine whether the element in
question is in the set. For example, the set of all integers which are multiples of 2. This set
could be specified as follows.

{x ∈ Z : x = 2y for some y ∈ Z} .

In this notation, the colon is read as “such that” and in this case the condition is being a
multiple of 2.

Another example of political interest, could be the set of all judges who are not judicial
activists. I think you can see this last is not a very precise condition since there is no way
to determine to everyone’s satisfaction whether a given judge is an activist. Also, just
because something is grammatically correct does not mean it makes any sense. For
example consider the following nonsense.

S = {x ∈ set of dogs : it is colder in the mountains than in the winter} .

49
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So what is a condition?
We will leave these sorts of considerations and assume our conditions make sense,

whatever that means. The axiom of unions states that for any collection of sets, there is a
set consisting of all the elements in each of the sets in the collection. Of course this is also
open to further consideration. What is a collection? Maybe it would be better to say “set
of sets” or, given a set whose elements are sets there exists a set whose elements consist
of exactly those things which are elements of at least one of these sets. If S is such a set
whose elements are sets,

∪{A : A ∈S } or ∪S

signify this union.
Something is in the Cartesian product of a set or “family” of sets if it consists of a single

thing taken from each set in the family. Thus (1,2,3) ∈ {1,4, .2}×{1,2,7}×{4,3,7,9}
because it consists of exactly one element from each of the sets which are separated by ×.
Also, this is the notation for the Cartesian product of finitely many sets. If S is a set whose
elements are sets, ∏A∈S A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of S . You may think the axiom of choice,
stating that the Cartesian product of a nonempty family of nonempty sets is nonempty,
is innocuous but there was a time when many mathematicians were ready to throw it out
because it implies things which are very hard to believe, things which never happen without
the axiom of choice.

A is a subset of B, written A ⊆ B, if every element of A is also an element of B. This
can also be written as B ⊇ A. A is a proper subset of B, written A ⊂ B or B ⊃ A if A is a
subset of B but A is not equal to B,A ̸= B. A∩B denotes the intersection of the two sets,
A and B and it means the set of elements of A which are also elements of B. The axiom
of specification shows this is a set. The empty set is the set which has no elements in it,
denoted as /0. A∪B denotes the union of the two sets, A and B and it means the set of all
elements which are in either of the sets. It is a set because of the axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set which is a set which contains the
one whose complement is being taken. Thus, the complement of A, denoted as AC ( or
more precisely as X \A) is a set obtained from using the axiom of specification to write

AC ≡ {x ∈ X : x /∈ A}

The symbol /∈ means: “is not an element of”. Note the axiom of specification takes place
relative to a given set. Without this universal set it makes no sense to use the axiom of
specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be understood
relative to some given set. For example, the set of all integers larger than 3. Or there
exists an integer larger than 7. Such statements have to do with a given set, in this case the
integers. Failure to have a reference set when quantifiers are used turns out to be illogical
even though such usage may be grammatically correct. Quantifiers are used often enough
that there are symbols for them. The symbol ∀ is read as “for all” or “for every” and the
symbol ∃ is read as “there exists”. Thus ∀∀∃∃ could mean for every upside down A there
exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of which
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is contained in some universal set, U . Then

∪
{

AC : A ∈S
}
= (∩{A : A ∈S })C

and
∩
{

AC : A ∈S
}
= (∪{A : A ∈S })C .

These laws follow directly from the definitions. Also following directly from the definitions
are:

Let S be a set of sets then

B∪∪{A : A ∈S }= ∪{B∪A : A ∈S } .

and: Let S be a set of sets show

B∩∪{A : A ∈S }= ∪{B∩A : A ∈S } .

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements of
S which are not elements of themselves, this from the axiom of specification. If A is an
element of itself, then it fails to qualify for inclusion in A. Therefore, it must not be an
element of itself. However, if this is so, it qualifies for inclusion in A so it is an element of
itself and so this can’t be true either. Thus the most basic of conditions you could imagine,
that of being an element of, is meaningless and so allowing such a set causes the whole
theory to be meaningless. The solution is to not allow a universal set. As mentioned by
Halmos in Naive set theory, “Nothing contains everything”. Always beware of statements
involving quantifiers wherever they occur, even this one. This little observation described
above is due to Bertrand Russell and is called Russell’s paradox.

2.2 The Schroder Bernstein Theorem
It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the concept of a function.

Definition 2.2.1 Let X and Y be sets.

X×Y ≡ {(x,y) : x ∈ X and y ∈ Y}

A relation is defined to be a subset of X ×Y . A function f , also called a mapping, is a
relation which has the property that if (x,y) and (x,y1) are both elements of the f , then
y = y1. The domain of f is defined as

D( f )≡ {x : (x,y) ∈ f} ,

written as f : D( f )→ Y . Another notation which is used is the following

f−1 (y)≡ {x ∈ D( f ) : f (x) = y}

This is called the inverse image.
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It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f (x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y,denoted as f (x) while the
name of the function is f . “mapping” is often a noun meaning function. However, it also
is a verb as in “ f is mapping A to B ”. That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y . However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem.

Theorem 2.2.2 Let f : X →Y and g : Y → X be two functions. Then there exist sets
A,B,C,D, such that

A∪B = X , C∪D = Y, A∩B = /0, C∩D = /0,

f (A) =C, g(D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A

D

C = f (A)

YX

f

g

Proof:Consider the empty set, /0 ⊆ X . If y ∈ Y \ f ( /0), then g(y) /∈ /0 because /0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A0 ⊆ X
satisfies P if whenever y ∈ Y \ f (A0) , g(y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A . If y ∈Y \ f (A), then for each A0 ∈A , y ∈Y \ f (A0) and so g(y) /∈ A0. Since
g(y) /∈ A0 for all A0 ∈A , it follows g(y) /∈ A. Hence A satisfies P and is the largest subset
of X which does so. Now define

C ≡ f (A) , D≡ Y \C, B≡ X \A.

It only remains to verify that g(D) = B. It was just shown that g(D)⊆ B.
Suppose x ∈ B = X \ A. Then A∪ {x} does not satisfy P and so there exists y ∈

Y \ f (A∪{x}) ⊆ D such that g(y) ∈ A∪{x} . But y /∈ f (A) and so since A satisfies P , it
follows g(y) /∈ A. Hence g(y) = x and so x ∈ g(D). Hence g(D) = B. ■

Theorem 2.2.3 (Schroder Bernstein) If f : X → Y and g : Y → X are one to one,
then there exists h : X → Y which is one to one and onto.
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Proof:Let A,B,C,D be the sets of Theorem2.2.2 and define

h(x)≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping. ■
Recall that the Cartesian product may be considered as the collection of choice func-

tions.

Definition 2.2.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice
function written as

f ∈∏
i∈I

Xi

if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi ̸= /0 for each i ∈ I, for I a set, then ∏i∈I Xi ̸= /0 .
Sometimes the two functions, f and g are onto but not one to one. It turns out that with

the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 2.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists h : X → Y
which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ̸= /0. Therefore, by the axiom of
choice, there exists f−1

0 ∈ ∏y∈Y f−1 (y) which is the same as saying that for each y ∈ Y ,
f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X . Then f−1
0 is one to

one because if f−1
0 (y1) = f−1

0 (y2), then y1 = f
(

f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2. Similarly

g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists h : X → Y

which is one to one and onto. ■

Definition 2.2.6 A set S, is finite if there exists a natural number n and a map θ

which maps {1, · · · ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map θ mapping N one to one and onto S.(When θ maps a set A
to a set B, this will be written as θ : A→ B in the future.) Here N≡ {1,2, · · ·}, the natural
numbers. S is at most countable if there exists a map θ : N→S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 2.2.7 If X and Y are both at most countable, then X ×Y is also at most
countable. If either X or Y is countable, then X×Y is also countable.

Proof: It is given that there exists a mapping η :N→ X which is onto. Define η (i)≡ xi
and consider X as the set {x1,x2,x3, · · ·}. Similarly, consider Y as the set {y1,y2,y3, · · ·}. It
follows the elements of X×Y are included in the following rectangular array.

(x1,y1) (x1,y2) (x1,y3) · · · ← Those which have x1 in first slot.
(x2,y1) (x2,y2) (x2,y3) · · · ← Those which have x2 in first slot.
(x3,y1) (x3,y2) (x3,y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.
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Follow a path through this array as follows.

(x1,y1) → (x1,y2) (x1,y3) →
↙ ↗

(x2,y1) (x2,y2)
↓ ↗

(x3,y1)

Thus the first element of X×Y is (x1,y1), the second element of X×Y is (x1,y2), the third
element of X ×Y is (x2,y1) etc. This assigns a number from N to each element of X ×Y.
Thus X×Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists α : N→ X which is one to one and onto. Let β : X ×Y → N be defined
by β ((x,y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a function from
N onto X ×Y . Therefore, by Corollary 2.2.5, there exists a one to one and onto mapping
from X×Y to N. ■

Theorem 2.2.8 If X and Y are at most countable, then X ∪Y is at most countable.
If either X or Y are countable, then X ∪Y is countable.

Proof:As in the preceding theorem,

X = {x1,x2,x3, · · ·}

and
Y = {y1,y2,y3, · · ·} .

Consider the following array consisting of X ∪Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪Y is x1, the second is x2 the third is y1 the fourth is y2 etc.
Consider the second claim. By the first part, there is a map fromN onto X×Y . Suppose

without loss of generality that X is countable and α : N→ X is one to one and onto. Then
define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X ×Y onto N and this
shows there exist two onto maps, one mapping X ∪Y onto N and the other mapping N onto
X ∪Y . Then Corollary 2.2.5 yields the conclusion. ■

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable.

2.3 Equivalence Relations
There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.
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Definition 2.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies the
following axioms.

1. x∼ x for all x ∈ S. (Reflexive)

2. If x∼ y then y∼ x. (Symmetric)

3. If x∼ y and y∼ z, then x∼ z. (Transitive)

Definition 2.3.2 [x] denotes the set of all elements of S which are equivalent to x
and [x] is called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.

Theorem 2.3.3 Let ∼ be an equivalence relation defined on a set, S and let H
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x∼ y and [x] = [y] or it is not true that x∼ y and [x]∩ [y] = /0.

2.4 sup and inf
It is assumed in all that is done that R is complete. There are two ways to describe com-
pleteness of R. One is to say that every bounded set has a least upper bound and a greatest
lower bound. The other is to say that every Cauchy sequence converges. These two equiv-
alent notions of completeness will be taken as given. Cauchy sequences are discussed a
little later.

The symbol, Fwill mean eitherR orC. The symbol [−∞,∞] will mean all real numbers
along with +∞ and −∞ which are points which we pretend are at the right and left ends of
the real line respectively. The inclusion of these make believe points makes the statement
of certain theorems less trouble.

Definition 2.4.1 For A ⊆ [−∞,∞] ,A ̸= /0 supA is defined as the least upper bound
in case A is bounded above by a real number and equals ∞ if A is not bounded above.
Similarly infA is defined to equal the greatest lower bound in case A is bounded below by
a real number and equals −∞ in case A is not bounded below.

Lemma 2.4.2 If {An} is an increasing sequence in [−∞,∞], then

sup{An : n ∈ N}= lim
n→∞

An.

Similarly, if {An} is decreasing, then

inf{An : n ∈ N}= lim
n→∞

An.

Proof: Let sup({An : n ∈ N}) = r. In the first case, suppose r < ∞. Then letting ε > 0
be given, there exists n such that An ∈ (r− ε,r]. Since {An} is increasing, it follows if
m > n, then r− ε < An ≤ Am ≤ r and so limn→∞ An = r as claimed. In the case where
r = ∞, then if a is a real number, there exists n such that An > a. Since {Ak} is increasing,
it follows that if m > n, Am > a. But this is what is meant by limn→∞ An = ∞. The other
case is that r =−∞. But in this case, An =−∞ for all n and so limn→∞ An =−∞. The case
where An is decreasing is entirely similar. ■
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2.5 Double Series
Double series are of the form ∑

∞
k=m ∑

∞
j=m a jk ≡∑

∞
k=m

(
∑

∞
j=m a jk

)
. In other words, first sum

on j yielding something which depends on k and then sum these. The major consideration
for these double series is the question of when

∞

∑
k=m

∞

∑
j=m

a jk =
∞

∑
j=m

∞

∑
k=m

a jk

In other words, when does it make no difference which subscript is summed over first?
In the case of finite sums there is no issue here. You can always write ∑

M
k=m ∑

N
j=m a jk =

∑
N
j=m ∑

M
k=m a jk because addition is commutative. However, there are limits involved with

infinite sums and the interchange in order of summation involves taking limits in a different
order. Therefore, it is not always true that it is permissible to interchange the two sums. A
general rule of thumb is this: If something involves changing the order in which two limits
are taken, you may not do it without agonizing over the question. In general, limits foul
up algebra and also introduce things which are counter intuitive. Here is an example. This
example is a little technical. It is placed here just to prove conclusively there is a question
which needs to be considered.

Example 2.5.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.

...
0 0 c 0 −c
0 c 0 −c 0
b 0 −c 0 0
0 a 0 0 0

· · ·

The a,b,c are the values of amn. Thus ann = 0 for all n≥ 1, a21 = a,a12 = b,am(m+1) =−c
whenever m > 1, and am(m−1) = c whenever m > 2. The numbers next to the point are the
values of amn. You see ann = 0 for all n, a21 = a,a12 = b,amn = c for (m,n) on the line
y = 1+ x whenever m > 1, and amn = −c for all (m,n) on the line y = x− 1 whenever
m > 2.

Then ∑
∞
m=1 amn = a if n = 1, ∑

∞
m=1 amn = b− c if n = 2 and if n > 2,∑∞

m=1 amn = 0.
Therefore, ∑

∞
n=1 ∑

∞
m=1 amn = a+b−c. Next observe that ∑

∞
n=1 amn = b if m= 1,∑∞

n=1 amn =
a+ c if m = 2, and ∑

∞
n=1 amn = 0 if m > 2. Therefore, ∑

∞
m=1 ∑

∞
n=1 amn = b+ a+ c and so

the two sums are different. Moreover, you can see that by assigning different values of a,b,
and c, you can get an example for any two different numbers desired.

It turns out that if ai j ≥ 0 for all i, j, then you can always interchange the order of
summation. This is shown next and is based on the following lemma. First, some notation
should be discussed.

Definition 2.5.2 Let f (a,b)∈ [−∞,∞] for a∈A and b∈B where A,B are sets which
means that f (a,b) is either a number, ∞, or −∞. The symbol, +∞ is interpreted as a point
out at the end of the number line which is larger than every real number. Of course there is
no such number. That is why it is called ∞. The symbol, −∞ is interpreted similarly. Then
supa∈A f (a,b) means sup(Sb) where Sb ≡ { f (a,b) : a ∈ A} .
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Unlike limits, you can take the sup in different orders.

Lemma 2.5.3 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .

Proof: Note that for all a,b, f (a,b) ≤ supb∈B supa∈A f (a,b) and therefore, for all a,
supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore,

sup
a∈A

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Repeat the same argument interchanging a and b, to get the conclusion of the lemma. ■

Theorem 2.5.4 Let ai j ≥ 0. Then ∑
∞
i=1 ∑

∞
j=1 ai j = ∑

∞
j=1 ∑

∞
i=1 ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Next
note that

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j

because for all j,∑∞
i=r ai j ≥ ∑

n
i=r ai j.Therefore,

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

m

∑
j=r

n

∑
i=r

ai j

= sup
n

lim
m→∞

n

∑
i=r

m

∑
j=r

ai j = sup
n

n

∑
i=r

lim
m→∞

m

∑
j=r

ai j

= sup
n

n

∑
i=r

∞

∑
j=r

ai j = lim
n→∞

n

∑
i=r

∞

∑
j=r

ai j =
∞

∑
i=r

∞

∑
j=r

ai j

Interchanging the i and j in the above argument proves the theorem. ■

2.6 lim sup and lim inf
Sometimes the limit of a sequence does not exist. For example, if an = (−1)n , then
limn→∞ an does not exist. This is because the terms of the sequence are a distance of 1
apart. Therefore there can’t exist a single number such that all the terms of the sequence
are ultimately within 1/4 of that number. The nice thing about limsup and liminf is that
they always exist. First here is a simple lemma and definition. First review the definition
of inf and sup on Page 55 along with the simple properties of these things.

Definition 2.6.1 Denote by [−∞,∞] the real line along with symbols ∞ and −∞. It
is understood that ∞ is larger than every real number and −∞ is smaller than every real
number. Then if {An} is an increasing sequence of points of [−∞,∞] , limn→∞ An equals ∞ if
the only upper bound of the set {An} is ∞. If {An} is bounded above by a real number, then
limn→∞ An is defined in the usual way and equals the least upper bound of {An}. If {An} is
a decreasing sequence of points of [−∞,∞] , limn→∞ An equals −∞ if the only lower bound
of the sequence {An} is −∞. If {An} is bounded below by a real number, then limn→∞ An is
defined in the usual way and equals the greatest lower bound of {An}. More simply, if {An}
is increasing,limn→∞ An ≡ sup{An} and if {An} is decreasing then limn→∞ An ≡ inf{An} .
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Lemma 2.6.2 Let {an} be a sequence of real numbers and let Un ≡ sup{ak : k ≥ n} .
Then {Un} is a decreasing sequence. Also if Ln ≡ inf{ak : k ≥ n} , then {Ln} is an increas-
ing sequence. Therefore, limn→∞ Ln and limn→∞ Un both exist.

Proof: Let Wn be an upper bound for {ak : k ≥ n} . Then since these sets are getting
smaller, it follows that for m < n, Wm is an upper bound for {ak : k ≥ n} . In particular if
Wm =Um, then Um is an upper bound for {ak : k ≥ n} and so Um is at least as large as Un,
the least upper bound for {ak : k ≥ n} . The claim that {Ln} is decreasing is similar. ■

From the lemma, the following definition makes sense.

Definition 2.6.3 Let {an} be any sequence of points of [−∞,∞]

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n}

lim inf
n→∞

an ≡ lim
n→∞

inf{ak : k ≥ n} .

Theorem 2.6.4 Suppose {an} is a sequence of real numbers and also that

lim sup
n→∞

an, lim inf
n→∞

an

are both real numbers. Then limn→∞ an exists if and only if the two numbers are equal and
in this case,

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

Proof: First note that sup{ak : k ≥ n} ≥ inf{ak : k ≥ n} and so,

lim sup
n→∞

an ≡ lim
n→∞

sup{ak : k ≥ n} ≥ lim
n→∞

inf{ak : k ≥ n} ≡ lim inf
n→∞

an.

Suppose first that limn→∞ an exists and is a real number a. Then from the definition of a
limit, there exists N corresponding to ε/6 in the definition. Hence, if m,n≥ N, then

|an−am| ≤ |an−a|+ |a−an|<
ε

6
+

ε

6
=

ε

3
.

From the definition of sup{ak : k ≥ N} , there exists n1 ≥ N such that sup{ak : k ≥ N} ≤
an1 + ε/3. Similarly, there exists n2 ≥ N such that inf{ak : k ≥ N} ≥ an2 − ε/3. It follows
that

sup{ak : k ≥ N}− inf{ak : k ≥ N} ≤ |an1 −an2 |+
2ε

3
< ε.

Since the sequence, {sup{ak : k ≥ N}}∞

N=1 is decreasing and {inf{ak : k ≥ N}}∞

N=1 is in-
creasing, it follows that

0≤ lim
N→∞

sup{ak : k ≥ N}− lim
N→∞

inf{ak : k ≥ N} ≤ ε

Since ε is arbitrary, this shows

lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N} (2.1)
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Next suppose 2.1 and both equal a ∈ R. Then

lim
N→∞

(sup{ak : k ≥ N}− inf{ak : k ≥ N}) = 0

Since sup{ak : k ≥ N}≥ inf{ak : k ≥ N} it follows that for every ε > 0, there exists N such
that

sup{ak : k ≥ N}− inf{ak : k ≥ N}< ε,

and for every N,
inf{ak : k ≥ N} ≤ a≤ sup{ak : k ≥ N}

Thus if n≥ N, |a−an|< ε which implies that limn→∞ an = a. In case

a = ∞ = lim
N→∞

sup{ak : k ≥ N}= lim
N→∞

inf{ak : k ≥ N}

then if r ∈ R is given, there exists N such that inf{ak : k ≥ N} > r which is to say that
limn→∞ an = ∞. The case where a =−∞ is similar except you use sup{ak : k ≥ N}. ■

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.

Theorem 2.6.5 Suppose {an} is a sequence of points of [−∞,∞] . Also define λ =
limsupn→∞ an. Then if b > λ , it follows there exists N such that whenever n≥ N,an ≤ b.If
c < λ , then an > c for infinitely many values of n. Let γ = liminfn→∞ an.Then if d < γ,
it follows there exists N such that whenever n ≥ N,an ≥ d. If e > γ, it follows an < e for
infinitely many values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.

Proposition 2.6.6 Let limn→∞ an = a > 0. Then limsupn→∞ anbn = a limsupn→∞ bn.

Proof: This follows from the definition. Let λ n = sup{akbk : k ≥ n} . For all n large
enough, an > a− ε where ε is small enough that a− ε > 0. Therefore,

λ n ≥ sup{bk : k ≥ n}(a− ε)

for all n large enough. Then

lim sup
n→∞

anbn = lim
n→∞

λ n ≡ lim sup
n→∞

anbn ≥ lim
n→∞

(sup{bk : k ≥ n}(a− ε))

= (a− ε) lim sup
n→∞

bn

Similar reasoning shows limsupn→∞ anbn ≤ (a+ ε) limsupn→∞ bn. Now since ε > 0 is
arbitrary, the conclusion follows. ■

2.7 Nested Interval Lemma
The nested interval lemma is a simple and important lemma which is used later quite a bit.

Lemma 2.7.1 Let [ak,bk]⊇ [ak+1,bk+1] for all k = 1,2,3, · · · . Then there exists a point
p in ∩∞

k=1 [ak,bk]. If limk→∞ (bk−ak) = 0, then there is only one such point
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Proof: We note that for any k, l,ak ≤ bl . Here is why. If k ≤ l, then ak ≤ al ≤ bl . If
k > l, then bl ≥ bk ≥ ak. It follows that for each l, supk ak ≤ bl . Hence supk ak is a lower
bound to the set of all bl and so it is no larger than the greatest lower bound. It follows
that supk ak ≤ infl bl . Pick x ∈ [supk ak, infl bl ]. Then for every k,ak ≤ x ≤ bk. Hence
x ∈ ∩∞

k=1 [ak,bk] .
To see the last claim, if q is another point in all the intervals, then both p and q are in

[ak,bk] and so |p−q| ≤ (bk−ak)< ε if k is large enough. Since ε is arbitrary, p = q. ■

2.8 The Hausdorff Maximal Theorem
This major theorem, or something like it is either absolutely essential or extremely conve-
nient. First is the definition of what is meant by a partial order.

Definition 2.8.1 A nonempty set F is called a partially ordered set if it has a partial
order denoted by ≺. This means it satisfies the following. If x ≺ y and y ≺ z, then x ≺ z.
Also x≺ x. It is like⊆ on the set of all subsets of a given set. It is not the case that given two
elements of F that they are related. In other words, you cannot conclude that either x≺ y
or y ≺ x. A chain, denoted by C ⊆F has the property that it is totally ordered meaning
that if x,y ∈ C , either x≺ y or y≺ x. A maximal chain is a chain C which has the property
that there is no strictly larger chain. In other words, if x ∈ F\∪C , then C∪{x} is no
longer a chain.

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show this cannot happen. The axiom of choice
is used in choosing the xC right at the beginning of the argument.

Theorem 2.8.2 Let F be a nonempty partially ordered set with order≺. Then there
exists a maximal chain.

Proof: Suppose not. Then for C a chain, let θC denote C ∪{xC } . Thus for C a chain,
θC is a larger chain which has exactly one more element of F . Since F ̸= /0, pick x0 ∈
F . Note that {x0} is a chain. Let X be the set of all chains C such that x0 ∈ ∪C . Thus
X contains {x0}. Call two chains comparable if one is a subset of the other. Also, if S
is a nonempty subset of F in which all chains are comparable, then ∪S is also a chain.
From now on S will always refer to a nonempty set of chains in which any pair are
comparable. Then summarizing,

1. x0 ∈ ∪C for all C ∈X .

2. {x0} ∈X

3. If C ∈X then θC ∈X .

4. If S ⊆X then ∪S ∈X .

A subset Y of X will be called a “tower” if Y satisfies 1.) - 4.). Let Y0 be the
intersection of all towers. Then Y0 is also a tower, the smallest one. Then the next claim
might seem to be so because if not, Y0 would not be the smallest tower.

Claim 1: If C0 ∈ Y0 is comparable to every chain C ∈ Y0, then if C0 ⊊ C , it must be
the case that θC0 ⊆ C . In other words, xC0 ∈ ∪C . The symbol ⊊ indicates proper subset.
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This is done by considering a set B ⊆ Y0 consisting of D which acts like C in the
above and showing that it actually equals Y0 because it is a tower.

Proof of Claim 1: Consider B ≡
{
D ∈ Y0 : D ⊆ C0 or xC0 ∈ ∪D

}
. Let Y1 ≡Y0∩B.

I want to argue that Y1 is a tower. By definition all chains of Y1 contain x0 in their unions.
If D ∈ Y1, is θD ∈ Y1? If S ⊆ Y , is ∪S ∈ Y1? Is {x0} ∈B?
{x0} cannot properly contain C0 since x0 ∈ ∪C0. Therefore, C0 ⊇ {x0} so {x0} ∈B.
If S ⊆ Y1, and D ≡ ∪S , is D ∈ Y1? Since Y0 is a tower, D is comparable to C0.

If D ⊆ C0, then D is in B. Otherwise D ⊋ C0 and in this case, why is D in B? Why is
xC0 ∈ ∪D? The chains of S are in B so one of them, called C̃ must properly contain C0

and so xC0 ∈ ∪C̃ ⊆ ∪D . Therefore, D ∈B∩Y0 = Y1. 4.) holds. Two cases remain, to
show that Y1 satisfies 3.).

case 1: D ⊋ C0. Then by definition of B, xC0 ∈ ∪D and so xC0 ∈ ∪θD so θD ∈ Y1.
case 2: D ⊆ C0. θD ∈ Y0 so θD is comparable to C0. First suppose θD ⊋ C0. Thus

D ⊆ C0 ⊊ D ∪{xD} . If x ∈ C0 and x is not in D then D ∪{x} ⊆ C0 ⊊ D ∪{xD}. This
is impossible. Consider x. Thus in this case that θD ⊋ C0, D = C0. It follows that
xD = xC0 ∈ ∪θC0 = ∪θD and so θD ∈ Y1. The other case is that θD ⊆ C0 so θD ∈B
by definition. This shows 3.) so Y1 is a tower and must equal Y0.

Claim 2: Any two chains in Y0 are comparable.
Proof of Claim 2: Let Y1 consist of all chains of Y0 which are comparable to every

chain of Y0. {x0} is in Y1 by definition. All chains of Y0 have x0 in their union. If
S ⊆Y1, is ∪S ∈Y1? Given D ∈Y0 either every chain of S is contained in D or at least
one contains D . Either way D is comparable to ∪S so ∪S ∈ Y1. It remains to show 3.).
Let C ∈ Y1 and D ∈ Y0. Since C is comparable to all chains in Y0, it follows from Claim
1 either C ⊊ D when xC ∈ ∪D and θC ⊆ D or C ⊇ D when θC ⊇ D . Hence Y1 = Y0
because Y0 is as small as possible.

Since every pair of chains in Y0 are comparable and Y0 is a tower, it follows that
∪Y0 ∈ Y0 so ∪Y0 is a chain. However, θ ∪Y0 is a chain which properly contains ∪Y0
and since Y0 is a tower, θ ∪Y0 ∈ Y0. Thus ∪(θ ∪Y0) ⊋ ∪(∪Y0) ⊇ ∪(θ ∪Y0) which is
a contradiction. Therefore, for some chain C it is impossible to obtain the xC described
above and so, this C is a maximal chain. ■

If X is a nonempty set, ≤ is an order on X if

x≤ x,
either x≤ y or y≤ x

if x≤ y and y≤ z then x≤ z.

and≤ is a well order if (X ,≤) if every nonempty subset of X has a smallest element. More
precisely, if S ̸= /0 and S ⊆ X then there exists an x ∈ S such that x ≤ y for all y ∈ S. A
familiar example of a well-ordered set is the natural numbers.

Lemma 2.8.3 The Hausdorff maximal principle implies every nonempty set can be well-
ordered.

Proof: Let X be a nonempty set and let a ∈ X . Then {a} is a well-ordered subset of X .
Let F = {S ⊆ X : there exists a well order for S}. Thus F ̸= /0. For S1, S2 ∈F , define
S1 ≺ S2 if S1 ⊆ S2 and there exists a well order for S2,≤2 such that (S2,≤2) is well-ordered
and if y ∈ S2 \ S1 then x ≤2 y for all x ∈ S1, and if ≤1is the well order of S1 then the two
orders are consistent on S1. Then observe that ≺ is a partial order on F . By the Hausdorff
maximal principle, let C be a maximal chain in F and let X∞ ≡ ∪C . Define an order, ≤,
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on X∞ as follows. If x, y are elements of X∞, pick S ∈C such that x, y are both in S. Then if
≤S is the order on S, let x≤ y if and only if x≤S y. This definition is well defined because
of the definition of the order, ≺. Now let U be any nonempty subset of X∞. Then S∩U ̸= /0
for some S ∈ C . Because of the definition of ≤, if y ∈ S2 \ S1, Si ∈ C , then x ≤ y for all
x ∈ S1. Thus, if y ∈ X∞ \ S then x ≤ y for all x ∈ S and so the smallest element of S∩U
exists and is the smallest element in U . Therefore X∞ is well-ordered. Now suppose there
exists z ∈ X \X∞. Define the following order, ≤1, on X∞∪{z}.

x≤1 y if and only if x≤ y whenever x,y ∈ X∞

x≤1 z whenever x ∈ X∞.

Then let C̃ = {S ∈ C or X∞∪{z}}. Then C̃ is a strictly larger chain than C contradicting
maximality of C . Thus X \X∞ = /0 and this shows X is well-ordered by ≤. ■

With these two lemmas the main result follows.

Theorem 2.8.4 The following are equivalent.

The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.

Proof: It remains to show that the well-ordering principle implies the axiom of choice.
Let I be a nonempty set and let Xi be a nonempty set for each i ∈ I. Let X = ∪{Xi : i ∈ I}
and well order X . Let f (i) be the smallest element of Xi. Then f ∈∏i∈I Xi. ■

The book by Hewitt and Stromberg [23] has more equivalences.

2.9 Exercises
1. Zorn’s lemma says that if you have a nonempty partially ordered set F and every

chain C has an upper bound, then there is a maximal element in F , some x such that
if x≺ y then x = y. Show this is equivalent to the Hausdorff maximal principle.

2. A Hamel basis is a set of vectors B in a vector space X such that every element of X
can be written in a unique way as a finite linear combination of vectors of B. Show
every vector space has a Hamel basis. In fact, these are not used much outside of
finite dimensional settings because it can be shown that in every complete normed
linear space which is not finite dimensional, the Hamel basis must be uncountable
but it is nice to know they exist.



Chapter 3

Metric Spaces
3.1 Open and Closed Sets, Sequences, Limit Points

It is most efficient to discus things in terms of abstract metric spaces to begin with.

Definition 3.1.1 A non empty set X is called a metric space if there is a function
d : X×X → [0,∞) which satisfies the following axioms.

1. d (x,y) = d (y,x)

2. d (x,y)≥ 0 and equals 0 if and only if x = y

3. d (x,y)+d (y,z)≥ d (x,z)

This function d is called the metric. We often refer to it as the distance also.

Definition 3.1.2 An open ball, denoted as B(x,r) is defined as follows.

B(x,r)≡ {y : d (x,y)< r}

A set U is said to be open if whenever x ∈ U, it follows that there is r > 0 such that
B(x,r) ⊆U. More generally, a point x is said to be an interior point of U if there exists
such a ball. In words, an open set is one for which every point is an interior point.

For example, you could have X be a subset of R and d (x,y) = |x− y|.
Then the first thing to show is the following.

Proposition 3.1.3 An open ball is an open set.

Proof: Suppose y ∈ B(x,r) . We need to verify that y is an interior point of B(x,r). Let
δ = r−d (x,y) . Then if z ∈ B(y,δ ) , it follows that

d (z,x)≤ d (z,y)+d (y,x)< δ +d (y,x) = r−d (x,y)+d (y,x) = r

Thus y ∈ B(y,δ )⊆ B(x,r). ■

Definition 3.1.4 Let S be a nonempty subset of a metric space. Then p is a limit
point (accumulation point) of S if for every r > 0 there exists a point different than p in
B(p,r)∩S. Sometimes people denote the set of limit points as S′.

The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 3.1.5 A point x is a limit point of the nonempty set A if and only if every
B(x,r) contains infinitely many points of A.

63
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Proof: ⇐ is obvious. Consider ⇒ . Let x be a limit point. Let r1 = 1. Then B(x,r1)
contains a1 ̸= x. If {a1, · · · ,an} have been chosen none equal to x and with no repeats in
the list, let 0 < rn < min

( 1
n ,min{d (ai,x) , i = 1,2, · · ·n}

)
. Then let an+1 ∈ B(x,rn) . Thus

every B(x,r) contains B(x,rn) for all n large enough and hence it contains ak for k ≥ n
where the ak are distinct, none equal to x. ■

A related idea is the notion of the limit of a sequence. Recall that a sequence is really
just a mapping from N to X . We write them as {xn} or {xn}∞

n=1 if we want to emphasize
the values of n. Then the following definition is what it means for a sequence to converge.

Definition 3.1.6 We say that x= limn→∞ xn when for every ε > 0 there exists N such
that if n≥ N, then

d (x,xn)< ε

Often we write xn→ x for short. This is equivalent to saying

lim
n→∞

d (x,xn) = 0.

Proposition 3.1.7 The limit is well defined. That is, if x,x′ are both limits of a sequence,
then x = x′.

Proof: From the definition, there exist N,N′ such that if n≥N, then d (x,xn)< ε/2 and
if n≥ N′, then d (x,xn)< ε/2. Then let M ≥max(N,N′) . Let n > M. Then

d
(
x,x′
)
≤ d (x,xn)+d

(
xn,x′

)
<

ε

2
+

ε

2
= ε

Since ε is arbitrary, this shows that x = x′ because d (x,x′) = 0. ■
Next there is an important theorem about limit points and convergent sequences.

Theorem 3.1.8 Let S ̸= /0. Then p is a limit point of S if and only if there exists a
sequence of distinct points of S,{xn} none of which equal p such that limn→∞ xn = p.

Proof: =⇒ Suppose p is a limit point. Why does there exist the promissed convergent
sequence? Let x1 ∈B(p,1)∩S such that x1 ̸= p. If x1, · · · ,xn have been chosen, let xn+1 ̸= p
be in B(p,δ n+1)∩S where

δ n+1 = min
{

1
n+1

,d (xi, p) , i = 1,2, · · · ,n
}
.

Then this constructs the necessary convergent sequence.
⇐= Conversely, if such a sequence {xn} exists, then for every r > 0, B(p,r) contains

xn ∈ S for all n large enough. Hence, p is a limit point because none of these xn are equal
to p. ■

Definition 3.1.9 A set H is closed means HC is open.

Note that this says that the complement of an open set is closed. If V is open, then the
complement of its complement is itself. Thus

(
VC
)C

=V an open set. Hence VC is closed.
Then the following theorem gives the relationship between closed sets and limit points.

Theorem 3.1.10 A set H is closed if and only if it contains all of its limit points.
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Proof: =⇒ Let H be closed and let p be a limit point. We need to verify that p ∈ H. If
it is not, then since H is closed, its complement is open and so there exists δ > 0 such that
B(p,δ )∩H = /0. However, this prevents p from being a limit point.
⇐= Next suppose H has all of its limit points. Why is HC open? If p ∈ HC then it is

not a limit point and so there exists δ > 0 such that B(p,δ ) has no points of H. In other
words, HC is open. Hence H is closed. ■

Corollary 3.1.11 A set H is closed if and only if whenever {hn} is a sequence of points
of H which converges to a point x, it follows that x ∈ H.

Proof: =⇒ Suppose H is closed and hn→ x. If x ∈ H there is nothing left to show. If
x /∈ H, then from the definition of limit, it is a limit point of H because none of the hn are
equal to x. Hence x ∈ H after all.
⇐= Suppose the limit condition holds, why is H closed? Let x ∈ H ′ the set of limit

points of H. By Theorem 3.1.8 there exists a sequence of points of H, {hn} such that
hn → x. Then by assumption, x ∈ H. Thus H contains all of its limit points and so it is
closed by Theorem 3.1.10. ■

Next is the important concept of a subsequence.

Definition 3.1.12 Let {xn}∞

n=1 be a sequence. Then if n1 < n2 < · · · is a strictly
increasing sequence of indices, we say

{
xnk

}∞

k=1 is a subsequence of {xn}∞

n=1.

The really important thing about subsequences is that they preserve convergence.

Theorem 3.1.13 Let
{

xnk

}
be a subsequence of a convergent sequence {xn} where

xn→ x. Then limk→∞ xnk = x also.

Proof: Let ε > 0 be given. Then there exists N such that d (xn,x) < ε if n ≥ N. It
follows that if k ≥ N, then nk ≥ N and so d

(
xnk ,x

)
< ε if k ≥ N. This is what it means to

say limk→∞ xnk = x. ■

3.2 Cauchy Sequences, Completeness
Of course it does not go the other way. For example, you could let xn = (−1)n and it has a
convergent subsequence but fails to converge. Here d (x,y) = |x− y| and the metric space
is just R.

However, there is a kind of sequence for which it does go the other way. This is called
a Cauchy sequence.

Definition 3.2.1 {xn} is called a Cauchy sequence if for every ε > 0 there exists N
such that if m,n≥ N, then d (xn,xm)< ε.

Now the major theorem about this is the following.

Theorem 3.2.2 Let {xn} be a Cauchy sequence. Then it converges if and only if any
subsequence converges.

Proof: =⇒ This was just done above.⇐= Suppose now that {xn} is a Cauchy sequence
and limk→∞ xnk = x. Then there exists N1 such that if k > N1, then d

(
xnk ,x

)
< ε/2. From

the definition of what it means to be Cauchy, there exists N2 such that if m,n ≥ N2, then
d (xm,xn) < ε/2. Let N ≥ max(N1,N2). Then if k ≥ N, then nk ≥ N and so d (x,xk) ≤
d
(
x,xnk

)
+d
(
xnk ,xk

)
< ε

2 +
ε

2 = ε. It follows from the definition that limk→∞ xk = x. ■
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Definition 3.2.3 A metric space is said to be complete if every Cauchy sequence
converges.

There certainly are metric spaces which are not complete. For example, if you consider
Q with d (x,y) ≡ |x− y| , this will not be complete because you can get a sequence which
is obtained as xn defined as the n decimal place description of

√
2. However, if a sequence

converges, then it must be Cauchy.

Lemma 3.2.4 If xn→ x, then {xn} is a Cauchy sequence.

Proof: Let ε > 0. Then there exists nε such that if m ≥ nε , then d (x,xm) < ε/2. If
m,k ≥ nε , then by the triangle inequality, d (xm,xk) ≤ d (xm,x) + d (x,xk) <

ε

2 + ε

2 = ε

showing that the convergent sequence is indeed a Cauchy sequence as claimed. ■
Another nice thing to note is this.

Proposition 3.2.5 If {xn} is a sequence and if p is a limit point of the set S=∪∞
n=1 {xn},

then there is a subsequence
{

xnk

}
such that limk→∞ xnk = x.

Proof: By Theorem 3.1.8, there exists a sequence of distinct points of S denoted as
{yk} such that none of them equal p and limk→∞ yk = p. Thus B(p,r) contains infinitely
many different points of the set D, this for every r. Let xn1 ∈ B(p,1) where n1 is the first
index such that xn1 ∈ B(p,1). Suppose xn1 , · · · ,xnk have been chosen, the ni increasing and
let 1 > δ 1 > δ 2 > · · ·> δ k where xni ∈ B(p,δ i) . Then let

δ k+1 < min
{

1
2k+1 ,d

(
p,xn j

)
,δ j, j = 1,2 · · · ,k

}
Let xnk+1 ∈ B(p,δ k+1) where nk+1 is the first index such that xnk+1 is contained B(p,δ k+1).
Then limk→∞ xnk = p. ■

Another useful result is the following.

Lemma 3.2.6 Suppose xn→ x and yn→ y. Then d (xn,yn)→ d (x,y).

Proof: Consider the following.

d (x,y)≤ d (x,xn)+d (xn,y)≤ d (x,xn)+d (xn,yn)+d (yn,y)

so d (x,y)−d (xn,yn)≤ d (x,xn)+d (yn,y). Similar reasoning to what was just used shows
that d (xn,yn)− d (x,y) ≤ d (x,xn)+ d (yn,y) , so |d (xn,yn)−d (x,y)| ≤ d (x,xn)+ d (yn,y)
and the right side converges to 0 as n→ ∞. ■

3.3 Closure of a Set
Next is the topic of the closure of a set.

Definition 3.3.1 Let A be a nonempty subset of (X ,d) a metric space. Then A is
defined to be the intersection of all closed sets which contain A. Note the whole space, X is
one such closed set which contains A. The whole space X is closed because its complement
is open, its complement being /0. It is certainly true that every point of the empty set is an
interior point because there are no points of /0.
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Lemma 3.3.2 Let A be a nonempty set in (X ,d) . Then A is a closed set and A = A∪
A′where A′ denotes the set of limit points of A.

Proof: First of all, denote by C the set of closed sets which contain A. Then A = ∩C
and this will be closed if its complement is open. However, AC

= ∪
{

HC : H ∈ C
}
. Each

HC is open and so the union of all these open sets must also be open. This is because if x is
in this union, then it is in at least one of them. Hence it is an interior point of that one. But
this implies it is an interior point of the union of them all which is an even larger set. Thus
A is closed.

The interesting part is the next claim. First note that from the definition, A ⊆ A so if
x ∈ A, then x ∈ A. Now consider y ∈ A′ but y /∈ A. If y /∈ A, a closed set, then there exists
B(y,r)⊆ AC

. Thus y cannot be a limit point of A, a contradiction. Therefore, A∪A′ ⊆ A.
Next suppose x ∈ A and suppose x /∈ A. Then if B(x,r) contains no points of A different

than x, since x itself is not in A, it would follow that B(x,r)∩A = /0 and so recalling that
open balls are open, B(x,r)C is a closed set containing A so from the definition, it also
contains A which is contrary to the assertion that x ∈ A. Hence if x /∈ A, then x ∈ A′ and so
A∪A′ ⊇ A ■

3.4 Separable Metric Spaces
Definition 3.4.1 A metric space is called separable if there exists a countable dense
subset D. This means two things. First, D is countable, and second, that if x is any point
and r > 0, then B(x,r)∩D ̸= /0. A metric space is called completely separable if there
exists a countable collection of nonempty open sets B such that every open set is the union
of some subset of B. This collection of open sets is called a countable basis.

For those who like to fuss about empty sets, the empty set is open and it is indeed the
union of a subset of B namely the empty subset.

Theorem 3.4.2 A metric space is separable if and only if it is completely separable.

Proof: ⇐= Let B be the special countable collection of open sets and for each B ∈B,
let pB be a point of B. Then let P ≡ {pB : B ∈B}. If B(x,r) is any ball, then it is the
union of sets of B and so there is a point of P in it. Since B is countable, so is P .

=⇒ Let D be the countable dense set and let B ≡{B(d,r) : d ∈ D,r ∈Q∩ [0,∞)} .
Then B is countable because the Cartesian product of countable sets is countable. It
suffices to show that every ball is the union of these sets. Let B(x,R) be a ball. Let
y ∈ B(y,δ ) ⊆ B(x,R) . Then there exists d ∈ B

(
y, δ

10

)
. Let ε ∈ Q and δ

10 < ε < δ

5 . Then
y ∈ B(d,ε) ∈B. Is B(d,ε) ⊆ B(x,R)? If so, then the desired result follows because this
would show that every y∈ B(x,R) is contained in one of these sets of B which is contained
in B(x,R) showing that B(x,R) is the union of sets of B. Let z∈ B(d,ε)⊆ B

(
d, δ

5

)
. Then

d (y,z)≤ d (y,d)+d (d,z)<
δ

10
+ ε <

δ

10
+

δ

5
< δ

Hence B(d,ε) ⊆ B(y,δ ) ⊆ B(x,r). Therefore, every ball is the union of sets of B and,
since every open set is the union of balls, it follows that every open set is the union of sets
of B. ■
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Corollary 3.4.3 If (X ,d) is a metric space and S is a nonempty subset of X , then S is
also separable.

Proof: Let B be a countable basis for (X ,d). Say BS be those sets of B which
have nonempty intersections with S. By axiom of choice, there is a point in each of these
intersections. The resulting countable selection of points must be dense in S. Indeed, if
x ∈ S, then B(x,r) is the union of sets of B and so some point just described is in B(x,r).
■

Definition 3.4.4 Let S be a nonempty set. Then a set of open sets C is called an
open cover of S if ∪C ⊇S . (It covers up the set S. Think lilly pads covering the surface
of a pond.)

One of the important properties possessed by separable metric spaces is the Lindeloff
property.

Definition 3.4.5 A metric space has the Lindeloff property if whenever C is an open
cover of a set S, there exists a countable subset of C denoted here by B such that B is also
an open cover of S.

Theorem 3.4.6 Every separable metric space has the Lindeloff property.

Proof: Let C be an open cover of a set S. Let B be a countable basis. Such exists by
Theorem 3.4.2. Let B̂ denote those sets of B which are contained in some set of C . Thus
B̂ is a countable open cover of S. Now for B ∈B, let UB be a set of C which contains B.
Letting Ĉ denote these sets UB it follows that Ĉ is countable and is an open cover of S. ■

Definition 3.4.7 A Polish space is a complete separable metric space. These things
turn out to be very useful in probability theory and in other areas.

3.5 Compact Sets
As usual, we are not worrying about empty sets. Fussing over these is usually a waste of
time. Thus if a set is mentioned, the default is that it is nonempty.

Definition 3.5.1 A metric space K is compact if whenever C is an open cover of K,
meaning K ⊆ ∪C , there exists a finite subset of C {U1, · · · ,Un} such that K ⊆ ∪n

k=1Uk. In
words, every open cover admits a finite sub-cover.

Directly from this definition is the following proposition.

Proposition 3.5.2 If K is a closed, nonempty subset of a nonempty compact set H, then
K is compact.

Proof: Let C be an open cover for K. Then C ∪
{

KC
}

is an open cover for H. Thus
there are finitely many sets from this last collection of open sets, U1, · · · ,Um which covers
H. Include only those which are in C . These cover K because KC covers no points of K. ■

This is the real definition given above. However, in metric spaces, it is equivalent to
another definition called sequentially compact.



3.5. COMPACT SETS 69

Definition 3.5.3 A metric space K is sequentially compact means that whenever
{xn} ⊆ K, there exists a subsequence

{
xnk

}
such that limk→∞ xnk = x ∈ K for some point x.

In words, every sequence has a subsequence which converges to a point in the set.

There is a fundamental property possessed by a sequentially compact set in a metric
space which is described in the following proposition. The special number described is
called a Lebesgue number.

Proposition 3.5.4 Let K be a sequentially compact set in a metric space and let C be
an open cover of K. Then there exists a number δ > 0 such that whenever x ∈ K, it follows
that B(x,δ ) is contained in some set of C .

Proof: If C is an open cover of K and has no Lebesgue number, then for each n∈N, 1
n is

not a Lebesgue number. Hence there exists xn ∈K such that B
(
xn,

1
n

)
is not contained in any

set of C . By sequential compactness, there is a subsequence
{

xnk

}
such that xnk → x ∈ K.

Now there is r > 0 such that B(x,r)⊆U ∈ C . Let k be large enough that 1
nk

< r
2 and also

large enough that xnk ∈ B
(
x, r

2

)
. Then B

(
xnk ,

1
nk

)
⊆ B

(
xnk ,

r
2

)
⊆ B(x,r) contrary to the

requirement that B
(

xnk ,
1
nk

)
is not contained in any set of C . ■

In any metric space, these two definitions of compactness are equivalent.

Theorem 3.5.5 Let K be a nonempty subset of a metric space (X ,d). Then it is
compact if and only if it is sequentially compact.

Proof: ⇐ Suppose K is sequentially compact. Let C be an open cover of K. By
Proposition 3.5.4 there is a Lebesgue number δ > 0. Let x1 ∈ K. If B(x1,δ ) covers K, then
pick a set of C containing this ball and this set will be a finite subset of C which covers
K. If B(x1,δ ) does not cover K, let x2 /∈ B(x1,δ ). Continue this way obtaining xk such
that d (xk,x j) ≥ δ whenever k ̸= j. Thus eventually {B(xi,δ )}n

i=1 must cover K because
if not, you could get a sequence {xk} which has every pair of points further apart than δ

and hence it has no Cauchy subsequence. Therefore, by Lemma 3.2.4, it would have no
convergent subsequence. This would contradict K is sequentially compact. Now let Ui ∈C
with Ui ⊇ B(xi,δ ) . Then ∪n

i=1Ui ⊇ K.
⇒ Now suppose K is compact. If it is not sequentially compact, then there exists a

sequence {xn} which has no convergent subsequence to a point of K. In particular, no point
of this sequence is repeated infinitely often. By Proposition 3.2.5 the set of points ∪n {xn}
has no limit point in K. (If it did, you would have a subsequence converging to this point
since every ball containing this point would contain infinitely many points of ∪n {xn}.)
Now consider the sets Hn ≡ ∪k≥n {xk}∪H ′ where H ′ denotes all limit points of ∪n {xn} in
X which is the same as the limit points of ∪k≥n {xk}. Therefore, each Hn is closed thanks to
Lemma 3.3.2. Now let Un ≡ HC

n . This is an increasing sequence of open sets whose union
contains K thanks to the fact that there is no constant subsequence. However, none of these
open sets covers K because Un is missing xn, violating the definition of compactness. Next
is an alternate argument.
⇒ Now suppose K is compact. If it is not sequentially compact, then there exists a

sequence {xn} which has no convergent subsequence to a point of K. If x ∈ K, then there
exists B(x,rx) which contains xn for only finitely many n. This is because x is not the limit
of a subsequence. Then {B(xi,ri)}N

i=1 is a finite sub-cover of K. If p is the largest index for
any xk contained in ∪N

i=1B(xi,ri) , let n > p and consider xn. It is a point in K but it can’t be
in any of the sets covering K. ■
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Definition 3.5.6 X be a metric space. Then a finite set of points {x1, · · · ,xn} is
called an ε net if X ⊆ ∪n

k=1B(xk,ε) . If, for every ε > 0 a metric space has an ε net, then
we say that the metric space is totally bounded.

Lemma 3.5.7 If a metric space (K,d) is sequentially compact, then it is separable and
totally bounded.

Proof: Pick x1 ∈K. If B(x1,ε)⊇K, then stop. Otherwise, pick x2 /∈B(x1,ε) . Continue
this way. If {x1, · · · ,xn} have been chosen, either K⊆∪n

k=1B(xk,ε) in which case, you have
found an ε net or this does not happen in which case, you can pick xn+1 /∈ ∪n

k=1B(xk,ε).
The process must terminate since otherwise, the sequence would need to have a convergent
subsequence which is not possible because every pair of terms is farther apart than ε . See
Lemma 3.2.4. Thus for every ε > 0, there is an ε net. Thus the metric space is totally
bounded. Let Nε denote an ε net. Let D = ∪∞

k=1N1/2k . Then this is a countable dense set. It
is countable because it is the countable union of finite sets and it is dense because given a
point, there is a point of D within 1/2k of it. ■

Also recall that a complete metric space is one for which every Cauchy sequence con-
verges to a point in the metric space.

The following is the main theorem which relates these concepts.

Theorem 3.5.8 For (X ,d) a metric space, the following are equivalent.

1. (X ,d) is compact.

2. (X ,d) is sequentially compact.

3. (X ,d) is complete and totally bounded.

Proof: By Theorem 3.5.5, the first two conditions are equivalent.
2.=⇒ 3. If (X ,d) is sequentially compact, then by Lemma 3.5.7, it is totally bounded.

If {xn} is a Cauchy sequence, then there is a subsequence which converges to x ∈ X by
assumption. However, from Theorem 3.2.2 this requires the original Cauchy sequence to
converge.

3.=⇒ 1. Since (X ,d) is totally bounded, there must be a countable dense subset of X .
Just take the union of 1/2k nets for each k ∈ N. Thus (X ,d) is completely separable by
Theorem 3.4.6 has the Lindeloff property. Hence, if X is not compact, there is a countable
set of open sets {Ui}∞

i=1 which covers X but no finite subset does. Consider the nonempty
closed sets Fn and pick xn ∈ Fn where

X \∪n
i=1Ui ≡ X ∩ (∪n

i=1Ui)
C ≡ Fn

Let
{

xk
m
}Mk

m=1 be a 1/2k net for X . We have for some m,B
(
xk

mk
,1/2k

)
contains xn for in-

finitely many values of n because there are only finitely many balls and infinitely many
indices. Then out of the finitely many

{
xk+1

m
}

where B
(
xk+1

m ,1/2k+1
)

has nonempty in-

tersection with B
(
xk

mk
,1/2k

)
, pick one xk+1

mk+1
such that B

(
xk+1

mk+1
,1/2k+1

)
contains xn for

infinitely many n. Then obviously
{

xk
mk

}∞

k=1
is a Cauchy sequence because

d
(

xk
mk
,xk+1

mk+1

)
≤ 1

2k +
1

2k+1 ≤
1

2k−1
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Hence for p < q,

d
(

xp
mp ,x

q
mq

)
≤

q−1

∑
k=p

d
(

xk
mk
,xk+1

mk+1

)
<

∞

∑
k=p

1
2k−1 =

1
2p−2

Now take a subsequence xnk ∈ B
(
xk

mk
,2−k

)
so it follows that limk→∞ xnk = limk→∞ xk

mk
=

x ∈ X . However, x ∈ Fn for each n since each Fn is closed and these sets are nested. Thus
x ∈ ∩nFn contrary to the claim that {Ui}∞

i=1 covers X . ■
For the sake of another point of view, here is another argument, this time that 3.)⇒ 2.).

This will illustrate something called the Cantor diagonalization process.
Assume 3.). Suppose {xk} is a sequence in X . By assumption there are finitely many

open balls of radius 1/n covering X . This for each n ∈N. Therefore, for n = 1, there is one
of the balls, having radius 1 which contains xk for infinitely many k. Therefore, there is a
subsequence with every term contained in this ball of radius 1. Now do for this subsequence
what was just done for {xk} . There is a further subsequence contained in a ball of radius
1/2. Continue this way. Denote the ith subsequence as {xki}∞

k=1. Arrange them as shown

x11,x21,x31,x41 · · ·
x12,x22,x32,x42 · · ·
x13,x23,x33,x43 · · ·

...

Thus all terms of {xki}∞

k=1 are contained in a ball of radius 1/i. Consider now the diagonal
sequence defined as yk ≡ xkk. Given n, each yk is contained in a ball of radius 1/n whenever
k≥ n. Thus {yk} is a subsequence of the original sequence and {yk} is a Cauchy sequence.
By completeness of X , this converges to some x ∈ X which shows that every sequence in X
has a convergent subsequence. This shows 3.)⇒ 2.). ■

Lemma 3.5.9 The closed interval [a,b] in R is compact and every Cauchy sequence in
R converges.

Proof: To show this, suppose it is not. Then there is an open cover C which admits no
finite subcover for [a,b] ≡ I0. Consider the two intervals

[
a, a+b

2

]
,
[ a+b

2 ,b
]
. One of these,

maybe both cannot be covered with finitely many sets of C since otherwise, there would
be a finite collection of sets from C covering [a,b] . Let I1 be the interval which has no
finite subcover. Now do for it what was done for I0. Split it in half and pick the half which
has no finite covering of sets of C . Thus there is a “nested” sequence of closed intervals
I0 ⊇ I1 ⊇ I2 · · · , each being half of the preceding interval. Say In = [an,bn] . By the nested
interval Lemma, Lemma 2.7.1, there is a point x in all these intervals. The point is unique
because the lengths of the intervals converge to 0. This point is in some O ∈ C . Thus
for some δ > 0, [x−δ ,x+δ ] , having length 2δ , is contained in O. For k large enough,
the interval [ak,bk] has length less than δ but contains x. Therefore, it is contained in
[x−δ ,x+δ ] and so must be contained in a single set of C contrary to the construction.
This contradiction shows that in fact [a,b] is compact.

Now if {xn} is a Cauchy sequence, then it is contained in some interval [a,b] which is
compact. Hence there is a subsequence which converges to some x ∈ [a,b]. By Theorem
3.2.2 the original Cauchy sequence converges to x. ■
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3.6 Continuous Functions
The following is a fairly general definition of what it means for a function to be continuous.
It includes everything seen in typical calculus classes as a special case.

Definition 3.6.1 Let f : X → Y be a function where (X ,d) and (Y,ρ) are metric
spaces. Then f is continuous at x ∈ X if and only if the following condition holds. For
every ε > 0, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε . If f is
continuous at every x ∈ X we say that f is continuous on X.

For example, you could have a real valued function f (x) defined on an interval [0,1] . In
this case you would have X = [0,1] and Y =R with the distance given by d (x,y) = |x− y|.
Then the following theorem is the main result.

Theorem 3.6.2 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces. Then the
following two are equivalent.

a f is continuous at x.

b Whenever xn→ x, it follows that f (xn)→ f (x) .

Also, the following are equivalent.

c f is continuous on X .

d Whenever V is open in Y, it follows that f−1 (V )≡ {x : f (x) ∈V} is open in X .

e Whenever H is closed in Y, it follows that f−1 (H)≡ {x : f (x) ∈ H} is closed in X.

Proof: a =⇒ b: Let f be continuous at x and suppose xn→ x. Then let ε > 0 be given.
By continuity, there exists δ > 0 such that if d (x̂,x) < δ , then ρ ( f (x̂) , f (x)) < ε. Since
xn→ x, it follows that there exists N such that if n≥ N, then d (xn,x)< δ and so, if n≥ N,
it follows that ρ ( f (xn) , f (x))< ε. Since ε > 0 is arbitrary, it follows that f (xn)→ f (x).

b =⇒ a: Suppose b holds but f fails to be continuous at x. Then there exists ε > 0
such that for all δ > 0, there exists x̂ such that d (x̂,x)< δ but ρ ( f (x̂) , f (x))≥ ε . Letting
δ = 1/n, there exists xn such that d (xn,x) < 1/n but ρ ( f (xn) , f (x)) ≥ ε . Now this is a
contradiction because by assumption, the fact that xn → x implies that f (xn)→ f (x). In
particular, for large enough n, ρ ( f (xn) , f (x))< ε contrary to the construction.

c =⇒ d: Let V be open in Y . Let x ∈ f−1 (V ) so that f (x) ∈ V. Since V is open, there
exists ε > 0 such that B( f (x) ,ε)⊆V . Since f is continuous at x, it follows that there exists
δ > 0 such that if x̂ ∈ B(x,δ ) , then f (x̂) ∈ B( f (x) ,ε) ⊆ V.( f (B(x,δ ))⊆ B( f (x) ,ε))
In other words, B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) ⊆ f−1 (V ) which shows that, since x was an
arbitrary point of f−1 (V ) , every point of f−1 (V ) is an interior point which implies f−1 (V )
is open.

d =⇒ e: Let H be closed in Y . Then f−1 (H)C = f−1
(
HC
)

which is open by assump-
tion. Hence f−1 (H) is closed because its complement is open.

e =⇒ d: Let V be open in Y. Then f−1 (V )C = f−1
(
VC
)

which is assumed to be closed.
This is because the complement of an open set is a closed set.

d =⇒ c: Let x ∈ X be arbitrary. Is it the case that f is continuous at x? Let ε > 0 be
given. Then B( f (x) ,ε) is an open set in V and so x ∈ f−1 (B( f (x) ,ε)) which is given
to be open. Hence there exists δ > 0 such that x ∈ B(x,δ ) ⊆ f−1 (B( f (x) ,ε)) . Thus,
f (B(x,δ ))⊆ B( f (x) ,ε) so ρ ( f (x̂) , f (x))< ε . Thus f is continuous at x for every x. ■
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Example 3.6.3 x→ d (x,y) is a continuous function from the metric space to the metric
space of nonnegative real numbers.

This follows from Lemma 3.2.6. You can also define a metric on a Cartesian product
of metric spaces.

Proposition 3.6.4 Let (X ,d) be a metric space and consider (X×X ,ρ) where

ρ ((x, x̃) ,(y, ỹ))≡ d (x,y)+d (x̃, ỹ) .

Then this is also a metric space.

Proof: The only condition not obvious is the triangle inequality. However,

ρ ((x, x̃) ,(y, ỹ))+ρ ((y, ỹ) ,(z, z̃))≡ d (x,y)+d (x̃, ỹ)+d (y,z)+d (ỹ, z̃)

≥ d (x,z)+d (x̃, z̃) = ρ ((x, x̃) ,(z, z̃)) ■

Definition 3.6.5 If you have two metric spaces (X ,d) and (Y,ρ) , a function f :
X → Y is called a homeomorphism if and only if it is continuous, one to one, onto, and its
inverse is also continuous.

Here is a useful proposition.

Proposition 3.6.6 Let (X ,d) be a metric space and let S be a nonempty subset of X.
Define

dist(x,S)≡ inf{d (x,s) : s ∈ S}
Then |dist(x,S)−dist(y,S)| ≤ d (x,y) so x→ dist(x,S) is continuous.

Proof: Say dist(x,S)≥ dist(y,S) . Then there is s ∈ S such that dist(y,S)+ ε > d (y,s).
Then

|dist(x,S)−dist(y,S)|= dist(x,S)−dist(y,S)≤ d (x,s)− (d (y,s)− ε)

≤ d (x,y)+d (y,s)− (d (y,s)− ε) = d (x,y)+ ε

Since ε > 0 is arbitrary, this shows the claimed result. If dist(x,S) ≤ dist(y,S) , repeat
switching roles of x and y. ■

3.7 Continuity and Compactness
How does compactness relate to continuity? It turns out that the continuous image of a
compact set is always compact. This is an easy consequence of the above major theorem.

Theorem 3.7.1 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces and f is
continuous on X. Then if K ⊆ X is compact, it follows that f (K) is compact in (Y,ρ).

Proof: Let C be an open cover of f (K) . Denote by f−1 (C ) the sets of the form{
f−1 (U) : U ∈ C

}
. Then f−1 (C ) is an open cover of K. It follows there are finitely many

sets of the form
{

f−1 (U1) , · · · , f−1 (Un)
}

which covers K. It follows that {U1, · · · ,Un} is
an open cover for f (K). ■

The following is the important extreme values theorem for a real valued function de-
fined on a compact set.
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Theorem 3.7.2 Let K be a compact metric space and suppose f : K→R is a contin-
uous function. That is, R is the metric space where the metric is given by d (x,y) = |x− y|.
Then f achieves its maximum and minimum values on K.

Proof: Let λ ≡ sup{ f (x) : x ∈ K} . Then from the definition of sup, you have the ex-
istence of a sequence {xn} ⊆ K such that limn→∞ f (xn) = λ . There is a subsequence still
called {xn} which converges to some x ∈ K. From continuity, λ = limn→∞ f (xn) = f (x)
and so f achieves its maximum value at x. Similar reasoning shows that it achieves its
minimum value on K. ■

Definition 3.7.3 Let f : (X ,d)→ (Y,ρ) be a function. Then it is said to be uniformly
continuous on X if for every ε > 0 there exists a δ > 0 such that whenever x, x̂ are two points
of X with d (x, x̂)< δ , it follows that ρ ( f (x) , f (x̂))< ε.

Note the difference between this and continuity. With continuity, the δ could depend
on x but here it works for any pair of points in X .

There is a remarkable result concerning compactness and uniform continuity.

Theorem 3.7.4 Let f : (X ,d) → (Y,ρ) be a continuous function and let K be a
compact subset of X. Then the restriction of f to K is uniformly continuous.

Proof: First of all, K is a metric space and f restricted to K is continuous. Now
suppose it fails to be uniformly continuous. Then there exists ε > 0 and pairs of points xn, x̂n
such that d (xn, x̂n) < 1/n but ρ ( f (xn) , f (x̂n)) ≥ ε . Since K is compact, it is sequentially
compact and so there exists a subsequence, still denoted as {xn} such that xn→ x∈K. Then
also x̂n → x also and so by Lemma 3.2.6, ρ ( f (x) , f (x)) = limn→∞ ρ ( f (xn) , f (x̂n)) ≥ ε

which is a contradiction. ■

3.8 Lipschitz Continuity and Contraction Maps
The following may be of more interest in the case of normed vector spaces, but there is
no harm in stating it in this more general setting. You should verify that the functions
described in the following definition are all continuous.

Definition 3.8.1 Let f : X → Y where (X ,d) and (Y,ρ) are metric spaces. Then
f is said to be Lipschitz continuous if for every x, x̂ ∈ X , ρ ( f (x) , f (x̂)) ≤ rd (x, x̂). The
function is called a contraction map if r < 1.

The big theorem about contraction maps is the following.

Theorem 3.8.2 Let f : (X ,d) → (X ,d) be a contraction map and let (X ,d) be
a complete metric space. Thus Cauchy sequences converge and also d ( f (x) , f (x̂)) ≤
rd (x, x̂) where r < 1. Then f has a unique fixed point. This is a point x ∈ X such that
f (x) = x. Also, if x0 is any point of X , then

d (x,x0)≤
d (x0, f (x0))

1− r

Also, for each n,

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r
,

and x = limn→∞ f n (x0).
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Proof: Pick x0 ∈ X and consider the sequence of the iterates of the map f given by
x0, f (x0) , f 2 (x0) , · · · . We argue that this is a Cauchy sequence. For m < n, it follows from
the triangle inequality,

d ( f m (x0) , f n (x0))≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)
≤

∞

∑
k=m

rkd ( f (x0) ,x0)

The reason for this last is as follows.

d
(

f 2 (x0) , f (x0)
)
≤ rd ( f (x0) ,x0)

d
(

f 3 (x0) , f 2 (x0)
)
≤ rd

(
f 2 (x0) , f (x0)

)
≤ r2d ( f (x0) ,x0)

and so forth. Therefore, by the triangle inequality,

d ( f m (x0) , f n (x0)) ≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)

≤
∞

∑
k=m

rkd ( f (x0) ,x0)≤ d ( f (x0) ,x0)
rm

1− r
(3.1)

which shows that this is indeed a Cauchy sequence. Therefore, there exists x such that
limn→∞ f n (x0) = x. By continuity, f (x) = f (limn→∞ f n (x0)) = limn→∞ f n+1 (x0) = x.

Also note that, letting m = 0 in 3.1, this estimate yields

d (x0, f n (x0))≤
d (x0, f (x0))

1− r

Now d (x0,x)≤ d (x0, f n (x0))+d ( f n (x0) ,x) and so

d (x0,x)−d ( f n (x0) ,x)≤
d (x0, f (x0))

1− r

Letting n→∞, it follows that d (x0,x)≤ d(x0, f (x0))
1−r because limn→∞ d ( f n (x0) ,x)= d (x,x)=

0 by Lemma 3.2.6.
It only remains to verify that there is only one fixed point. Suppose then that x,x′ are

two. Then
d
(
x,x′
)
= d

(
f (x) , f

(
x′
))
≤ rd

(
x′,x
)

and so d (x,x′) = 0 because r < 1. ■
The above is the usual formulation of this important theorem, but we actually proved a

better result.

Corollary 3.8.3 Let B be a closed subset of the complete metric space (X ,d) and let
f : B→ X be a contraction map

d ( f (x) , f (x̂))≤ rd (x, x̂) , r < 1.

Also suppose there exists x0 ∈ B such that the sequence of iterates { f n (x0)}∞

n=1 remains in
B. Then f has a unique fixed point in B which is the limit of the sequence of iterates. This
is a point x ∈ B such that f (x) = x. In the case that B = B(x0,δ ), the sequence of iterates
satisfies the inequality

d ( f n (x0) ,x0)≤
d (x0, f (x0))

1− r

and so it will remain in B if d(x0, f (x0))
1−r < δ .
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Proof: By assumption, the sequence of iterates stays in B. Then, as in the proof of the
preceding theorem, for m < n, it follows from the triangle inequality,

d ( f m (x0) , f n (x0)) ≤
n−1

∑
k=m

d
(

f k+1 (x0) , f k (x0)
)

≤
∞

∑
k=m

rkd ( f (x0) ,x0) =
rm

1− r
d ( f (x0) ,x0)

Hence the sequence of iterates is Cauchy and must converge to a point x in X . However, B
is closed and so it must be the case that x ∈ B. Then as before,

x = lim
n→∞

f n (x0) = lim
n→∞

f n+1 (x0) = f
(

lim
n→∞

f n (x0)
)
= f (x)

As to the sequence of iterates remaining in B where B is a ball as described, the inequality
above in the case where m = 0 yields d (x0, f n (x0))≤ 1

1−r d ( f (x0) ,x0) and so, if the right
side is less than δ , then the iterates remain in B. As to the fixed point being unique, it is as
before. If x,x′ are both fixed points in B, then d (x,x′) = d ( f (x) , f (x′))≤ rd (x,x′) and so
x = x′. ■

The contraction mapping theorem has an extremely useful generalization. In order to
get a unique fixed point, it suffices to have some power of f a contraction map.

Theorem 3.8.4 Let f : (X ,d)→ (X ,d) have the property that for some n ∈ N, f n is
a contraction map and let (X ,d) be a complete metric space. Then there is a unique fixed
point for f . As in the earlier theorem the sequence of iterates { f n (x0)}∞

n=1 also converges
to the fixed point.

Proof: From Theorem 3.8.2 there is a unique fixed point for f n. Thus f n (x) = x Then

f n ( f (x)) = f n+1 (x) = f (x)

By uniqueness, f (x) = x.
Now consider the sequence of iterates. Suppose it fails to converge to x. Then there

is ε > 0 and a subsequence nk such that d ( f nk (x0) ,x) ≥ ε . Now nk = pkn+ rk where rk
is one of the numbers {0,1,2, · · · ,n−1}. It follows that there exists one of these numbers
which is repeated infinitely often. Call it r and let the further subsequence continue to be
denoted as nk. Thus d ( f pkn+r (x0) ,x)≥ ε. In other words,

d ( f pkn ( f r (x0)) ,x)≥ ε

However, from Theorem 3.8.2, as k→ ∞, f pkn ( f r (x0))→ x which contradicts the above
inequality. Hence the sequence of iterates converges to x, as it did for f a contraction map.
■

3.9 Convergence of Functions
Next is to consider the meaning of convergence of sequences of functions. There are two
main ways of convergence of interest here, pointwise and uniform convergence.

Definition 3.9.1 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces. Then
{ fn} is said to converge pointwise to a function f : X→Y if for every x∈X , limn→∞ fn (x)=
f (x) . { fn} is said to converge uniformly if for all ε > 0, there exists N such that if n≥ N,
then supx∈X ρ ( fn (x) , f (x))< ε
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Here is a well known example illustrating the difference between pointwise and uniform
convergence.

Example 3.9.2 Let fn (x) = xn on the metric space [0,1] . Then this function converges
pointwise to

f (x) =
{

0 on [0,1)
1 at 1

but it does not converge uniformly on this interval to f .

Note how the target function f in the above example is not continuous even though
each function in the sequence is. The nice thing about uniform convergence is that it takes
continuity of the functions in the sequence and imparts it to the target function. It does this
for both continuity at a single point and uniform continuity. Thus uniform convergence is
a very superior thing.

Theorem 3.9.3 Let fn : X → Y where (X ,d) ,(Y,ρ) are two metric spaces and sup-
pose each fn is continuous at x ∈ X and also that fn converges uniformly to f on X. Then
f is also continuous at x. In addition to this, if each fn is uniformly continuous on X , then
the same is true for f .

Proof: Let ε > 0 be given. Then

ρ ( f (x) , f (x̂))≤ ρ ( f (x) , fn (x))+ρ ( fn (x) , fn (x̂))+ρ ( fn (x̂) , f (x̂))

By uniform convergence, there exists N such that both ρ ( f (x) , fn (x)) ,ρ ( fn (x̂) , f (x̂)) are
less than ε/3 provided n≥ N. Thus picking such an n

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))

From the continuity of fn, there exists a positive number δ > 0 such that if d (x, x̂) < δ ,
then ρ ( fn (x) , fn (x̂))< ε/3. Hence, if d (x, x̂)< δ , then

ρ ( f (x) , f (x̂))≤ 2ε

3
+ρ ( fn (x) , fn (x̂))<

2ε

3
+

ε

3
= ε

Hence, f is continuous at x.
Next consider uniform continuity. It follows from the uniform convergence that if x, x̂

are any two points of X , then if n ≥ N, then, picking such an n,ρ ( f (x) , f (x̂)) ≤ 2ε

3 +
ρ ( fn (x) , fn (x̂)) . By uniform continuity of fn there exists δ such that if d (x, x̂)< δ , then the
term on the right in the above is less than ε/3. Hence if d (x, x̂)< δ , then ρ ( f (x) , f (x̂))< ε

and so f is uniformly continuous as claimed. ■

3.10 Compactness in C (X ,Y ) Ascoli Arzela Theorem
This will use the characterization of compact metric spaces to give a proof of a general
version of the Arzella Ascoli theorem. See Naylor and Sell [36] which is where I saw this
general formulation.

Definition 3.10.1 Let (X ,dX ) be a compact metric space. Let (Y,dY ) be another
complete metric space. Then C (X ,Y ) will denote the continuous functions which map X to
Y . Then ρ is a metric on C (X ,Y ) defined by ρ ( f ,g)≡ supx∈X dY ( f (x) ,g(x)) .
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Theorem 3.10.2 (C (X ,Y ) ,ρ) is a complete metric space where (X ,dX ) is a com-
pact metric space

Proof: It is first necessary to show that ρ is well defined. In this argument, I will
just write d rather than dX or dY . To show this, note that from Lemma 3.2.6, if xn → x,
and yn → y, then d (xn,yn)→ d (x,y) . Therefore, if f ,g are continuous, and xn → x so
f (xn)→ f (x) and g(xn)→ g(x) , d ( f (xn) ,g(xn))→ d ( f (x) ,g(x)) and so, ρ ( f ,g) is just
the maximum of a continuous function defined on a compact set. By Theorem 3.7.2, the
extreme values theorem, this maximum exists.

Clearly ρ ( f ,g) = ρ (g, f ) and

ρ ( f ,g)+ρ (g,h) = sup
x∈X

d ( f (x) ,g(x))+ sup
x∈X

d (g(x) ,h(x))

≥ sup
x∈X

(d ( f (x) ,g(x))+d (g(x) ,h(x)))

≥ sup
x∈X

(d ( f (x) ,h(x))) = ρ ( f ,h)

so the triangle inequality holds.
It remains to check completeness. Let { fn} be a Cauchy sequence. Then from the

definition, { fn (x)} is a Cauchy sequence in Y and so it converges to something called
f (x) . By Theorem 3.9.3, f is continuous. It remains to show that ρ ( fn, f )→ 0. Let x ∈ X .
Then from what was just noted,

d ( fn (x) , f (x)) = lim
m→∞

d ( fn (x) , fm (x))≤ lim sup
m→∞

ρ ( fn, fm)

since { fn} is given to be a Cauchy sequence, there exists N such that if m,n > N, then
ρ ( fn, fm)< ε . Therefore, if n > N,d ( fn (x) , f (x))≤ limsupm→∞ ρ ( fn, fm)≤ ε . Since x is
arbitrary, it follows that ρ ( fn, f )≤ ε, if n≥ N. ■

Here is a useful lemma.

Lemma 3.10.3 Let S be a totally bounded subset of (X ,d) a metric space. Then S is
also totally bounded.

Proof: Suppose not. Then there exists a sequence {pn} ⊆ S such that

d (pm, pn)≥ ε

for all m ̸= n. Now let qn ∈ B
(

pn,
ε

8

)
∩S. Then it follows that

ε

8
+d (qn,qm)+

ε

8
≥ d (pn,qn)+d (qn,qm)+d (qm, pm)≥ d (pn,qm)≥ ε

and so d (qn,qm)>
ε

2 . This contradicts total boundedness of S. ■
Next, here is an important definition.

Definition 3.10.4 Let A ⊆ C (X ,Y ) where (X ,dX ) and (Y,dY ) are metric spaces.
Thus A is a set of continuous functions mapping X to Y . Then A is said to be equicontin-
uous if for every ε > 0 there exists a δ > 0 such that if dX (x1,x2)< δ then for all f ∈A ,
dY ( f (x1) , f (x2))< ε . (This is uniform continuity which is uniform in A .) A is said to be
pointwise compact if { f (x) : f ∈A } has compact closure in Y .
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Here is the Ascoli Arzela theorem.

Theorem 3.10.5 Let (X ,dX ) be a compact metric space and let (Y,dY ) be a com-
plete metric space. Thus (C (X ,Y ) ,ρ) is a complete metric space. Let A ⊆ C (X ,Y ) be
pointwise compact and equicontinuous. Then A is compact. Here the closure is taken in
(C (X ,Y ) ,ρ).

Proof: The more useful direction is that the two conditions imply compactness of A .
I prove this first. Since A is a closed subset of a complete space, it follows from Theorem
3.5.8, that A will be compact if it is totally bounded. In showing this, it follows from
Lemma 3.10.3 that it suffices to verify that A is totally bounded. Suppose this is not
so. Then there exists ε > 0 and a sequence of points of A , { fn} such that ρ ( fn, fm) ≥ ε

whenever n ̸= m.
By equicontinuity, there exists δ > 0 such that if

d (x,y)< δ ,

then dY ( f (x) , f (y))< ε

8 for all f ∈A . Let {xi}p
i=1 be a δ net for X . Since there are only

finitely many xi, it follows from pointwise compactness that there exists a subsequence,
still denoted by { fn} which converges at each xi. Now let x ∈ X be arbitrary. There exists
N such that for each xi in that δ net,

dY ( fn (xi) , fm (xi))< ε/8 whenever n,m≥ N

Then for m,n≥ N,

dY ( fn (x) ,dY m (x))

≤ dY ( fn (x) , fn (xi))+dY ( fn (xi) , fm (xi))+dY ( fm (xi) , fm (x))

< dY ( fn (x) , fn (xi))+ ε/8+dY ( fm (xi) , fm (x))

Pick xi such that d (x,xi) < δ . {xi}p
i=1 is a δ net and so this is surely possible. Then by

equicontinuity, the two ends are each less than ε/8 and so for m,n≥ N,

dY ( fn (x) , fm (x))≤ 3ε

8
Since x is arbitrary, it follows that ρ ( fn, fm)≤ 3ε/8< ε which is a contradiction. It follows
that A and hence A is totally bounded. This proves the more important direction.

Next suppose A is compact. Why must A be pointwise compact and equicontinuous?
If it fails to be pointwise compact, then there exists x ∈ X such that { f (x) : f ∈A } is not
contained in a compact set of Y . Thus there exists ε > 0 and a sequence of functions in A
{ fn} such that d ( fn (x) , fm (x)) ≥ ε . But this implies ρ ( fm, fn) ≥ ε and so A fails to be
totally bounded, a contradiction. Thus A must be pointwise compact. Now why must it be
equicontinuous? If it is not, then for each n ∈ N there exists ε > 0 and xn,yn ∈ X such that
d (xn,yn) < 1/n but for some fn ∈ A , d ( fn (xn) , fn (yn)) ≥ ε. However, by compactness,
there exists a subsequence

{
fnk

}
such that limk→∞ ρ

(
fnk , f

)
= 0 and also that xnk ,ynk →

x ∈ X . Hence

ε ≤ d
(

fnk

(
xnk

)
, fnk

(
ynk

))
≤ d

(
fnk

(
xnk

)
, f
(
xnk

))
+d
(

f
(
xnk

)
, f
(
ynk

))
+d
(

f
(
ynk

)
, fnk

(
ynk

))
≤ ρ

(
fnk , f

)
+d
(

f
(
xnk

)
, f
(
ynk

))
+ρ

(
f , fnk

)
and now this is a contradiction because each term on the right converges to 0. The middle
term converges to 0 because f

(
xnk

)
, f
(
ynk

)
→ f (x). See Lemma 3.2.6. ■
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3.11 Connected Sets
Stated informally, connected sets are those which are in one piece. In order to define what
is meant by this, I will first consider what it means for a set to not be in one piece. This is
called separated. Connected sets are defined in terms of not being separated. This is why
theorems about connected sets sometimes seem a little tricky.

Definition 3.11.1 A set, S in a metric space, is separated if there exist sets A,B
such that

S = A∪B, A,B ̸= /0, and A∩B = B∩A = /0.

In this case, the sets A and B are said to separate S. A set is connected if it is not separated.
Remember A denotes the closure of the set A.

Note that the concept of connected sets is defined in terms of what it is not. This makes
it somewhat difficult to understand. One of the most important theorems about connected
sets is the following.

Theorem 3.11.2 Suppose U is a set of connected sets and that there exists a point
p which is in all of these connected sets. Then K ≡ ∪U is connected.

Proof: The argument is dependent on Lemma 3.3.2. Suppose

K = A∪B

where Ā∩B = B̄∩A = /0,A ̸= /0,B ̸= /0. Then p is in one of these sets. Say p ∈ A. Then if
U ∈U , it must be the case that U ⊆ A since if not, you would have

U = (A∩U)∪ (B∩U)

and the limit points of A∩U cannot be in B hence not in B∩U while the limit points of
B∩U cannot be in A hence not in A∩U . Thus B = /0. It follows that K cannot be separated
and so it is connected. ■

The intersection of connected sets is not necessarily connected as is shown by the fol-
lowing picture.

U

V

Theorem 3.11.3 Let f : X → Y be continuous where Y is a metric space and X is
connected. Then f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary that f (X)=
A∪B where A and B separate f (X) . Then consider the sets f−1 (A) and f−1 (B) . If z
∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of A. Therefore, there exists an
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open set, U containing f (z) such that U∩A= /0. But then, the continuity of f and Theorem
3.6.2 implies that f−1 (U) is an open set containing z such that f−1 (U)∩f−1 (A) = /0.
Therefore, f−1 (B) contains no limit points of f−1 (A) . Similar reasoning implies f−1 (A)
contains no limit points of f−1 (B). It follows that X is separated by f−1 (A) and f−1 (B) ,
contradicting the assumption that X was connected. ■

An arbitrary set can be written as a union of maximal connected sets called connected
components. This is the concept of the next definition.

Definition 3.11.4 Let S be a set and let p ∈ S. Denote by Cp the union of all con-
nected subsets of S which contain p. This is called the connected component determined by
p.

Theorem 3.11.5 Let Cp be a connected component of a set S in a metric space.
Then Cp is a connected set and if Cp∩Cq ̸= /0, then Cp =Cq.

Proof: Let C denote the connected subsets of S which contain p. By Theorem 3.11.2,
∪C = Cp is connected. If x ∈Cp ∩Cq, then from Theorem 3.11.2, Cp ⊇Cp ∪Cq and so
Cp ⊇Cq . The inclusion goes the other way by the same reason. ■

This shows the connected components of a set are equivalence classes and partition the
set.

A set, I is an interval in R if and only if whenever x,y ∈ I then [x,y]⊆ I. The following
theorem is about the connected sets in R.

Theorem 3.11.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point, p, there is nothing to prove.
The interval is just [p, p] . Suppose p < q and p,q ∈ C. You need to show (p,q) ⊆ C. If
x ∈ (p,q)\C, let C∩ (−∞,x)≡ A, and C∩ (x,∞)≡ B. Then C = A∪B and the sets A and
B separate C contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A and
y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S≡ {t ∈ [x,y] : [x, t]⊆ A}

and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But if l /∈ B,
then for some δ > 0,(l, l +δ )∩B = /0 contradicting the definition of l as an upper bound
for S. Therefore, l ∈ B which implies l /∈ A after all, a contradiction. It follows I must be
connected. ■

This yields a generalization of the intermediate value theorem from one variable calcu-
lus.

Corollary 3.11.7 Let E be a connected set in a metric space and suppose f : E → R
and that y ∈ ( f (e1) , f (e2)) where ei ∈ E. Then there exists e ∈ E such that f (e) = y.

Proof: From Theorem 3.11.3, f (E) is a connected subset of R. By Theorem 3.11.6
f (E) must be an interval. In particular, it must contain y. This proves the corollary. ■

The following theorem is a very useful description of the open sets in R.

Theorem 3.11.8 Let U be an open set in R. Then there exist countably many dis-
joint open sets {(ai,bi)}∞

i=1 such that U = ∪∞
i=1 (ai,bi) .
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Proof: Let p ∈U and let z ∈Cp, the connected component determined by p. Since U is
open, there exists, δ > 0 such that (z−δ ,z+δ )⊆U. It follows from Theorem 3.11.2 that

(z−δ ,z+δ )⊆Cp.

This shows Cp is open. By Theorem 3.11.6, this shows Cp is an open interval, (a,b) where
a,b ∈ [−∞,∞] . There are therefore at most countably many of these connected compo-
nents because each must contain a rational number and the rational numbers are countable.
Denote by {(ai,bi)}∞

i=1 the set of these connected components. ■

Definition 3.11.9 A set E in a metric space is arcwise connected if for any two
points, p,q ∈ E, there exists a closed interval, [a,b] and a continuous function, γ : [a,b]→
E such that γ (a) = p and γ (b) = q.

An example of an arcwise connected metric space would be any subset of Rn which is
the continuous image of an interval. Arcwise connected is not the same as connected. A
well known example is the following.{(

x,sin
1
x

)
: x ∈ (0,1]

}
∪{(0,y) : y ∈ [−1,1]} (3.2)

You can verify that this set of points in the normed vector spaceR2 is not arcwise connected
but is connected.

Lemma 3.11.10 In Rp, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If x,y ∈ B(z,r) , then let γ (t) =
x+ t (y−x) for t ∈ [0,1] .

∥x+ t (y−x)−z∥ = ∥(1− t)(x−z)+ t (y−z)∥
≤ (1− t)∥x−z∥+ t ∥y−z∥
< (1− t)r+ tr = r

showing γ (t) stays in B(z,r).■

Proposition 3.11.11 If X ̸= /0 is arcwise connected, then it is connected.

Proof: Let p ∈ X . Then by assumption, for any x ∈ X , there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence Cp = X
and so X is connected. ■

Theorem 3.11.12 Let U be an open subset of Rp. Then U is arcwise connected if
and only if U is connected. Also the connected components of an open set are open sets.

Proof: By Proposition 3.11.11 it is only necessary to verify that if U is connected and
open, then U is arcwise connected. Pick p ∈U . Say x ∈U satisfies P if there exists a
continuous function, γ : [a,b]→U such that γ (a) = p and γ (b) = x.

A≡ {x ∈U such that x satisfies P .}
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If x ∈ A, then Lemma 3.11.10 implies B(x,r) ⊆ U is arcwise connected for small
enough r. Thus letting y ∈ B(x,r) , there exist intervals, [a,b] and [c,d] and continuous
functions having values in U , γ,η such that γ (a) = p,γ (b) =x,η (c) =x, and η (d) = y.
Then let γ1 : [a,b+d− c]→U be defined as

γ1 (t)≡
{

γ (t) if t ∈ [a,b]
η (t + c−b) if t ∈ [b,b+d− c]

Then it is clear that γ1 is a continuous function mapping p to y and showing that B(x,r)⊆
A. Therefore, A is open. A ̸= /0 because since U is open there is an open set, B(p,δ )
containing p which is contained in U and is arcwise connected.

Now consider B ≡ U \A. I claim this is also open. If B is not open, there exists a
point z ∈ B such that every open set containing z is not contained in B. Therefore, letting
B(z,δ ) be such that z ∈ B(z,δ ) ⊆U, there exist points of A contained in B(z,δ ) . But
then, a repeat of the above argument shows z ∈ A also. Hence B is open and so if B ̸= /0,
then U = B∪A and so U is separated by the two sets B and A contradicting the assumption
that U is connected. Note that, since B is open, it contains no limit points of A and since A
is open, it contains no limit points of B.

It remains to verify the connected components are open. Let z ∈ Cp where Cp is the
connected component determined by p. Then picking B(z,δ ) ⊆U, Cp ∪B(z,δ ) is con-
nected and contained in U and so it must also be contained in Cp. Thus z is an interior
point of Cp. ■

As an application, consider the following corollary.

Corollary 3.11.13 Let f : Ω→ Z be continuous where Ω is a connected nonempty
open set of a metric space. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l ̸= k. Then Ω =
f−1 (l)∪ f−1 ({m ∈ Z : m ̸= l}) and these are disjoint nonempty open sets which separate
Ω. To see they are open, note

f−1 ({m ∈ Z : m ̸= l}) = f−1
(
∪m ̸=l

(
m− 1

6
,m+

1
6

))
which is the inverse image of an open set while f−1 (l) = f−1

((
l− 1

6 , l +
1
6

))
also an open

set. ■

3.12 Partitions of Unity in Metric Space
Lemma 3.12.1 Let X be a metric space and let S be a nonempty subset of X .

dist(x,S)≡ inf{d (x,z) : z ∈ S}

Then
|dist(x,S)−dist(y,S)| ≤ d (x,y) .

Proof: Say dist(x,S)≥ dist(y,S) . Then letting ε > 0 be given, there exists z ∈ S such
that d (y,z)< dist(y,S)+ ε Then

|dist(x,S)−dist(y,S)|= dist(x,S)−dist(y,S)≤ dist(x,S)− (d (y,z)− ε)
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≤ d (x,z)− (d (y,z)− ε)≤ d (x,y)+d (y,z)−d (y,z)+ ε = d (x,y)+ ε

Since ε is arbitrary, |dist(x,S)−dist(y,S)| ≤ d (x,y). The situation is completely similar
if dist(x,S)< dist(y,S) . ■

Then this shows that x→ dist(x,S) is a continuous real valued function.
This is about partitions of unity in metric space. Assume here that closed balls are

compact. For example, you might be considering Rp with d (x,y)≡ |x−y|.

Definition 3.12.2 Define spt( f ) (support of f ) to be the closure of the set {x :
f (x) ̸= 0}. If V is an open set, Cc(V ) will be the set of continuous functions f , defined
on Ω having spt( f )⊆V .

Definition 3.12.3 If K is a compact subset of an open set, V , then K ≺ φ ≺V if

φ ∈Cc(V ), φ(K) = {1}, φ(Ω)⊆ [0,1],

where Ω denotes the whole metric space. Also for φ ∈Cc(Ω), K ≺ φ if

φ(Ω)⊆ [0,1] and φ(K) = 1.

and φ ≺V if
φ(Ω)⊆ [0,1] and spt(φ)⊆V.

Lemma 3.12.4 Let (Ω,d) be a metric space in which closed balls are compact. Then if
K is a compact subset of an open set V, then there exists φ such that K ≺ φ ≺V.

Proof: Since K is compact, the distance between K and VC is positive, δ > 0. Other-
wise there would be xn ∈ K and yn ∈VC with d (xn,yn)< 1/n. Taking a subsequence, still
denoted with n, we can assume xn→ x and yn→ x but this would imply x is in both K and
VC which is not possible. Now consider {B(x,δ/2)} for x ∈ K. This is an open cover and
the closure of each ball is contained in V . Since K is compact, finitely many of these balls
cover K. Denote their union as W . Then W is compact because it is the finite union of the
closed balls. Hence K ⊆W ⊆W ⊆V . Now consider

φ (x)≡
dist
(
x,WC

)
dist(x,K)+dist(x,WC)

the denominator is never zero because x cannot be in both K and WC. Thus φ is continuous
by Lemma 3.12.1. also if x ∈ K, then φ (x) = 1 and if x /∈W, then φ (x) = 0. ■

Theorem 3.12.5 (Partition of unity) Let K be a compact subset of a metric space
in which closed balls are compact and suppose K ⊆V = ∪n

i=1Vi, Vi open. Then there exist
ψ i ≺Vi with ∑

n
i=1 ψ i(x) = 1 for all x ∈ K.

Proof: Let K1 = K \∪n
i=2Vi. Thus K1 is compact and K1 ⊆ V1. Let K1 ⊆W1 ⊆W 1 ⊆

V1 with W 1compact. To obtain W1, use Lemma 3.12.4 to get f such that K1 ≺ f ≺V1 and let
W1≡{x : f (x) ̸= 0} .Thus W1,V2, · · ·Vn covers K and W 1⊆V1. Let K2 =K \(∪n

i=3Vi∪W1).
Then K2 is compact and K2 ⊆V2. Let K2 ⊆W2 ⊆W 2 ⊆V2 W 2 compact. Continue this way
finally obtaining W1, · · · ,Wn, K ⊆W1∪·· ·∪Wn, and W i ⊆Vi W i compact. Now let

W i ⊆Ui ⊆U i ⊆Vi ,U i compact.
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Wi Ui Vi

By Lemma 3.12.4, let U i ≺ φ i ≺Vi, ∪n
i=1W i ≺ γ ≺ ∪n

i=1Ui. Define

ψ i(x) =
{

γ(x)φ i(x)/∑
n
j=1 φ j(x) if ∑

n
j=1 φ j(x) ̸= 0,

0 if ∑
n
j=1 φ j(x) = 0.

If x is such that ∑
n
j=1 φ j(x) = 0, then x /∈ ∪n

i=1U i. Consequently γ(y) = 0 for all y near x
and so ψ i(y) = 0 for all y near x. Hence ψ i is continuous at such x. If ∑

n
j=1 φ j(x) ̸= 0, this

situation persists near x and so ψ i is continuous at such points. Therefore ψ i is continuous.
If x ∈ K, then γ(x) = 1 and so ∑

n
j=1 ψ j(x) = 1. Clearly 0≤ψ i (x)≤ 1 and spt(ψ j)⊆Vj. ■

3.13 Completion of Metric Spaces
Let (X ,d) be a metric space X ̸= /0. Perhaps this is not a complete metric space. In other
words, it may be that Cauchy Sequences do not converge. Of course if x ∈ X and if xn = x
for all n then {xn} is a Cauchy sequence and it converges to x.

Lemma 3.13.1 Denote by x a Cauchy sequence x being short for {xn}∞

n=1. Then if x,y
are two Cauchy sequences, limn→∞ d (xn,yn) exists.

Proof: Let ε > 0 be given and let N be so large that whenever n,m≥ N, it follows that
d (xn,xm) ,d (yn,ym)< ε/2. Then for such n,m

|d (xn,yn)−d (xm,ym)| ≤ |d (xn,yn)−d (xn,ym)|+ |d (xn,ym)−d (xm,ym)|
≤ d (yn,ym)+d (xn,xm)< ε

by Lemma 3.12.1. Therefore, {d (xn,yn)}n is a Cauchy sequence in R and so it converges.
■

Definition 3.13.2 Let x∼ y when limn→∞ d (xn,yn) = 0.

Lemma 3.13.3 ∼ is an equivalence relation.

Proof: Clearly x∼ x and if x∼ y then y ∼ x. Suppose then that x∼ y and y ∼ z. Is
x∼ z?

d (xn,zn)≤ d (xn,yn)+d (yn,zn)

and both of those terms on the right converge to 0. ■

Definition 3.13.4 Denote by [x] the equivalence class determined by the Cauchy
sequence x. Let d ([x] , [y])≡ limn→∞ d (xn,yn) .

Theorem 3.13.5 Denote by X̂ the set of equivalence classes. Then d defined above
is a metric, X̂ with this is a complete metric space, and X can be considered a dense subset
of X̂ .
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Proof: That d just defined is a metric is obvious from the fact that the original metric d
satisfies the triangle inequality. It is also clear that d ([x] , [y]) ≥ 0 and that if [x] = [y] if
and only if d ([x] , [y]) = 0.

It remains to show that
(
X̂ ,d

)
is complete. Let {[x]n}nbe a Cauchy sequence. From

Theorem 3.2.2 it suffices to show the convergence of a subsequence. There is a subse-
quence, denoted as {[xn]} where xn is a representative of [x]n such that d

(
[xn] ,

[
xn+1

])
<

4−n. Thus there is an increasing sequence {kn} such that d
(
xn

k ,x
n+1
l

)
< 2−n if k, l ≥ kn

where kn is increasing in n. Let y =
{

xn
kn

}∞

n=1
. For m≥ kn and the triangle inequality,

d (xn
m,ym) = d

(
xn

m,x
m
km

)
≤ d

(
xn

m,x
n
kn

)
+d
(
xn

kn
,xm

km

)
≤ 2−n +

m−1

∑
j=n

d
(

x j
k j
,x j+1

km

)
< 2−n +

m−1

∑
j=n

2− j < 2−n +2−(n−1) < 2−(n−2)

Then y is a Cauchy sequence since it is a subsequence of one and also d ([xn] , [y])→ 0.
To show that X is dense in X̂ , let [x] be given. Then for m large enough, d (xk,xm)< ε

whenever k ≥ m. It suffices to let y be the constant Cauchy sequence always equal to xm.
■

3.14 Exercises
1. Let d (x,y) = |x− y| for x,y ∈ R. Show that this is a metric on R.

2. Now consider Rn. Let ∥x∥
∞
≡max{|xi| , i = 1, · · · ,n} . Define d (x,y)≡ ∥x−y∥

∞
.

Show that this is a metric on Rn. In the case of n = 2, describe the ball B(0,r). Hint:
First show that ∥x+y∥ ≤ ∥x∥+∥y∥ .

3. Let C ([0,T ]) denote the space of functions which are continuous on [0,T ] . Define

∥ f∥ ≡ ∥ f∥
∞
≡ sup

t∈[0,T ]
| f (t)|= max

t∈[0,T ]
| f (t)|

Verify the following. ∥ f +g∥ ≤ ∥ f∥+∥g∥ . Then use to show that d ( f ,g)≡ ∥ f −g∥
is a metric and that with this metric, (C ([0,T ]) ,d) is a metric space.

4. Recall that [a,b] is compact. Also, it is Lemma 3.5.9 above. Thus every open cover
has a finite subcover of the set. Also recall that a sequence of numbers {xn} is a
Cauchy sequence means that for every ε > 0 there exists N such that if m,n>N, then
|xn− xm| < ε . First show that every Cauchy sequence is bounded. Next, using the
compactness of closed intervals, show that every Cauchy sequence has a convergent
subsequence. By Theorem 3.2.2, the original Cauchy sequence converges. Thus
R with the usual metric just described is complete because every Cauchy sequence
converges.

5. Using the result of the above problem, show that (Rn,∥·∥
∞
) is a complete metric

space. That is, every Cauchy sequence converges. Here d (x,y)≡ ∥x−y∥
∞

.

6. Suppose you had (Xi,di) is a metric space. Now consider the product space X ≡
∏

n
i=1 Xi with d (x,y) = max{d (xi,yi) , i = 1 · · · ,n} . Would this be a metric space?

If so, prove that this is the case.
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Does triangle inequality hold? Hint: For each i,

di (xi,zi)≤ di (xi,yi)+di (yi,zi)≤ d (x,y)+d (y,z)

Now take max of the two ends.

7. In the above example, if each (Xi,di) is complete, explain why (X ,d) is also com-
plete.

8. Show that C ([0,T ]) is a complete metric space. That is, show that if { fn} is a Cauchy
sequence, then there exists f ∈C ([0,T ]) such that

lim
n→∞

d ( f , fn) = lim
n→∞
∥ f − fn∥= 0

This is just a special case of theorems discussed in the chapter.

9. Let X be a nonempty set of points. Say it has infinitely many points. Define d (x,y) =
1 if x ̸= y and d (x,y) = 0 if x = y. Show that this is a metric. Show that in (X ,d)
every point is open and closed. In fact, show that every set is open and every set is
closed. Is this a complete metric space? Explain why. Describe the open balls.

10. Show that the union of any set of open sets is an open set. Show the intersection of
any set of closed sets is closed. Let A be a nonempty subset of a metric space (X ,d).
Then the closure of A, written as Ā is defined to be the intersection of all closed sets
which contain A. Show that Ā = A∪A′. That is, to find the closure, you just take the
set and include all limit points of the set. It was proved in the chapter, but go over it
yourself.

11. Let A′ denote the set of limit points of A, a nonempty subset of a metric space (X ,d) .
Show that A′ is closed.

12. A theorem was proved which gave three equivalent descriptions of compactness of
a metric space. One of them said the following: A metric space is compact if and
only if it is complete and totally bounded. Suppose (X ,d) is a complete metric space
and K ⊆ X . Then (K,d) is also clearly a metric space having the same metric as X .
Show that (K,d) is compact if and only if it is closed and totally bounded. Note the
similarity with the Heine Borel theorem on R. Show that on R, every bounded set is
also totally bounded. Thus the earlier Heine Borel theorem for R is obtained.

13. Suppose (Xi,di) is a compact metric space. Then the Cartesian product is also a
metric space. That is (∏n

i=1 Xi,d) is a metric space where d (x,y)≡max{di (xi,yi)}.
Show that (∏n

i=1 Xi,d) is compact. Recall the Heine Borel theorem for R. Explain
why ∏

n
i=1 [ai,bi] is compact in Rn with the distance given by

d (x,y) = max{|xi− yi|}

Hint: It suffices to show that (∏n
i=1 Xi,d) is sequentially compact. Let {xm}∞

m=1
be a sequence. Then {xm

1 }
∞

m=1 is a sequence in Xi. Therefore, it has a subsequence{
xk1

1

}∞

k1=1
which converges to a point x1 ∈ X1. Now consider

{
xk1

2

}∞

k1=1
the second

components. It has a subsequence denoted as k2 such that
{

xk2
2

}∞

k2=1
converges to a
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point x2 in X2. Explain why limk2→∞ xk2
1 = x1. Continue doing this n times. Explain

why limkn→∞ xkn
l = xl ∈ Xl for each l. Then explain why this is the same as saying

limkn→∞xkn = x in (∏n
i=1 Xi,d) .

14. If you have a metric space (X ,d) and a compact subset of (X ,d) K, suppose that L is
a closed subset of K. Explain why L must also be compact. Hint: Use the definition
of compactness. Explain why every closed and bounded set in Rn is compact. Here
the distance is given by d (x,y)≡max1≤i≤n {|xi− yi|}.

15. Show that compactness is a topological property. If (X ,d) ,(Y,ρ) are both metric
spaces and f : X→Y has the property that f is one to one, onto, and continuous, and
also f−1 is one to one onto and continuous, then the two metric spaces are compact
or not compact together. That is one is compact if and only if the other is.

16. Consider R the real numbers. Define a distance in the following way. ρ (x,y) ≡
|arctan(x)− arctan(y)| Show this is a good enough distance and that the open sets
which come from this distance are the same as the open sets which come from the
usual distance d (x,y) = |x− y|. Explain why this yields that the identity mapping
f (x) = x is continuous with continuous inverse as a map from (R,d) to (R,ρ). To
do this, you show that an open ball taken with respect to one of these is also open
with respect to the other. However, (R,ρ) is not a complete metric space while
(R,d) is. Thus, unlike compactness. Completeness is not a topological property.
Hint: To show the lack of completeness of (R,ρ) , consider xn = n. Show it is a
Cauchy sequence with respect to ρ .

17. If K is a compact subset of (X ,d) and y /∈ K, show that there always exists x ∈ K
such that d (x,y) = dist(y,K). Give an example in R to show that this might not be
so if K is not compact.

18. If S is a nonempty set, the diameter of S denoted as diam(S) is defined as follows.
diam(S) ≡ sup{d (x,y) : x,y ∈ S} . Suppose (X ,d) is a complete metric space and
you have a nested sequence of closed sets whose diameters converge to 0. That
is, each An is closed, · · ·An ⊇ An+1 · · · and limn→∞ diam(An) = 0. Show that there is
exactly one point p contained in the intersection of all these sets An. Give an example
which shows that if the condition on the diameters does not hold, then maybe there
is no point in the intersection of these sets.

19. Two metric spaces (X ,d) ,(Y,ρ) are homeomorphic if there exists a continuous func-
tion f : X → Y which is one to one onto, and whose inverse is also continuous one
to one and onto. Show that the interval [0,1] is not homeomorphic to the unit circle.
Hint: Recall that the continuous image of a connected set is connected, Theorem
3.11.3. However, if you remove a point from [0,1] it is no longer connected but
removing a single point from the circle results in a connected set.

20. Using the same methods in the above problem, show that the unit circle is not home-
omorphic to the unit sphere

{
x2 + y2 + z2 = 1

}
and the unit circle is not homeomor-

phic to a figure eight.

21. The rational numbers Q and the natural numbers N have the property that there is a
one to one and onto map from N toQ. This is a simple consequence of the Schroeder
Bernstein theorem presented earlier. Both of these are also metric spaces with respect
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to the usual metric on R. Are they homeomorphic? Hint: Suppose they were. Then
in Q consider (1,2) , all the rationals between 1 and 2 excluding 1 and 2. This is not
a closed set because 2 is a limit point of the set which is not in it. Now if you have f
a homeomorphism, consider f ((1,2)) . Is this set closed?

22. If you have an open set O in R, show that O is the countable union of disjoint open
intervals. Hint: Consider the connected components. Go over this for yourself. It is
in the chapter.

23. Addition and multiplication on R can be considered mappings from R×R to R as
follows. +(x,y) ≡ x+ y, ·(x,y) ≡ xy. Here the metric on R×R can be taken as
d ((x,y) ,(x̂, ŷ)) ≡ max(|x− x̂| , |y− ŷ|) . Show these operations are continuous func-
tions.

24. Suppose K is a compact subset of a metric space (X ,d) and there is an open cover
C of K. Show that there exists a single positive δ > 0 such that if x ∈ K,B(x,δ )
is contained in some set of C . This number is called a Lebesgue number. Do this
directly from the definition of compactness in terms of open covers without using the
equivalence of compactness and sequential compactness.

25. Show uniform continuity of a continuous function defined on a compact set where
compactness only refers to open covers. Use the above problem on existence of the
Lebesgue number.

26. Let f : D→ R be a function. This function is said to be lower semicontinuous1

at x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows f (x) ≤
liminfn→∞ f (xn) . Suppose D is sequentially compact and f is lower semicontinu-
ous at every point of D. Show that then f achieves its minimum on D. Here D is
some metric space. Let f : D→ R be a function. This function is said to be upper
semicontinuous at x ∈ D if for any sequence {xn} ⊆ D which converges to x it fol-
lows f (x) ≥ limsupn→∞ f (xn) . Suppose D is sequentially compact and f is upper
semicontinuous at every point of D. Show that then f achieves its maximum on D.

27. Show that a real valued function defined on a metric space D is continuous if and
only if it is both upper and lower semicontinuous.

28. Give an example of a lower semicontinuous function defined on R which is not con-
tinuous and an example of an upper semicontinuous function which is not continu-
ous.

29. More generally, one considers functions which have values in [−∞,∞] . Then f is up-
per semicontinuous if, whenever xn → x, f (x) ≥ limsupn→∞ f (xn) and lower semi-
continuous if whenever xn → x, f (x) ≤ liminfn→∞ f (xn). Suppose { fα : α ∈ Λ}
is a collection of continuous real valued functions defined on a metric space. Let
F (x)≡ inf{ fα (x) : α ∈ Λ} . Show F is an upper semicontinuous function. Next let
G(x)≡ sup{ fα (x) : α ∈ Λ} . Show G is a lower semicontinuous function.

30. The result of this problem is due to Hausdorff. It says that if you have any lower
semicontinuous real valued function defined on a metric space (X ,d) , then it is the

1The notion of lower semicontinuity is very important for functions which are defined on infinite dimensional
sets.
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limit of an increasing sequence of continuous functions. Here is an outline. You
complete the details.

(a) First suppose f (x)≥ 0 for all x. Define fn (x)≡ infz∈X { f (z)+nd (z,x)} . Then
f (x)≥ fn (x) and fn (x) is increasing in n. Also each fn is continuous because
fn (x) ≤ f (z)+ nd (z,y)+ nd (y,x) . Thus fn (x) ≤ fn (y)+ nd (y,x) . Why? It
follows that | fn (x)− fn (y)| ≤ nd (y,x) . Why?

(b) Let h(x) = limn→∞ fn (x). Then h(x)≤ f (x) . Why? Now for each ε > 0, and
fixed x, there exists zn such that fn (x)+ε > f (zn)+nd (zn,x)Why? Therefore,
zn→ x. Why?

(c) Then

h(x)+ ε = lim
n→∞

fn (x)+ ε ≥ lim inf
n→∞

( f (zn)+nd (zn,x))

≥ lim inf
n→∞

f (zn)≥ f (x)

Why? Therefore, h(x)≥ f (x) and so they are equal. Why?

(d) Now consider f : X → (−∞,∞) and is lower semicontinuous as just explained.
Consider π

2 + arctan f (x) ≡ g(x). Then arctan f (x) ∈
(
−π

2 ,
π

2

)
because f has

real values. Then g(x) is also lower semicontinuous having values in (0,π).
Why? By what was just shown, there exists gn (x) ↑ g(x) where each gn is
continuous. Consider fn (x) ≡ tan

(
gn (x)− π

2

)
. Then fn is continuous and in-

creases to f (x).

31. Generalize the above problem to the case where f is an upper semicontinuous real
valued function. That is, f (x)≥ limsupn→∞ f (xn) whenever xn→ x. Show there are
continuous functions { fn (x)} such that fn (x) ↓ f (x). Hint To save trouble, maybe
show that f is upper semicontinuous if and only if− f is lower semicontinuous. Then
maybe you could just use the above problem.

32. What if f is lower (upper) semicontinuous with values in [−∞,∞]? In this case, you
consider [−∞,∞] as a metric space as follows:d (x,y)≡ |arctan(x)− arctan(y)| . Then
you can generalize the above problems to show that if f is lower semicontinuous
with values into [−∞,∞] then it is the increasing limit of continuous functions with
values in [−∞,∞]. Note that in this case a function identically equal to ∞ would
be continuous so this is a rather odd sort of thing, a little different from what we
normally like to consider. Check the details and explain why in this setting, the lower
semicontinuous functions are exactly pointwise limits of increasing sequences of
continuous functions and the upper semicontinuous functions are exactly pointwise
limits of decreasing sequences of continuous functions.

33. This is a nice result in Taylor [42]. For a nonempty set T,∂T is the set of points p
such that B(p,r) contains points of T and points of TC for each r > 0. Suppose you
have T a proper subset of a metric space and S is a connected, nonempty set such
that S∩T ̸= /0,S∩TC ̸= /0. Show that S must contain a point of ∂T .



Chapter 4

Linear Spaces
The thing which is missing in the above material about metric spaces is any kind of algebra.
In most applications, we are interested in adding things and multiplying things by scalars
and so forth. This requires the notion of a vector space, also called a linear space. The
simplest example is Rn which is described next.

In this chapter, F will refer to either R or C. It doesn’t make any difference to the
arguments which it is and so F is written to symbolize whichever you wish to think about.
When it is desired to emphasize that certain quantities are vectors, bold face will often be
used. This is not necessarily done consistently. Sometimes context is considered sufficient.

4.1 Algebra in Fn, Vector Spaces
There are exactly two algebraic operations done with elements of Fn. One is addition and
the other is multiplication by numbers, called scalars. In the case of Cn the scalars are
complex numbers while in the case of Rn the only allowed scalars are real numbers. Thus,
the scalars always come from F in either case.

Definition 4.1.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined
by

ax= a(x1, · · · ,xn)≡ (ax1, · · · ,axn) . (4.1)

This is known as scalar multiplication. If x,y ∈ Fn then x+y ∈ Fn and is defined by

x+y = (x1, · · · ,xn)+(y1, · · · ,yn)

≡ (x1 + y1, · · · ,xn + yn) (4.2)

the points in Fn are also referred to as vectors.

Actually, in dealing with vectors in Fn, it is more customary in linear algebra to write
them as column vectors. To save space, I will sometimes write (x1, · · · ,xn)

T to indicate
the column vector having x1 on the top and xn on the bottom. With this definition, the
algebraic properties satisfy the conclusions of the following theorem. These conclusions
are called the vector space axioms. Any time you have a set and a field of scalars satisfying
the axioms of the following theorem, it is called a vector space or linear space.

Theorem 4.1.2 For v,w ∈ Fn and α,β scalars, (real numbers), the following hold.

v+w=w+v, (4.3)

the commutative law of addition,

(v+w)+z = v+(w+z) , (4.4)

the associative law for addition,
v+0= v, (4.5)

the existence of an additive identity,

v+(−v) = 0, (4.6)

91
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the existence of an additive inverse, Also

α (v+w) = α v+αw, (4.7)

(α +β ) v = α v+βv, (4.8)

α (βv) = αβ (v) , (4.9)

1v = v. (4.10)

In the above 0= (0, · · · ,0).

You should verify these properties all hold. For example, consider 4.7

α (v+w) = α (v1 +w1, · · · ,vn +wn)

= (α (v1 +w1) , · · · ,α (vn +wn))

= (αv1 +αw1, · · · ,αvn +αwn)

= (αv1, · · · ,αvn)+(αw1, · · · ,αwn)

= αv+αw.

As usual subtraction is defined as x−y ≡ x+(−y) .

4.2 Subspaces Spans and Bases
As mentioned above, Fn is an example of a vector space. In dealing with vector spaces,
the concept of linear combination is fundamental. When one considers only algebraic
considerations, it makes no difference what field of scalars you are using. It could be R, C,
Q or even a field of residue classes. However, go ahead and think R or C since the subject
of interest here is analysis.

Definition 4.2.1 Let
{
x1, · · · ,xp

}
be vectors in a vector space Y having the field

of scalars F. A linear combination is any expression of the form ∑
p
i=1 cixi where the ci are

scalars. The set of all linear combinations of these vectors is called span(x1, · · · ,xp) . A
vector v is said to be in the span of some set S of vectors if v is a linear combination of
vectors of S. This means: finite linear combination. If V ⊆Y, then V is called a subspace
if it contains 0 and whenever α,β are scalars and u and v are vectors of V, it follows
αu+βv ∈V . That is, it is “closed under the algebraic operations of vector addition and
scalar multiplication” and is therefore, a vector space. A linear combination of vectors
is said to be trivial if all the scalars in the linear combination equal zero. A set of vectors
is said to be linearly independent if the only linear combination of these vectors which
equals the zero vector is the trivial linear combination. Thus {x1, · · · ,xn} is called linearly
independent if whenever ∑

n
k=1 ckxk = 0, it follows that all the scalars, ck equal zero. A set

of vectors, {x1, · · · ,xn} , is called linearly dependent if it is not linearly independent. Thus
the set of vectors is linearly dependent if there exist scalars, ci, i = 1, · · · ,n, not all zero
such that ∑

n
k=1 ckxk = 0.

Lemma 4.2.2 A set of vectors {x1, · · · ,xn} is linearly independent if and only if none
of the vectors can be obtained as a linear combination of the others.
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Proof: Suppose first that {x1, · · · ,xn} is linearly independent. If

xk = ∑
j ̸=k

c jx j,

then 0 = 1xk +∑ j ̸=k (−c j)x j, a nontrivial linear combination, contrary to assumption.
This shows that if the set is linearly independent, then none of the vectors is a linear com-
bination of the others.

Now suppose no vector is a linear combination of the others. Is {x1, · · · ,xn} linearly
independent? If it is not, there exist scalars, ci, not all zero such that ∑

n
i=1 cixi = 0. Say

ck ̸= 0. Then you can solve for xk as xk = ∑ j ̸=k (−c j/ck)x j contrary to assumption. This
proves the lemma. ■

The following is called the exchange theorem.

Theorem 4.2.3 If

span(u1, · · · ,ur)⊆ span(v1, · · · ,vs)≡V

and {u1, · · · ,ur} are linearly independent, then r ≤ s.

Proof: Suppose r > s. Let Fp denote the first p vectors in {u1, · · · ,ur}. Let F0 denote
the empty set. Let Ep denote a finite list of vectors of {v1, · · · ,vs} and let

∣∣Ep
∣∣ denote the

number of vectors in the list. Note that, by assumption, span(F0,Es) =V . For 0≤ p≤ s, let
Ep have the property span(Fp,Ep) =V and

∣∣Ep
∣∣ is as small as possible for this to happen.

If
∣∣Ep
∣∣ = 0, then span(Fp) = V which would imply that, since r > s ≥ p,ur ∈ span(Fs)

contradicting the linear independence of {u1, · · · ,ur}. Assume then that
∣∣Ep
∣∣ > 0. Then

up+1 ∈ span(Fp,Ep) and so there are constants, c1, · · · ,cp and d1, · · · ,dm such that up+1 =

∑
p
i=1 ciui +∑

m
j=1 diz j for {z1, · · · ,zm} ⊆ {v1, · · · ,vs} . Then not all the di can equal zero

because this would violate the linear independence of the {u1, · · · ,ur} . Therefore, you can
solve for one of the zk as a linear combination of

{
u1, · · · ,up+1

}
and the other z j. Thus

you can change Fp to Fp+1 and include one fewer vector in Ep+1 with span(Fp+1,Ep+1)=V
and so

∣∣Ep+1
∣∣< ∣∣Ep

∣∣ contrary to the claim that
∣∣Ep
∣∣was as small as possible. Thus

∣∣Ep
∣∣= 0

after all and so a contradiction results.
Alternate proof: Recall from linear algebra that if you have A an m×n matrix where

m < n so there are more columns than rows, then there exists a nonzero solution x to the
equation Ax= 0. Recall why this was. You must have free variables. Then by assumption,
you have u j = ∑

s
i=1 ai jvi. If s < r, then the matrix (ai j) has more columns than rows and so

there exists a nonzero vector x ∈ Fr such that ∑
r
j=1 ai jx j = 0. Then consider the following.

r

∑
j=1

x ju j =
r

∑
j=1

x j

s

∑
i=1

ai jvi = ∑
i

∑
j

ai jx jvi = ∑
i

0v j = 0

and since not all x j = 0, this contradicts the independence of {u1, · · · ,ur}. ■

Definition 4.2.4 A finite set of vectors, {x1, · · · ,xr} is a basis for a vector space V
if

span(x1, · · · ,xr) =V

and {x1, · · · ,xr} is linearly independent. Thus if v ∈V there exist unique scalars, v1, · · · ,vr
such that v = ∑

r
i=1 vixi. These scalars are called the components of v with respect to the

basis {x1, · · · ,xr} and {x1, · · · ,xr} are said to “span” V .
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Corollary 4.2.5 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s= n.
More generally, if you have two bases for a vector space V then they have the same number
of vectors.

Proof: From the exchange theorem, Theorem 4.2.3, if

{x1, · · · ,xr} ,{y1, · · · ,ys}

are two bases for V, then r ≤ s and s≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · · ,0,1,0 · · · ,0)T

for i = 1,2, · · · ,n are a basis for Fn. ■

Lemma 4.2.6 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span(v1, · · · ,vr) is a
subspace.

Proof: Suppose α,β are two scalars and let ∑
r
k=1 ckvk and ∑

r
k=1 dkvk are two elements

of V. What about α ∑
r
k=1 ckvk +β ∑

r
k=1 dkvk? Is it also in V ?

α

r

∑
k=1

ckvk +β

r

∑
k=1

dkvk =
r

∑
k=1

(αck +βdk)vk ∈V

so the answer is yes. It is clear that 0 is in span(v1, · · · ,vr). This proves the lemma. ■

Definition 4.2.7 Let V be a vector space. It is finite dimensional when it has a
basis of finitely many vectors. Otherwise, it is infinite dimensional. Then dim(V ) read as
the dimension of V is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace of a finite di-
mensional vector space even has a basis. In fact it does and this is in the next theorem.
First, here is an interesting lemma.

Lemma 4.2.8 Suppose v /∈ span(u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose ∑
k
i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that

d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk}, v = −∑

k
i=1
( ci

d

)
ui contrary to assumption. Therefore, d = 0. But then

∑
k
i=1 ciui = 0 and the linear independence of {u1, · · · ,uk} implies each ci = 0 also. ■

Theorem 4.2.9 Let V be a nonzero subspace of Y a finite dimensional vector space
having dimension n. Then V has a basis.

1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of hissing as
in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Proof: Let v1 ∈ V where v1 ̸= 0. If span{v1} = V, stop. {v1} is a basis for V . Oth-
erwise, there exists v2 ∈ V which is not in span{v1} . By Lemma 4.2.8 {v1,v2} is a lin-
early independent set of vectors. If span{v1,v2} = V stop, {v1,v2} is a basis for V. If
span{v1,v2} ̸=V, then there exists v3 /∈ span{v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n+ 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorem 4.2.3, and the assumed dimension of Y . ■

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 4.2.10 Let V be a subspace of Y, a finite dimensional vector space of dimen-
sion n and let {v1, · · · ,vr} be a linearly independent set of vectors in V . Then either it is
a basis for V or there exist vectors, vr+1, · · · ,vs such that

{v1, · · · ,vr,vr+1, · · · ,vs}

is a basis for V.

Proof: This follows immediately from the proof of Theorem 4.2.9. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. ■

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 4.2.11 Let V be a subspace of Y, a finite dimensional vector space of
dimension n and suppose span(u1 · · · ,up) = V where the ui are nonzero vectors. Then
there exist vectors, {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆

{
u1 · · · ,up

}
and {v1 · · · ,vr} is a

basis for V .

Proof: Let r be the smallest positive integer with the property that for some set,

{v1, · · · ,vr} ⊆
{
u1, · · · ,up

}
,span(v1, · · · ,vr) =V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r− 1 vectors
would still span V contrary to the definition of r. ■

4.3 Inner Product and Normed Linear Spaces
4.3.1 The Inner Product in Fn

To do calculus, you must understand what you mean by distance. For functions of one
variable, the distance was provided by the absolute value of the difference of two numbers.
This must be generalized to Fn and to more general situations.

Definition 4.3.1 Let x,y ∈ Fn. Thus x = (x1, · · · ,xn) where each xk ∈ F and a
similar formula holding for y. Then the inner product of these two vectors is defined to be

(x,y)≡∑
j

x jy j ≡ x1y1 + · · ·+ xnyn.

Sometimes it is denoted as x ·y.
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Notice how you put the conjugate on the entries of the vector y. It makes no differ-
ence if the vectors happen to be real vectors but with complex vectors you must involve
a conjugate. The reason for this is that when you take the inner product of a vector with
itself, you want to get the square of the length of the vector, a positive number. Placing the
conjugate on the components of y in the above definition assures this will take place. Thus
(x,x) = ∑ j x jx j = ∑ j

∣∣x j
∣∣2 ≥ 0. If you didn’t place a conjugate as in the above definition,

things wouldn’t work out correctly. For example, (1+ i)2 + 22 = 4+ 2i and this is not a
positive number.

The following properties of the inner product follow immediately from the definition
and you should verify each of them.

Properties of the inner product:

1. (u,v) = (v,u)

2. If a,b are numbers and u,v,z are vectors then ((au+bv) ,z) = a(u,z)+b(v,z) .

3. (u,u)≥ 0 and it equals 0 if and only if u= 0.

Note this implies (x,αy) = α (x,y) because

(x,αy) = (αy,x) = α (y,x) = α (x,y)

The norm is defined as follows.

Definition 4.3.2 For x ∈ Fn, |x| ≡
(

∑
n
k=1 |xk|2

)1/2
= (x,x)1/2.

4.3.2 General Inner Product Spaces
Any time you have a vector space which possesses an inner product, something satisfying
the properties 1 - 3 above, it is called an inner product space.

Here is a fundamental inequality called the Cauchy Schwarz inequality which holds
in any inner product space. First here is a simple lemma.

Lemma 4.3.3 If z ∈ F there exists θ ∈ F such that θz = |z| and |θ |= 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ =
z
|z|

. Recall that for z = x+ iy,z = x− iy

and zz = |z|2. In case z is real, there is no change in the above. ■

Theorem 4.3.4 (Cauchy Schwarz)Let H be an inner product space. The following
inequality holds for x and y ∈ H.

|(x,y)| ≤ (x,x)1/2 (y,y)1/2 (4.11)

Equality holds in this inequality if and only if one vector is a multiple of the other.

Proof: Let θ ∈ F such that |θ |= 1 and θ (x,y) = |(x,y)| . Consider

p(t)≡
(
x+θ ty,x+ tθy

)
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where t ∈ R. Then from the above list of properties of the inner product,

0 ≤ p(t) = (x,x)+ tθ (x,y)+ tθ (y,x)+ t2 (y,y)

= (x,x)+ tθ (x,y)+ tθ(x,y)+ t2 (y,y)

= (x,x)+2t Re(θ (x,y))+ t2 (y,y)

= (x,x)+2t |(x,y)|+ t2 (y,y) (4.12)

and this must hold for all t ∈ R. Therefore, if (y,y) = 0 it must be the case that |(x,y)|=
0 also since otherwise the above inequality would be violated. Therefore, in this case,
|(x,y)| ≤ (x,x)1/2 (y,y)1/2 . On the other hand, if (y,y) ̸= 0, then p(t) ≥ 0 for all t
means the graph of y = p(t) is a parabola which opens up and it either has exactly one
real zero in the case its vertex touches the t axis or it has no real zeros. From the quadratic
formula this happens exactly when 4 |(x,y)|2− 4(x,x)(y,y) ≤ 0 which is equivalent to
4.11.

It is clear from a computation that if one vector is a scalar multiple of the other that
equality holds in 4.11. Conversely, suppose equality does hold. Then this is equivalent to
saying 4 |(x,y)|2−4(x,x)(y,y) = 0 and so from the quadratic formula, there exists one
real zero to p(t) = 0. Call it t0. Then

p(t0)≡
(
x+θ t0y,x+ t0θy

)
=
∣∣x+θ ty

∣∣2 = 0

and so x=−θ t0y. ■
Note that in establishing the inequality, I only used part of the above properties of the

inner product. It was not necessary to use the one which says that if (x,x) = 0 then x= 0.
That was only used to consider the case of equality.

Now the length of a vector can be defined.

Definition 4.3.5 Let z ∈ H. Then |z| ≡ (z,z)1/2.

Theorem 4.3.6 For length defined in Definition 4.3.5, the following hold.

|z| ≥ 0 and |z|= 0 if and only if z = 0 (4.13)

If α is a scalar, |αz|= |α| |z| (4.14)

|z+w| ≤ |z|+ |w| . (4.15)

Proof: The first two claims are left as exercises. To establish the third,

|z+w|2 ≡ (z+w,z+w)

= (z,z)+(w,w)+(w,z)+(z,w)

= |z|2 + |w|2 +2Re(w,z)

≤ |z|2 + |w|2 +2 |(w,z)|
≤ |z|2 + |w|2 +2 |w| |z|= (|z|+ |w|)2 .

Note that in an inner product space, you can define d (x,y)≡ |x−y| and this is a met-
ric for this inner product space. This follows from the above since d satisfies the conditions
for a metric,

d (x,y) = d (y,x) , d (x,y)≥ 0 and equals 0 if and only if x= y

d (x,y)+d (y,z) = |x−y|+ |y−z| ≥ |x−y+y−z|= |x−z|= d (x,z) .

It follows that all the theory of metric spaces developed earlier applies to this situation.
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4.3.3 Normed Vector Spaces
The best sort of a norm is one which comes from an inner product. However, any vector
space V which has a function ∥·∥ which maps V to [0,∞) is called a normed vector space if
∥·∥ satisfies 4.13 - 4.15. That is

∥z∥ ≥ 0 and ∥z∥= 0 if and only if z = 0 (4.16)

If α is a scalar, ∥αz∥= |α|∥z∥ (4.17)

∥z+w∥ ≤ ∥z∥+∥w∥ . (4.18)

The last inequality above is called the triangle inequality. Another version of this is

|∥z∥−∥w∥| ≤ ∥z−w∥ (4.19)

To see that 4.19 holds, note ∥z∥ = ∥z−w+w∥ ≤ ∥z−w∥+ ∥w∥ which implies
∥z∥−∥w∥ ≤ ∥z−w∥ and now switching z and w, yields ∥w∥−∥z∥ ≤ ∥z−w∥ which
implies 4.19.

Any normed vector space is a metric space, the distance given by d (x,y) ≡ ∥x−y∥.
This satisfies all the axioms of a distance. Therefore, any normed linear space is a metric
space with this metric and all the theory of metric spaces applies.

Definition 4.3.7 When X is a normed linear space which is also complete, it is
called a Banach space.

A Banach space may or may not be finite dimensional but it is always a linear space or
vector space. The field of scalars will always be R or C at least in this book. More is said
about Banach spaces later.

4.3.4 The p Norms
Examples of norms are the p norms on Cn for p ̸= 2. These do not come from an inner
product but they are norms just the same.

Definition 4.3.8 Let x ∈ Cn. Then define for p≥ 1,

∥x∥p ≡

(
n

∑
i=1
|xi|p

)1/p

.

The following inequality is called Holder’s inequality.

Proposition 4.3.9 For x,y ∈ Cn,

n

∑
i=1
|xi| |yi| ≤

(
n

∑
i=1
|xi|p

)1/p( n

∑
i=1
|yi|p

′
)1/p′

The proof will depend on the following lemma shown later.

Lemma 4.3.10 If a,b≥ 0 and p′ is defined by 1
p +

1
p′ = 1, then

ab≤ ap

p
+

bp′

p′
.
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Proof of the Proposition: If x or y equals the zero vector there is nothing to prove.

Therefore, assume they are both nonzero. Let A= (∑n
i=1 |xi|p)1/p and B=

(
∑

n
i=1 |yi|p

′)1/p′

.
Then using Lemma 4.3.10,

n

∑
i=1

|xi|
A
|yi|
B

≤
n

∑
i=1

[
1
p

(
|xi|
A

)p

+
1
p′

(
|yi|
B

)p′
]

=
1
p

1
Ap

n

∑
i=1
|xi|p +

1
p′

1
Bp

n

∑
i=1
|yi|p

′

=
1
p
+

1
p′

= 1

and so ∑
n
i=1 |xi| |yi| ≤ AB = (∑n

i=1 |xi|p)1/p
(

∑
n
i=1 |yi|p

′)1/p′

. ■

Theorem 4.3.11 The p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that ∥·∥p does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ∥·∥ in place of ∥·∥p in
what follows. Note also that p

p′ = p−1. Then using the Holder inequality,

∥x+y∥p =
n

∑
i=1
|xi + yi|p ≤

n

∑
i=1
|xi + yi|p−1 |xi|+

n

∑
i=1
|xi + yi|p−1 |yi|

=
n

∑
i=1
|xi + yi|

p
p′ |xi|+

n

∑
i=1
|xi + yi|

p
p′ |yi|

≤

(
n

∑
i=1
|xi + yi|p

)1/p′
( n

∑
i=1
|xi|p

)1/p

+

(
n

∑
i=1
|yi|p

)1/p


= ∥x+y∥p/p′
(
∥x∥p +∥y∥p

)
so dividing by ∥x+y∥p/p′ , it follows

∥x+y∥p ∥x+y∥−p/p′ = ∥x+y∥ ≤ ∥x∥p +∥y∥p(
p− p

p′ = p
(

1− 1
p′

)
= p 1

p = 1.
)
. ■

It only remains to prove Lemma 4.3.10.
Proof of the lemma: Let p′ = q to save on notation and consider the following picture:

b

a

x

t

x = t p−1

t = xq−1
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ab≤
∫ a

0
t p−1dt +

∫ b

0
xq−1dx =

ap

p
+

bq

q
.

Note equality occurs when ap = bq. ■
Alternate proof of the lemma: First note that if either a or b are zero, then there is

nothing to show so we can assume b,a > 0. Let b > 0 and let

f (a) =
ap

p
+

bq

q
−ab

Then the second derivative of f is positive on (0,∞) so its graph is convex. Also f (0)> 0
and lima→∞ f (a) = ∞. Then a short computation shows that there is only one critical point,
where f is minimized and this happens when a is such that ap = bq. At this point,

f (a) = bq−bq/pb = bq−bq−1b = 0

Therefore, f (a)≥ 0 for all a and this proves the lemma. ■
Another example of a very useful norm on Fn is the norm ∥·∥

∞
defined by

∥x∥
∞
≡max{|xk| : k = 1,2, · · · ,n}

You should verify that this satisfies all the axioms of a norm. Here is the triangle inequality.

∥x+y∥
∞

= max
k
{|xk + yk|} ≤max

k
{|xk|+ |yk|}

≤ max
k
{|xk|}+max

k
{|yk|}= ∥x∥∞

+∥y∥
∞

It turns out that in terms of analysis, it makes absolutely no difference which norm you
use. This will be explained later. First is a short review of the notion of orthonormal bases
which is not needed directly in what follows but is sufficiently important to include.

4.3.5 Orthonormal Bases
Not all bases for an inner product space H are created equal. The best bases are orthonor-
mal.

Definition 4.3.12 Suppose {v1, · · · ,vk} is a set of vectors in an inner product
space H. It is an orthonormal set if

(vi,v j) = δ i j =

{
1 if i = j
0 if i ̸= j

Every orthonormal set of vectors is automatically linearly independent.

Proposition 4.3.13 Suppose {v1, · · · ,vk} is an orthonormal set of vectors. Then it is
linearly independent.

Proof: Suppose ∑
k
i=1 civi = 0. Then taking inner products with

v j,0 = (0,v j) = ∑
i

ci (vi,v j) = ∑
i

ciδ i j = c j.

Since j is arbitrary, this shows the set is linearly independent as claimed. ■
It turns out that if X is any subspace of H, then there exists an orthonormal basis for X .

The process by which this is done is called the Gram Schmidt process.
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Lemma 4.3.14 Let X be a subspace of dimension n which is contained in an inner
product space H. Let a basis for X be {x1, · · · ,xn} . Then there exists an orthonormal
basis for X , {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span(u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for X . Let u1 ≡x1/ |x1| . Thus if k = 1,span(u1) =
span(x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk
have been chosen such that (u j,ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then
define

uk+1 ≡
xk+1−∑

k
j=1 (xk+1,u j)u j∣∣∣xk+1−∑
k
j=1 (xk+1,u j)u j

∣∣∣ , (4.20)

where the denominator is not equal to zero because the x j form a basis and so

xk+1 /∈ span(x1, · · · ,xk) = span(u1, · · · ,uk)

Thus by induction, uk+1 ∈ span(u1, · · · ,uk,xk+1)= span(x1, · · · ,xk,xk+1). Also, xk+1 ∈
span(u1, · · · ,uk,uk+1) which is seen easily by solving 4.20 for xk+1 and it follows that
span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1). If l ≤ k, then denoting by C the scalar∣∣∣xk+1−∑

k
j=1 (xk+1,u j)u j

∣∣∣−1
,(uk+1,ul) =

C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)(u j,ul)

)
= C

(
(xk+1,ul)−

k

∑
j=1

(xk+1,u j)δ l j

)
= C ((xk+1,ul)− (xk+1,ul)) = 0.

The vectors,
{
u j
}n

j=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. ■

The process by which these vectors were generated is called the Gram Schmidt process.

4.4 Equivalence of Norms
As mentioned above, it makes absolutely no difference which norm you decide to use. This
holds in general finite dimensional normed spaces. First are some simple lemmas featuring
one dimensional considerations. In this case, the distance is given by d (x,y) = |x− y| and
so the open balls are sets of the form (x−δ ,x+δ ).

Also recall the Lemma 3.5.9 which is stated next for convenience.

Lemma 4.4.1 The closed interval [a,b] is compact.

Corollary 4.4.2 The set Q≡ [a,b]+ i [c,d]⊆ C is compact, meaning

{x+ iy : x ∈ [a,b] ,y ∈ [c,d]}

Proof: Let {xn + iyn} be a sequence in Q. Then there is a subsequence such that
limk→∞ xnk = x ∈ [a,b] . There is a further subsequence such that liml→∞ ynkl

= y ∈ [c,d].
Thus, also liml→∞ xnkl

= x because subsequences of convergent sequences converge to
the same point. Therefore, from the way we measure the distance in C, it follows that
liml→∞

(
xnkl

+ ynkl

)
= x+ iy ∈ Q. ■

The next corollary gives the definition of a closed disk and shows that, like a closed
interval, a closed disk is compact.
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Corollary 4.4.3 In C, let D(z,r)≡ {w ∈ C : |z−w| ≤ r}. Then D(z,r) is compact.

Proof: Note that D(z,r) ⊆ [Rez− r,Rez+ r] + i [Imz− r, Imz+ r], just shown to be
compact. Also, if wk→ w where wk ∈ D(z,r) , then by the triangle inequality,

|z−w|= lim
k→∞

|z−wk| ≤ r

and so D(z,r) is a closed subset of a compact set. Hence it is compact by Proposition 3.5.2.
■

Recall that sequentially compact and compact are the same in any metric space which
is the context of the assertions here.

Lemma 4.4.4 Let Ki be a nonempty compact set in F. Then P≡ ∏
n
i=1 Ki is compact in

Fn.

Proof: Let {xk} be a sequence in P. Taking a succession of subsequences as in the
proof of Corollary 4.4.2, there exists a subsequence, still denoted as {xk} such that if xi

k
is the ith component of xk, then limk→∞ xi

k = xi ∈ Ki. Thus if x is the vector of P whose

ith component is xi, limk→∞ |xk−x| ≡ limk→∞

(
∑

n
i=1

∣∣xi
k− xi

∣∣2)1/2
= 0. It follows that P is

sequentially compact, hence compact. ■
A set K in Fn is said to be bounded if it is contained in some ball B(0,r).

Theorem 4.4.5 A set K ⊆ Fn is compact if it is closed and bounded. If f : K→ R,
then f achieves its maximum and its minimum on K.

Proof: Say K is closed and bounded, being contained in B(0,r). Then if x∈K, |xi|< r
where xi is the ith component. Hence K ⊆ ∏

n
i=1 D(0,r) , a compact set by Lemma 4.4.4.

By Proposition 3.5.2, since K is a closed subset of a compact set, it is compact. The last
claim is just the extreme value theorem, Theorem 3.7.2. ■

Definition 4.4.6 Let {v1, · · · ,vn} be a basis for V where (V,∥·∥) is a finite dimen-
sional normed vector space with field of scalars equal to either R or C. Define θ : V → Fn

as follows. θ

(
∑

n
j=1 α jv j

)
≡α≡ (α1, · · · ,αn)

T . Thus θ maps a vector to its coordinates
taken with respect to a given basis.

The following fundamental lemma comes from the extreme value theorem for continu-
ous functions defined on a compact set. Let f (α)≡ ∥∑i α ivi∥ ≡

∥∥θ
−1α

∥∥. Then it is clear
that f is a continuous function defined on Fn. This is because α→ ∑i α ivi is a continuous
map into V and from the triangle inequality x→∥x∥ is continuous as a map from V to R.

Lemma 4.4.7 There exists δ > 0 and ∆≥ δ such that

δ = min{ f (α) : |α|= 1} , ∆ = max{ f (α) : |α|= 1}

Also,

δ |α| ≤
∥∥θ
−1α

∥∥≤ ∆ |α| (4.21)
δ |θv| ≤ ∥v∥ ≤ ∆ |θv| (4.22)
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Proof: These numbers exist thanks to Theorem 4.4.5. It cannot be that δ = 0 because if
it were, you would have |α|= 1 but ∑

n
j=1 αkv j = 0 which is impossible since {v1, · · · ,vn}

is linearly independent. The first of the above inequalities follows from δ ≤
∥∥∥θ
−1 α
|α|

∥∥∥ =
f
(

α
|α|

)
≤ ∆. The second follows from observing that θ

−1α is a generic vector v in V . ■
Note that these inequalities yield the fact that convergence of the coordinates with re-

spect to a given basis is equivalent to convergence of the vectors. More precisely, to say
that limk→∞vk = v is the same as saying that limk→∞ θvk = θv. Indeed, δ |θvn−θv| ≤
∥vn−v∥ ≤ ∆ |θvn−θv|.

Now we can draw several conclusions about (V,∥·∥) for V finite dimensional.

Theorem 4.4.8 Let (V,∥·∥) be a finite dimensional normed linear space. Then the
compact sets are exactly those which are closed and bounded. Also (V,∥·∥) is complete. If
K is a closed and bounded set in (V,∥·∥) and f : K→R, then f achieves its maximum and
minimum on K.

Proof: First note that the inequalities 4.21 and 4.22 show that both θ
−1 and θ are

continuous. Thus these take convergent sequences to convergent sequences.
Let {wk}∞

k=1 be a Cauchy sequence. Then from 4.22, {θwk}∞

k=1 is a Cauchy sequence.
Thanks to Theorem 4.4.5, it converges to some β ∈ Fn. It follows that limk→∞ θ

−1
θwk =

limk→∞wk = θ
−1β ∈V . This shows completeness.

Next let K be a closed and bounded set. Let {wk} ⊆ K. Then {θwk} ⊆ θK which
is also a closed and bounded set thanks to the inequalities 4.21 and 4.22. Thus there is a
subsequence still denoted with k such that θwk→ β ∈ Fn. Then as just done, wk→ θ

−1β.
Since K is closed, it follows that θ

−1
β ∈ K.

This has just shown that a closed and bounded set in V is sequentially compact hence
compact.

Finally, why are the only compact sets those which are closed and bounded? Let K be
compact. If it is not bounded, then there is a sequence of points of K,{km}∞

m=1 such that
∥km∥ ≥

∥∥km−1∥∥+1. It follows that it cannot have a convergent subsequence because the
points are further apart from each other than 1/2. Indeed,∥∥km−km+1∥∥≥ ∥∥km+1∥∥−∥km∥ ≥ 1 > 1/2

Hence K is not sequentially compact and consequently it is not compact. It follows
that K is bounded. If K is not closed, then there exists a limit point k which is not in K.
(Recall that closed means it has all its limit points.) By Theorem 3.1.8, there is a sequence
of distinct points having no repeats and none equal to k denoted as {km}∞

m=1 such that
km→ k. Then this sequence {km} fails to have a subsequence which converges to a point
of K. Hence K is not sequentially compact. Thus, if K is compact then it is closed and
bounded.

The last part is the extreme value theorem, Theorem 3.7.2. ■
Next is the theorem which states that any two norms on a finite dimensional vector

space are equivalent.

Theorem 4.4.9 Let ∥·∥ ,∥·∥1 be two norms on V a finite dimensional vector space.
Then they are equivalent, which means there are constants 0 < a < b such that for all v,

a∥v∥ ≤ ∥v∥1 ≤ b∥v∥
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Proof: In Lemma 4.4.7, let δ ,∆ go with ∥·∥ and δ̂ , ∆̂ go with ∥·∥1. Then using the
inequalities of this lemma,

∥v∥ ≤ ∆ |θv| ≤ ∆

δ̂
∥v∥1 ≤

∆∆̂

δ̂
|θv| ≤ ∆

δ

∆̂

δ̂
∥v∥

and so δ̂

∆
∥v∥ ≤ ∥v∥1 ≤ ∆̂

δ
∥v∥. Thus the norms are equivalent. ■

It follows right away that the closed and open sets are the same with two different
norms. Also, all considerations involving limits are unchanged from one norm to another.

Corollary 4.4.10 Consider the metric spaces (V,∥·∥1) ,(V,∥·∥2) where V has dimen-
sion n. Then a set is closed or open in one of these if and only if it is respectively closed or
open in the other. In other words, the two metric spaces have exactly the same open and
closed sets. Also, a set is bounded in one metric space if and only if it is bounded in the
other.

Proof: This follows from Theorem 3.6.2, the theorem about the equivalent formulations
of continuity. Using this theorem, it follows from Theorem 4.4.9 that the identity map
I (x)≡x is continuous. The reason for this is that the inequality of this theorem implies that
if ∥vm−v∥1→ 0 then ∥Ivm− Iv∥2 = ∥I (vm−v)∥2→ 0 and the same holds on switching
1 and 2 in what was just written.

Therefore, the identity map takes open sets to open sets and closed sets to closed sets.
In other words, the two metric spaces have the same open sets and the same closed sets.

Suppose S is bounded in (V,∥·∥1). This means it is contained in B(0,r)1 where the
subscript of 1 indicates the norm is ∥·∥1 . Let δ ∥·∥1 ≤ ∥·∥2 ≤ ∆∥·∥1 as described above.
Then S⊆ B(0,r)1 ⊆ B(0,∆r)2 so S is also bounded in (V,∥·∥2). Similarly, if S is bounded
in ∥·∥2 then it is bounded in ∥·∥1. ■

One can show that in the case of R where it makes sense to consider sup and inf, con-
vergence of Cauchy sequences can be shown to imply the other definition of completeness
involving sup, and inf.

4.5 Vitali Covering Theorem
These covering theorems make sense on any finite dimensional normed linear space. There
are two which are commonly used, the Vitali theorem and the Besicovitch theorem. The
first adjusts the size of balls and the second does not. The Vitali theorem is the only one I
will use in this book. See my larger book “Real and Abstract Analysis” for the Besicovitch
theorem.

The Vitali covering theorem is a profound result about coverings of a set in (X ,∥·∥)
with balls. Usually we are interested in Rp with some norm. We will tacitly assume all
balls have positive radius. They will not be single points. Before beginning the proof, here
is a useful lemma.

Lemma 4.5.1 In a normed linear space, B(x,r) = {y : ∥y−x∥ ≤ r} .

Proof: It is clear that B(x,r) ⊆ {y : ∥y−x∥ ≤ r} because if y ∈ B(x,r), then there
exists a sequence of points of B(x,r) ,{xn} such that ∥xn−y∥ → 0,∥xn∥ < r. However,
this requires that ∥xn∥ → ∥y∥ and so ∥y∥ ≤ r. Now let y be in the right side. It suffices
to consider ∥y−x∥ = 1. Then you could consider for t ∈ (0,1) , x+ t (y−x) = z (t).
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Then ∥z (t)−x∥ = t ∥y−x∥ = tr < r and so z (t) ∈ B(x,r) . But also, ∥z (t)−y∥ =
(1− t)∥y−x∥= (1− t)r so limt→0 ∥z (t)−y∥= 0 showing that y ∈ B(x,r). ■

Thus the usual way we think about the closure of a ball is completely correct in a
normed linear space. Its limit points not in the ball are exactly y such that ∥y−x∥ = r.
Recall that this lemma is not always true in the context of a metric space. Recall the
discrete metric for example, in which the distance between different points is 1 and distance
between a point and itself is 0. In what follows I will use the result of this lemma without
comment. Balls will be either open, closed or neither. I am going to use the Hausdorff
maximal theorem, Theorem 2.8.2 because it yields a very simple argument. It can be done
other ways however. In the argument, the balls are not necessarily open nor closed. y is in
B(x,r) will mean that ∥y−x∥< r or ∥y−x∥= r.

Lemma 4.5.2 Let F be a nonempty collection of balls satisfying

∞ > M ≡ sup{r : B(p,r) ∈F}> 0

and let k ∈ (0,M) . Then there exists G ⊆F such that

If B(p,r) ∈ G , then r > k, (4.23)

If B1,B2 ∈ G then B1∩B2 = /0, (4.24)

G is maximal with respect to 4.23 and 4.24. (4.25)

By this is meant that if H is a collection of balls satisfying 4.23 and 4.24, then H cannot
properly contain G .

Proof: Let S denote a subset of F such that 4.23 and 4.24 are satisfied. Since k < M,
4.23 is satisfied for some ball of S. Thus S ̸= /0. Partially order S with respect to set
inclusion. Thus A ≺B for A ,B in S means that A ⊆B. By the Hausdorff maximal
theorem, there is a maximal chain in S denoted by C . Then let G be ∪C . If B1,B2 are in
C , then since C is a chain, both B1,B2 are in some element of C and so B1∩B2 = /0. The
maximality of C is violated if there is any other element of S which properly contains G .
■

Proposition 4.5.3 Let F be a collection of balls, and let

A≡ ∪{B : B ∈F} .

Suppose ∞>M≡ sup{r : B(p,r) ∈F}> 0. Then there exists G ⊆F such that G consists
of balls whose closures are disjoint and A⊆ ∪{B̂ : B ∈ G } where for B = B(x,r) a ball, B̂
denotes the open ball B(x,5r).

Proof: Let G1 satisfy 4.23 - 4.25 for k = 2M
3 .

Suppose G1, · · · ,Gm−1 have been chosen for m ≥ 2. Let Gi denote the collection of
closures of the balls of Gi. Then let Fm be those balls of F , such that if B is one of these
balls, B has empty intersection with every closed ball of Gi for each i≤ m−1. Then using
Lemma 4.5.2, let Gm be a maximal collection of balls from Fm with the property that each
ball has radius larger than

( 2
3

)m
M and their closures are disjoint. Let G ≡ ∪∞

k=1Gk. Thus
the closures of balls in G are disjoint. Let x ∈ B(p,r) ∈F \G . Choose m such that(

2
3

)m

M < r ≤
(

2
3

)m−1

M
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Then B(p,r) must have nonempty intersection with the closure of some ball from G1 ∪
·· ·∪Gm because if it didn’t, then Gm would fail to be maximal. Denote by B(p0,r0) a ball
in G1∪·· ·∪Gm whose closure has nonempty intersection with B(p,r). Thus both

r0,r >
(

2
3

)m

M, so r ≤
(

2
3

)m−1

M <
3
2

r0

Consider the picture, in which w ∈ B(p0,r0)∩B(p,r).

w
r0

p0 r
p
x

Then for x ∈ B(p,r),

∥x−p0∥ ≤ ∥x−p∥+∥p−w∥+

≤r0︷ ︸︸ ︷
∥w−p0∥

≤ r+ r+ r0 ≤ 2

< 3
2 r0︷ ︸︸ ︷(

2
3

)m−1

M+ r0 ≤ 2
(

3
2

r0

)
+ r0 ≤ 4r0

Thus B(p,r) is contained in B(p0,4r0). It follows that the closures of the balls of G are
disjoint and the set

{
B̂ : B ∈ G

}
covers A. ■

Note that this theorem does not depend on the underlying space being finite dimen-
sional. However, it is typically used in this setting.

Next is a version of the Vitali covering theorem which involves covering with disjoint
closed balls. Here is the concept of a Vitali covering.

Definition 4.5.4 Let S be a set and let C be a covering of S meaning that every
point of S is contained in a set of C . This covering is said to be a Vitali covering if for each
ε > 0 and x ∈ S, there exists a set B ∈ C containing x, the diameter of B is less than ε,
and there exists an upper bound to the set of diameters of sets of C .

The following corollary is a consequence of the above Vitali covering theorem.

Corollary 4.5.5 Let F be a bounded set and let C be a Vitali covering of F consisting
of closed balls. Let r (B) denote the radius of one of these balls. Then assume also that
sup{r (B) : B ∈ C }= M < ∞. Then there is a countable subset of C denoted by {Bi} such
that m̄p

(
F \∪N

i=1Bi
)
= 0 for N ≤ ∞, and Bi∩B j = /0 whenever i ̸= j.

Proof: Let U be a bounded open set containing F such that U approximates F so well
that

mp (U)≤ rm̄p (F) ,r > 1 and very close to 1, r−5−p ≡ θ̂ p < 1

Since this is a Vitali covering, for each x ∈ F, there is one of these balls B containing x

such that B̂ ⊆U . Let Ĉ denote those balls of C such that B̂ ⊆U also. Thus, this is also
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a cover of F . By the Vitali covering theorem above, there are disjoint balls from C , {Bi}
such that

{
B̂i
}

covers F . Thus

m̄p
(
F \∪∞

j=1B j
)
≤ mp

(
U \∪∞

j=1B j
)
= mp (U)−

∞

∑
j=1

mp (B j)

≤ rm̄p (F)−5−p
∞

∑
j=1

mp

(
B̂ j

)
≤ rm̄p (F)−5−pm̄p (F)

≡
(
r−5−p) m̄p (F)≡ θ̂ pm̄p (F)

Now if n1 is large enough and θ p is chosen such that 1 > θ p > θ̂ p, then

m̄p

(
F \∪n1

j=1B j

)
≤ mp

(
U \∪n1

j=1B j

)
≤ θ pm̄p (F) .

If m̄
(

F \∪n1
j=1B j

)
= 0, stop. Otherwise, do for F \∪n1

j=1B j exactly the same thing that

was done for F. Since ∪n1
j=1B j is closed, you can arrange to have the approximating open

set be contained in the open set
(
∪n1

j=1B j

)C
. It follows there exist disjoint closed balls from

C called Bn1+1, · · · ,Bn2 such that

m̄
((

F \∪n1
j=1B j

)
\∪n2

j=n1+1
B j

)
< θ pm̄

(
F \∪n1

j=1B j

)
< θ

2
pm̄(F)

continuing this way and noting that limn→∞ θ
n
p = 0 while m̄(F) < ∞, this shows the de-

sired result. Either the process stops because m̄
(

F \∪nk
j=1B j

)
= 0 or else you obtain

m̄
(

F \∪∞
j=1B j

)
= 0. ■

The conclusion holds for arbitrary balls, open or closed or neither. This follows from
observing that the measure of the boundary of a ball is 0. Indeed, let

S (x,r)≡ {y : |y−x|= r} .

Then for each ε < r,

mp (S (x,r)) ⊆ mp (B(x,r+ ε))−mp (B(x,r− ε))

= mp (B(0,r+ ε))−mp (B(0,r− ε))

=

((
r+ ε

r

)p

−
(

r− ε

r

)p)
(mp (B(0,r)))

Hence mp (S (x,r)) = 0.
Thus you can simply omit the boundaries or part of the boundary of the closed balls

and there is no change in the conclusion. Just first apply the above corollary to the Vitali
cover consisting of closures of the balls before omitting part or all of the boundaries. The
following theorem is also obtained. You don’t need to assume the set is bounded.

Theorem 4.5.6 Let E be a bounded set and let C be a Vitali covering of E consisting
of balls, open, closed, or neither. Let r (B) denote the radius of one of these balls. Then
assume also that sup{r (B) : B ∈ C } = M < ∞. Then there is a countable subset of C
denoted by {Bi} such that m̄p

(
E \∪N

i=1Bi
)
= 0,N ≤ ∞, and Bi ∩B j = /0 whenever i ̸= j.

Here m̄p denotes the outer measure determined by mp. The same conclusion follows if you
omit the assumption that E is bounded.
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Proof: It remains to consider the last claim. Consider the balls

B(0,1) ,B(0,2) ,B(0,3) , · · · .

If E is some set, let Er denote that part of E which is between B(0,r−1) and B(0,r) but
not on the boundary of either of these balls, where B(0,−1)≡ /0. Then ∪∞

r=0Er differs from
E by a set of measure zero and so you can apply the first part of the theorem to each Er
keeping all balls between B(0,r−1) and B(0,r) allowing for no intersection with any of
the boundaries. Then the union of the disjoint balls associated with Er gives the desired
cover. ■

4.6 Exercises
1. Let V be a vector space with basis {v1, · · · ,vn}. For v ∈ V, denote its coordinate

vector as v = (α1, · · · ,αn) where v = ∑
n
k=1 αkvk. Now define

∥v∥ ≡max{|αk| : k = 1, ...,n} .

Show that this is a norm on V .

2. Let (X ,∥·∥) be a normed linear space. You can let it be (Rn, |·|) if you like. Recall

|x| is the usual magnitude of a vector given by |x|=
√

∑
n
k=1 |xk|2. A set A is said to

be convex if whenever x,y ∈ A the line segment determined by these points given
by tx+(1− t)y for t ∈ [0,1] is also in A. Show that every open or closed ball is
convex. Remember a closed ball is D(x,r)≡ {x̂ : ∥x̂−x∥ ≤ r} while the open ball
is B(x,r)≡ {x̂ : ∥x̂−x∥< r}. This should work just as easily in any normed linear
space with any norm.

3. This problem is for those who have had a course in Linear algebra. A vector v
is in the convex hull of S if there are finitely many vectors of S,{v1, · · · ,vm} and
nonnegative scalars {t1, · · · , tm} such that v = ∑

m
k=1 tkvk, ∑

m
k=1 tk = 1.Such a linear

combination is called a convex combination. Suppose now that S⊆V, a vector space
of dimension n. Show that if v = ∑

m
k=1 tkvk is a vector in the convex hull for m >

n+ 1, then there exist other nonnegative scalars
{

t ′k
}

summing to 1 such that v =

∑
m−1
k=1 t ′kvk.Thus every vector in the convex hull of S can be obtained as a convex

combination of at most n+ 1 points of S. This incredible result is in Rudin [40].
Convexity is more a geometric property than a topological property. Hint: Consider
L :Rm→V×R defined by L(a)≡ (∑m

k=1 akvk,∑
m
k=1 ak) Explain why ker(L) ̸= {0} .

This will involve observing that Rm has higher dimension that V ×R. Thus L cannot
be one to one because one to one functions take linearly independent sets to linearly
independent sets and you can’t have a linearly independent set with more than n+1
vectors in V ×R. Next, letting a ∈ ker(L)\{0} and λ ∈ R, note that λ a ∈ ker(L) .
Thus for all λ ∈ R, v = ∑

m
k=1 (tk +λak)vk. Now vary λ till some tk +λak = 0 for

some ak ̸= 0. You can assume each tk > 0 since otherwise, there is nothing to show.
This is a really nice result because it can be used to show that the convex hull of a
compact set is also compact. You might try to show this if you feel like it.

4. Show that the usual norm in Fn given by |x|= (x,x)1/2 satisfies the following iden-
tities, the first of them being the parallelogram identity and the second being the
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polarization identity.

|x+y|2 + |x−y|2 = 2 |x|2 +2 |y|2

Re(x,y) =
1
4

(
|x+y|2−|x−y|2

)
Show that these identities hold in any inner product space, not just Fn.

5. Suppose K is a compact subset of (X ,d) a metric space. Also let C be an open cover
of K. Show that there exists δ > 0 such that for all x ∈ K, B(x,δ ) is contained in a
single set of C . This number is called a Lebesgue number. Hint: For each x ∈ K,
there exists B(x,δ x) such that this ball is contained in a set of C . Now consider

the balls
{

B
(

x, δ x
2

)}
x∈K

. Finitely many of these cover K.
{

B
(

xi,
δ xi
2

)}n

i=1
Now

consider what happens if you let δ ≤ min
{

δ xi
2 , i = 1,2, · · · ,n

}
. Explain why this

works. You might draw a picture to help get the idea.

6. Suppose C is a set of compact sets in a metric space (X ,d) and suppose that the
intersection of every finite subset of C is nonempty. This is called the finite inter-
section property. Show that ∩C , the intersection of all sets of C is nonempty.
This particular result is enormously important. Hint: You could let U denote the set{

KC : K ∈ C
}

. If ∩C is empty, then its complement is ∪U = X . Picking K ∈ C ,

it follows that U is an open cover of K. K ⊆ ∪m
i=1KC

i =
(
∩m

i=1Ki
)C Therefore, you

would need to have
{

KC
1 , · · · ,KC

m
}

is a cover of K. In other words, Now what does
this say about the intersection of K with these Ki?

7. If (X ,d) is a compact metric space and f : X → Y is continuous where (Y,ρ) is
another metric space, show that if f is continuous on X , then it is uniformly contin-
uous. Recall that this means that if ε > 0 is given, then there exists δ > 0 such that
if d (x, x̂) < δ , then ρ ( f (x) , f (x̂)) < ε . Compare with the definition of continuity.
Hint: If this is not so, then there exists ε > 0 and xn, x̂n such that d (xn, x̂n)< 1/n but
ρ ( f (xn) , f (x̂n))≥ ε . Now use compactness to get a contradiction.

8. Prove the above problem using another approach. Use the existence of the Lebesgue
number in Problem 5 to prove continuity on a compact set K implies uniform conti-
nuity on this set. Hint: Consider C ≡

{
f−1 (B( f (x) ,ε/2)) : x ∈ X

}
. This is an open

cover of X . Let δ be a Lebesgue number for this open cover. Suppose d (x, x̂) < δ .
Then both x, x̂ are in B(x,δ ) and so both are in f−1

(
B
(

f (x̄) , ε

2

))
. Hence

ρ ( f (x) , f (x̄))<
ε

2
, ρ ( f (x̂) , f (x̄))<

ε

2
.

Now consider the triangle inequality.

9. Let X be a vector space. A Hamel basis is a subset of X ,Λ such that every vector of
X can be written as a finite linear combination of vectors of Λ and the vectors of Λ

are linearly independent in the sense that if {x1, · · · ,xn} ⊆ Λ and ∑
n
k=1 ckxk = 0 then

each ck = 0. Using the Hausdorff maximal theorem, show that every non-zero vector
space has a Hamel basis. Hint: Let x1 ̸= 0. Let F denote the collection of subsets of
X , Λ containing x1 with the property that the vectors of Λ are linearly independent.
Partially order F by set inclusion and consider the union of a maximal chain.
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10. Suppose X is a nonzero real or complex normed linear space and let

V = span(w1, ...,wm)

where {w1, ...,wm} is a linearly independent set of vectors of X . Show that V is a
closed subspace of X with V ⊊ X . First explain why Theorem 4.2.11 implies any
finite dimensional subspace of X can be written this way. Hint: You might want to
use something like Lemma 4.4.7 to show this.

11. Suppose X is a normed linear space and its dimension is either infinite or greater than
m where V ≡ span(w1, ...,wm) for {w1, ...,wm} an independent set of vectors of X .
Show X \V is a dense open subset of X which is equivalent to V containing no ball
B(v,r) ,{w : ∥w− v∥< r}. Hint: If B(x,r) is contained in V, then show, that since V
is a subspace, B(0,r) is contained in V. Then show this implies X ⊆ V which is not
the case.

12. Show that if (X ,d) is a metric space and H,K are disjoint closed sets, there are
open sets UH ,UK such that H ⊆ UH ,K ⊆ UK and UH ∩UK = /0. Hint: Let k ∈
K. Explain why dist(k,H) ≡ inf{∥k−h∥ : h ∈ H} ≡ 2δ k > 0. Now consider UK ≡
∪k∈KB(k,δ k). Do something similar for h ∈ H and consider UH ≡ ∪k∈HB(h,δ h).

13. If, in a metric space, B(p,δ ) is a ball, show that

B(p,δ )⊆ D(p,δ )≡ {x : ∥x− p∥ ≤ δ}

Now suppose (X ,d) is a complete metric space and Un,n∈N is a dense open set in X .
Also let W be any nonempty open set. Show there exists a ball B1 ≡ B(p1,r1) having
radius smaller than 2−1 such that B1⊆U1∩W1. Next show there exists B2≡B(p2,r2)
such that B2 ⊆ B1 ∩U2 ∩W with the radius of B2 less than 2−2. Continue this way.
Explain why {pn}∞

n=1 is a Cauchy sequence converging to some p ∈W ∩ (∪∞
n=1Un).

This is the very important Baire theorem which says that in a complete metric space,
the intersection of dense open sets is dense.

14. Suppose you have a complete normed linear space, (X ,∥·∥). Use the above problems
leading to the Baire theorem in 13 to show that if B is a Hamel basis for for X , then
B cannot be countable. Hint: If B = {vi}∞

i=1 , consider Vn ≡ span(v1, ...,vn) . Then
use a problem listed above to argue that VC

n is a dense open set. Now apply Problem
13. This shows why the idea of a Hamel basis often fails to be very useful whereas,
in finite dimensional settings, it is just what is needed.

15. In any complete normed linear space which is infinite dimensional, show the unit
ball is not compact. Do this by showing the existence of a sequence which cannot
have a convergent subsequence. Hint: Pick ∥x1∥ = 1. Suppose x1, ...,xn have been
chosen, each ∥xk∥= 1. Then there is x /∈ span(x1, ...,xn)≡Vn. Now consider v such
that ∥x− v∥ ≤ 3

2 dist(x,Vn) . Then argue that for k ≤ n,

∥∥∥∥ x− v
∥x− v∥

− xk

∥∥∥∥=
∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x−

 ∈Vn︷ ︸︸ ︷
v+∥x− v∥xk


∥x− v∥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≥ dist(x,Vn)

(3/2)dist(x,Vn)
=

2
3
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16. Let X be a complete inner product space. Let F denote subsets β ⊆ X such that
whenever x,y ∈ X ,(x,y) = 0 if x ̸= y and (x,x) = 1 if x = y. Thus these β are or-
thonormal sets. Show there exists a maximal orthonormal set. If X is separable, show
that this maximal orthonormal set is countable. Hint: Use the Hausdorff maximal
theorem. The next few problems involve linear algebra.

17. Let X be a real inner product space and let {v1, ...,vn} be vectors in X . Let G be the
n×n matrix Gi j ≡ (vi,v j) . Show that G−1 exists if and only if {v1, ...,vn} is linearly
independent. G is called the Grammian or the metric tensor.

18. ↑Let X be as above, a real inner product space, and let V ≡ span(v1, ...,vn) . Let u∈X
and z ∈ V . Show that |u− z| = inf{|u− v| : v ∈V} if and only if (u− z,vi) = 0 for
all vi. Note that the vi might not be linearly independent. Also show that |u− z|2 =
|u|2− (z,u) .

19. ↑ Let G be the matrix of Problem 17 where {v1, ...,vn} is linearly independent and
V ≡ span(v1, ...,vn) ⊆ X , an inner product space. Let x ≡ ∑i xivi,y ≡ ∑i yivi be two
vectors of V. Show that (x,y) = ∑i, j xiGi jx j. Show that z ≡ ∑i zivi,z is closest to
u ∈ X if and only if for all i = 1, ...,n,(u,vi) = ∑ j Gi jz j. This gives a system of
linear equations which must be satisfied by the zi in order that z just given is the best
approximation to u. Next show that there exists such a solution thanks to Problem
17 which says that the matrix G is invertible, and if G−1 has i jth component Gi j, one
finds that ∑ j Gi j (u,v j) = zi.

20. ↑ In the situation of the above problems, suppose A is an m× n matrix. Use Prob-
lem 18 to show that for y ∈ Rm, there always exists a solution x to the system of
equations ATy = AT Ax. Explain how this is in a sense the best you can do to solve
y= Ax even though this last system of equations might not have a solution. Here AT

is the transpose of the matrix A. The equations ATy = AT Ax are called the normal
equations for the least squares problem. Hint: Verify that

(
ATy,x

)
= (y,Ax). Let

the subspace V be A(Rn), the vectors spanning it being {Ae1, ...,Aen}. From the
above problem, there exists Ax in V which is closest to y. Now use the character-
ization of this vector (y−Ax,Az) = 0 for all z ∈ Rn,Az being a generic vector in
A(Rn).

21. ↑As an example of an inner product space, consider C ([0,1]) with the inner product∫ 1
0 f (x)g(x)dx where this is the ordinary integral from calculus. Abusing notation,

let {xp1 , ...,xpn} with − 1
2 < p1 < · · ·< pn be functions, (vectors) in C ([0,1]) . Verify

that these vectors are linearly independent. Hint: You might want to use the Cauchy
identity, Theorem 1.9.28.

22. ↑As above, if {v1, ...,vn} is linearly independent, the Grammian is G = G(v1, ...,vn),
Gi j ≡ (vi,v j) , then if u /∈ span(v1, ...,vn) ≡ V you could consider G(v1, ...,vn,u) .
Then if d ≡ min{|u− v| : v ∈ span(v1, ...,vn)} , show that d2 = detG(v1,...,vn,u)

detG(v1,...,vn)
. Jus-

tify the following steps. Letting z be the closest point of V to u, from the above,(
u−∑

n
i=1 zivi,vp

)
= 0 for each vp and so

(u,vp) =
n

∑
i=1

(vp,vi)zi (∗)
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Also, since (u− z,v) = 0 for all v ∈V, |u|2 = |u− z+ z|2 = |u− z|2 + |z|2 so

|u|2 =

∣∣∣∣∣u− n

∑
i=1

zivi

∣∣∣∣∣
2

+

∣∣∣∣∣ n

∑
i=1

zivi

∣∣∣∣∣
2

= d2 +

∣∣∣∣∣ n

∑
i=1

zivi

∣∣∣∣∣
2

= d2 +∑
j

=(u,v j)︷ ︸︸ ︷
∑

i
(v j,vi)ziz j = d2 +∑

j
(u,v j)z j

= d2 +yTz, y ≡ ((u,v1) , · · · ,(u,vn))
T , z ≡

(
z1, · · · ,zn)T

From ∗, Gz = y,

(
G(v1, ...,vn) 0

yT 1

)(
z
d2

)
=

(
y

∥u∥2

)
. Now use Cramer’s

rule to solve for d2 and get

d2 =

det
(

G(v1, ...,vn) y

yT |u|2
)

det(G(v1, ...,vn))
≡ detG(v1, ...,vn,u)

detG(v1, ...,vn)

23. In the situation of Problem 21, let fk (x)≡ xk and let V ≡ span( fp1 , ..., fpn). give an
estimate for the distance d between fm and V for m a nonnegative integer and as in
the above problem − 1

2 < p1 < · · · < pn. Use Theorem 1.9.28 in the appendix and
the above problem with vi ≡ fpi and vn+1 ≡ fm. Justify the following manipulations.

The numerator in the above formula for the distance is of the form ∏ j<i≤n+1(pi−p j)
2

∏i, j≤n+1(pi+p j+1)

=
∏ j<i≤n (pi− p j)

2
∏ j≤n (m− p j)

2

∏i, j≤n (pi + p j +1)∏
n
i=1 (pi +m+1)∏

n
j=1 (p j +m+1)(2m+1)

While G( fp1 , ..., fpn) =
∏ j<i≤n(pi−p j)

2

∏i, j≤n(pi+p j+1)
. Thus d =

∏ j≤n|m−p j|
∏

n
i=1(pi+m+1)(

√
2m+1)

.

24. Suppose ∑
n
k=0 aktk = 0 for each t ∈ (−δ ,δ ) where ak ∈ X , a linear space. Show that

each ak = 0.

25. Suppose A ⊆ Rp is covered by a finite collection of Balls F . Show that then there
exists a disjoint collection of these balls, {Bi}m

i=1, such that A⊆∪m
i=1B̂i where B̂i has

the same center as Bi but 3 times the radius. Hint: Since the collection of balls is
finite, they can be arranged in order of decreasing radius. Mimic the argument for
Vitali covering theorem.



Chapter 5

Functions on Normed Linear Spaces
This chapter is about the general notion of functions defined on normed linear spaces even
if the linear space is not finite dimensional.

5.1 L (V,W ) as a Vector Space
In what follows, V,W will be vector spaces.

Definition 5.1.1 The term L (V,W ) signifies the set of linear maps from V to W.
This means that for v,u∈V and α,β scalars from F,L(αu+βv) = αL(u)+βL(v) . Given
L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by L+M according to the
rule1 (L+M)v ≡ Lv+Mv. For α a scalar and L ∈L (V,W ) , define αL ∈L (V,W ) by
αL(v)≡ α (Lv) .

Note that if you have V = Rn and W = Rm, an example of something in L (V,W ) is
given by Tv ≡ Av where A is a real m×n matrix.

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

Lemma 5.1.2 Let V and W be vector spaces and suppose {v1, · · · ,vn} is a basis for V.
Then if L : V →W is given by Lvk = wk ∈W and L(∑n

k=1 akvk)≡ ∑
n
k=1 akLvk = ∑

n
k=1 akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk = Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · ,vn} is a basis, there is exactly
one way to write a given vector of V as a linear combination. Next, observe that L is
obviously linear from the definition. If L,M are equal on the basis, then if ∑

n
k=1 akvk is

an arbitrary vector of V,L(∑n
k=1 akvk) = ∑

n
k=1 akLvk = ∑

n
k=1 akMvk = M (∑n

k=1 akvk) and so
L = M because they give the same result for every vector in V . ■

The message is that when you define a linear transformation, it suffices to tell what it
does to a basis.

Theorem 5.1.3 Let V and W be finite dimensional linear spaces of dimension n and
m respectively Then dim(L (V,W )) = mn.

Proof: Let two sets of bases be {v1, · · · ,vn} and {w1, · · · ,wm} for V and W respectively.
Using Lemma 5.1.2, let wiv j ∈L (V,W ) be the linear transformation defined on the basis,
{v1, · · · ,vn}, by wivk (v j) ≡ wiδ jk where δ ik = 1 if i = k and 0 if i ̸= k. I will show that
L∈L (V,W ) is a linear combination of these special linear transformations called dyadics.

Then let L ∈L (V,W ). Since {w1, · · · ,wm} is a basis, there exist constants, d jk such
that Lvr = ∑

m
j=1 d jrw j Now consider the following sum of dyadics. ∑

m
j=1 ∑

n
i=1 d jiw jvi. Ap-

ply this to vr. This yields ∑
m
j=1 ∑

n
i=1 d jiw jvi (vr) = ∑

m
j=1 ∑

n
i=1 d jiw jδ ir = ∑

m
j=1 d jrwi = Lvr.

Therefore, L = ∑
m
j=1 ∑

n
i=1 d jiw jvi showing the span of the dyadics is all of L (V,W ) .

1Note that this is the standard way of defining the sum of two functions.
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Now consider whether these dyadics form a linearly independent set. Suppose that
∑i,k dikwivk = 0. Are all the scalars dik equal to 0? 0 = ∑i,k dikwivk (vl) = ∑

m
i=1 dilwi so,

since {w1, · · · ,wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary, this shows
dil = 0 for all i and l. Thus these linear transformations form a basis and this shows that
the dimension of L (V,W ) is mn as claimed because there are m choices for the wi and n
choices for the v j. ■

5.2 The Norm of a Linear Map, Operator Norm
Not surprisingly all of the above holds for a finite dimensional normed linear space. First
here is an easy lemma which follows right away from Theorem 3.6.2, the theorem about
equivalent formulations of continuity.

Lemma 5.2.1 Let (V,∥·∥V ) and (W,∥·∥W ) be two normed linear spaces. Then a linear
map f : V →W is continuous if and only if it takes bounded sets to bounded sets. ( f is
bounded) If V is finite dimensional, then f must be continuous.

Proof: =⇒ Consider f (B(0,1)) . If this is not bounded, then there exists ∥vm∥V ≤ 1

but ∥ f (vm)∥W ≥ m. Then it follows that
∥∥∥ f
(

vm

m

)∥∥∥
W
≥ 1 which is impossible for all m

since
∥∥∥ vm

m

∥∥∥≤ 1
m and so continuity requires that limm→∞ f

(
vm

m

)
= 0 (Theorem 3.6.2). Thus

there exists M such that ∥ f (v)∥ ≤M whenever v ∈ B(0,1). In general, let S be a bounded
set. Then S ⊆ B(0,r) for large enough r. Hence, for v ∈ B, it follows that v/2r ∈ B(0,1) .
It follows that ∥ f (v/2r)∥W ≤ M and so ∥ f (v)∥W ≤ 2rM. Thus f takes bounded sets to
bounded sets.
⇐= Suppose f is bounded and not continuous. Then by Theorem 3.6.2 again, there

is a sequence vn → v but f (vn) fails to converge to f (v). Then there exists ε > 0 and a
subsequence, still denoted as vn such that ∥ f (vn)− f (v)∥= ∥ f (vn− v)∥ ≥ ε . Then∥∥∥∥ f

(
vn− v
∥vn− v∥

)∥∥∥∥≥ ε
1

∥vn− v∥
The right side is unbounded, but the left is bounded, a contradiction.

Consider the last claim about continuity. Let {v1, · · · ,vn} be a basis for V . By Lemma
4.4.7, if ym → 0, in V for ym = ∑

n
k=1 ym

k vk,then it follows that limm→∞ ym
k = 0 and conse-

quently, f (ym)→ f (0) = 0. In general, if ym→ y, then (ym− y)→ 0 and so f (ym− y) =
f (ym)− f (y)→ 0. That is, f (ym)→ f (y). ■

Definition 5.2.2 For f : (V,∥·∥V )→ (W,∥·∥W ) continuous, it was just shown that
there exists M such that ∥ f (v)∥ ≤ M, v ∈ B(0,1) . It follows that, since v

2∥v∥ ∈ B(0,1) ,
then ∥ f (v)∥ ≤ 2M ∥v∥. Therefore, letting ∥ f∥ ≡ sup∥v∥≤1 ∥ f (v)∥ it follows that for all
v∈V, ∥ f (v)∥ ≤ ∥ f∥∥v∥ .Thus a linear map is bounded if and only if ∥ f∥< ∞ if and only if
f is continuous. ‘The number ∥ f∥ is called the operator norm. For X a real normed linear
space, X ′ denotes the space L (X ,R) .

You can show that for L (V,W ) the space of bounded linear maps from V to W,
L (V,W ) becomes a normed linear space with this definition. This is true whether V,W are
finite or infinite dimensional. You can also show that if W is complete then so is L (V,W ).
This is left as an exercise. Also, when the vector spaces are finite dimensional, Lemma
5.2.1 shows that any linear function f is automatically bounded, hence continuous, hence
∥ f∥ exists. Here is an interesting observation about the operator norm.
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Lemma 5.2.3 Let f ∈L (V,W ) and let h ∈L (W,Z) where X ,Y,Z are normed vector
spaces. Then ∥h◦ f∥ ≤ ∥h∥∥ f∥ .

Proof: This follows right away from the definition. If ∥v∥ ≤ 1, then ∥ f (v)∥ ≤ ∥ f∥ .
This explains the first inequality in the following.

sup
∥v∥≤1

∥h◦ f (v)∥ ≤ sup
∥w∥≤∥ f∥

∥h(w)∥= sup
∥w∥≤∥ f∥

∥∥∥∥h
(

w
∥ f∥

)∥∥∥∥∥ f∥ ≤ ∥h∥∥ f∥ . ■

Theorem 5.2.4 Let (V,∥·∥) be a normed linear space with basis {v1, · · · ,vn} and
field of scalars F. Let f : (Fn,∥·∥)→ (V,∥·∥V ) be any linear map which is one to one and
onto. Then both f and f−1 are continuous. Also the compact sets of (V,∥·∥V ) are exactly
those which are closed and bounded.

Proof: Define another norm ∥·∥1 on Fn as follows. ∥x∥1 ≡ ∥ f (x)∥V . Since f is one
to one and onto and linear, this is indeed a norm. The details are left as an exercise. Then
from the theorem on the equivalence of norms, there are positive constants δ ,∆ such that
δ ∥x∥ ≤ ∥ f (x)∥V ≤ ∆∥x∥ . Since f is one to one and onto, this implies δ

∥∥ f−1 (v)
∥∥ ≤

∥v∥V ≤ ∆
∥∥ f−1 (v)

∥∥ . The first of these above inequalities implies f is continuous. The
second says

∥∥ f−1 (v)
∥∥≤ 1

δ
∥v∥V and so f−1 is continuous. Thus, from the above theorems,

both f and f−1 map closed sets to closed sets, compact sets to compact sets, open sets to
open sets and bounded sets to bounded sets.

Now let K ⊆ V be closed and bounded. Then from the above observations, f−1 (K) is
also closed and bounded. Therefore, it is compact. Now f

(
f−1 (K)

)
= K must be compact

because the continuous image of a compact set is compact, Theorem 3.7.1. Conversely,
if K ⊆ V is compact, then by the theorem just mentioned, f−1 (K) is compact and so it is
closed and bounded. Hence f

(
f−1 (K)

)
= K is also closed and bounded. ■

This is a remarkable theorem. It says that an algebraic isomorphism is also a home-
omorphism which is what it means to say that the map takes open sets to open sets and
the inverse does the same. In other words, there really isn’t any algebraic or topological
distinction between a finite dimensional normed vector space of dimension n and Fn. Of
course when one considers geometry, this is not so.

Here is another interesting theorem about coordinate maps. It follows right away from
earlier theorems.

Theorem 5.2.5 Let f : (V,∥·∥V )→ (W,∥·∥W ) be a continuous function where here
(V,∥·∥V ) is a normed linear space and (W,∥·∥W ) is a finite dimensional normed linear
space with basis {w1, · · · ,wn} . Thus f (v) ≡ ∑

n
k=1 fk (v)wk. Then f is continuous if and

only if each fk is a continuous F valued map.

Proof: =⇒ First, why is fk linear? This follows from

n

∑
k=1

(α fk (u)+β fk (v))wk = α

n

∑
k=1

fk (u)wk +β

n

∑
k=1

fk (v)wk

= α f (u)+β f (v) = f (αu+βv)≡
n

∑
k=1

fk (αu+βv)wk

Why is the coordinate function fk continuous? From Lemma 5.2.1, it suffices to verify that
fk is bounded. If this is not so, there exists vm,∥vm∥V ≤ 1 but | fk (vm)|W ≥ m. It follows
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that
∣∣ fk
( vm

m

)∣∣ ≥ 1. Since f is continuous, and vm/m→ 0, it follows that f
( vm

m

)
→ 0 in V.

However, by Lemma 4.4.7, fk
( vm

m

)
→ 0, a contradiction.

⇐= If each coordinate function is continuous, then

∥ f (v)− f (v̂)∥W =

∥∥∥∥∥ n

∑
k=1

fk (v)wk−
n

∑
k=1

fk (v̂)wk

∥∥∥∥∥≤ n

∑
k=1
| fk (v)− fk (v̂)|∥wk∥W

Since each fk is continuous, this shows that f is also. ■

5.3 Continuous Functions in Normed Linear Space
Of course not all functions are linear. Continuous functions have already been discussed
in general metric space, but now there are other considerations to consider due to the al-
gebra available in a normed linear space. The following theorem includes these kinds of
considerations for functions having values in a normed linear space.

Theorem 5.3.1 Let f ,g be continuous functions defined on D, a metric space. Also
let α,β be scalars. Then the following hold.

1. α f +βg is continuous.

2. If (W,∥·∥W ) is an inner product space, then ( f ,g) defined as

( f ,g)(v)≡ ( f (v) ,g(v)) , then ( f ,g) is continuous.

3. If f has values in F and g has values in (W,∥·∥W ) , then f g is continuous.

Proof: Say vn→ v. Then

∥(α f +βg)(vn)− (α f +βg)(v)∥ ≤ |α|∥ f (vn)− f (v)∥+ |β |∥g(vn)−g(v)∥

and the right side converges to 0 as n→ ∞ so this shows 1.
This follows from an easy computation. From the Cauchy Schwarz inequality,

|( f ,g)(v)− ( f ,g)(v̂)| ≤ |( f (v) ,g(v))− ( f (v) ,g(v̂))|+ |( f (v) ,g(v̂))− ( f (v̂) ,g(v̂))|

≤ ∥g(v)−g(v̂)∥∥ f (v)∥+∥ f (v)− f (v̂)∥∥g(v̂)∥

Now since g is continuous at v and so ∥g(v)−g(v̂)∥< 1 provided d (v, v̂) is small enough.
Thus ∥g(v̂)∥ ≤ ∥g(v)∥+1. Hence if d (v, v̂) is small enough,

|( f ,g)(v)− ( f ,g)(v̂)| ≤ (∥g(v)∥+1)∥ f (v)− f (v̂)∥+∥ f (v)∥∥g(v)−g(v̂)∥

Thus, by continuity of f ,g at v, if d (v, v̂) is sufficiently small, the right side is less than ε

and so f ·g is continuous at v. This shows 2. The proof of 3. is just like this. ■
Of course there are other things like cross product and determinant and so forth which

are defined in terms of the component functions of f . Then these things will be continuous
by an application of Theorem 5.2.5.
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5.4 Polynomials
For functions of one variable, the special kind of functions known as a polynomial has a
corresponding version when one considers a function of many variables. This is found in
the next definition.

Definition 5.4.1 Let α be an n dimensional multi-index. The meaning of this term is
that α= (α1, · · · ,αn) where each α i is a positive integer or zero. Also, let |α| ≡∑

n
i=1 |α i| .

Then xα means xα ≡ xα1
1 xα2

2 · · ·x
αn
3 where each x j ∈ F. An n dimensional polynomial of

degree m is a function of the form p(x) = ∑|α|≤m dαx
α. where the dα are complex or real

numbers, more generally in some normed linear space X. Rational functions are defined as
the quotient of two real or complex valued polynomials. Thus these functions are defined
on Fn.

For example, f (x) = x1x2
2 + 7x4

3x1 is a polynomial of degree 5 and x1x2
2+7x4

3x1+x3
2

4x3
1x2

2+7x2
3x1−x3

2
is a

rational function.
Note that in the case of a rational function, the domain of the function might not be all

of Fn. For example, if f (x) = x1x2
2+7x4

3x1+x3
2

x2
2+3x2

1−4
,the domain of f would be all complex numbers

such that x2
2 +3x2

1 ̸= 4.
By Theorem 3.6.2 all polynomials are continuous. To see this, note that the function,

πk (x)≡ xk is a continuous function because of the inequality

|πk (x)−πk (y)|= |xk− yk| ≤ |x−y| .

Polynomials are simple sums of scalars times products of these functions. Similarly, by
this theorem, rational functions, quotients of polynomials, are continuous at points where
the denominator is non zero. More generally, if V is a normed vector space, consider a
V valued function of the form f (x) ≡ ∑|α|≤mdαx

α where dα ∈ V , sort of a V valued
polynomial. Then such a function is continuous by application of Theorem 3.6.2 and the
above observation about the continuity of the functions πk.

Thus there are lots of examples of continuous functions. However, it is even better than
the above discussion indicates. As in the case of a function of one variable, an arbitrary
continuous function can typically be approximated uniformly by a polynomial. This is the
n dimensional version of the Weierstrass approximation theorem.

5.5 Weierstrass Approximation Theorem
An arbitrary continuous function defined on an interval can be approximated uniformly by
a polynomial, there exists a similar theorem which is just a generalization of this which will
hold for continuous functions defined on a box or more generally a closed and bounded set.
However, we will settle for the case of a box first. The proof is based on the following
lemma.

Lemma 5.5.1 The following estimate holds for x ∈ [0,1] and m≥ 2.

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ 1

4
m
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Proof: First of all, from the binomial theorem,
m

∑
k=0

(
m
k

)(
et(k−mx)

)
xk (1− x)m−k = e−tmx

m

∑
k=0

(
m
k

)(
etk
)

xk (1− x)m−k

= e−tmx (1− x+ xet)m
= e−tmxg(t)m , g(0) = 1,g′ (0) = g′′ (0) = x

Take a partial derivative with respect to t twice.

m

∑
k=0

(
m
k

)
(k−mx)2 et(k−mx)xk (1− x)m−k

= (mx)2 e−tmxg(t)m +2(−mx)e−tmxmg(t)m−1 g′ (t)

+e−tmx
[
m(m−1)g(t)m−2 g′ (t)2 +mg(t)m−1 g′′ (t)

]
Now let t = 0 and note that the right side is m(x− x2)≤ m/4 for x ∈ [0,1] . Thus

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k = mx−mx2 ≤ m/4 ■

With this preparation, here is the first version of the Weierstrass approximation theorem.
I will allow f to have values in a complete, real or complex normed linear space. Thus,
f ∈C ([0,1] ;X) where X is a Banach space, Definition 4.3.7. Thus this is a function which
is continuous with values in X as discussed earlier with metric spaces.

Theorem 5.5.2 Let f ∈C ([0,1] ;X) and let the norm on X be denoted by ∥·∥ .

pm (x)≡
m

∑
k=0

(
m
k

)
xk (1− x)m−k f

(
k
m

)
=

m

∑
k=0

qk (x) f
(

k
m

)
Then these polynomials having coefficients in X converge uniformly to f on [0,1]. Also
q0 (0) = 1,qk (0) = 0 for k ̸= 0, and qm (1) = 1 while qk (1) = 0 for k ̸= m.

Proof: Let ∥ f∥
∞

denote the largest value of ∥ f (x)∥. By uniform continuity of f ,
there exists a δ > 0 such that if |x− x′| < δ , then ∥ f (x)− f (x′)∥ < ε/2. By the binomial
theorem,

∥pm (x)− f (x)∥ ≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥
≤ ∑
| k

m−x|<δ

(
m
k

)
xk (1− x)m−k

∥∥∥∥ f
(

k
m

)
− f (x)

∥∥∥∥+2∥ f∥
∞ ∑
| k

m−x|≥δ

(
m
k

)
xk (1− x)m−k

Therefore,

≤
m

∑
k=0

(
m
k

)
xk (1− x)m−k ε

2
+2∥ f∥

∞ ∑
(k−mx)2≥m2δ

2

(
m
k

)
xk (1− x)m−k

≤ ε

2
+2∥ f∥

∞

1

m2δ
2

m

∑
k=0

(
m
k

)
(k−mx)2 xk (1− x)m−k ≤ ε

2
+2∥ f∥

∞

1
4

m
1

δ
2m2

< ε

provided m is large enough. Thus ∥pm− f∥
∞
< ε when m is large enough. ■

Note that we do not need to have X be complete in order for this to hold. It would have
sufficed to have simply let X be a normed linear space.
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Corollary 5.5.3 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists
a sequence of polynomials which converge uniformly to f on [a,b]. The mth term of this
sequence is ∑

m
k=0 qk (y) f

(
l
( k

m

))
where l : [0,1]→ [a,b] be one to one, linear and onto and

q0 (a) = 1 and if k ̸= 0,qk (a) = 0 and qm (b) = 1 and if k ̸= m, then qk (b) = 0.

Proof: Let l : [0,1]→ [a,b] be one to one, linear and onto. Then f ◦ l is continuous on
[0,1] and so if ε > 0 is given, if m large enough, then for all x ∈ [0,1] ,∥∥∥∥∥ m

∑
k=0

q̂k (x) f
(

l
(

k
m

))
− f ◦ l (x)

∥∥∥∥∥< ε

where q̂0 (0) = 1 and q̂k (0) = 0 for k ̸= 0, q̂m (1) = 1, q̂k (1) = 0 if k ̸= m. Therefore, for all
y ∈ [a,b] , ∥∥∥∥∥ m

∑
k=0

q̂k
(
l−1 (y)

)
f
(

l
(

k
m

))
− f (y)

∥∥∥∥∥< ε

Let qk (y)≡ q̂k
(
l−1 (y)

)
. ■

As another corollary, here is the version which will be used in Stone’s generalization
later.

Corollary 5.5.4 Let f be a continuous function defined on [−M,M] with f (0) = 0.
Then there is a sequence of polynomials {pm}, pm (0) = 0 and limm→∞ ∥pm− f∥

∞
= 0

Proof: From Corollary 5.5.3 there exists a sequence of polynomials {p̂m} such that
∥ p̂m− f∥

∞
→ 0. Simply consider pm = p̂m− p̂m (0). ■

5.6 Functions of Many Variables
First note that if h : K×H→R is a real valued continuous function where K,H are compact
sets in metric spaces,

max
x∈K

h(x,y)≥ h(x,y) , so max
y∈H

max
x∈K

h(x,y)≥ h(x,y)

which implies maxy∈H maxx∈K h(x,y)≥max(x,y)∈K×H h(x,y) . The other inequality is also
obtained.

Let f ∈C (Rp;X) where Rp = [0,1]p . Then let x̂p ≡ (x1, ...,xp−1) . By Theorem 5.5.2,
if n is large enough,

max
xp∈[0,1]

∥∥∥∥∥ n

∑
k=0

f

(
·, k

n

)(
n
k

)
xk

p (1− xp)
n−k−f (·,xp)

∥∥∥∥∥
C([0,1]p−1;X)

<
ε

2

Now f
(
·, k

n

)
∈C (Rp−1;X) and so by induction, there is a polynomial pk (x̂p) such that

max
x̂p∈Rp−1

∥∥∥∥pk (x̂p)−
(

n
k

)
f

(
x̂p,

k
n

)∥∥∥∥
X
<

ε

(n+1)2

Thus, letting p(x)≡ ∑
n
k=0pk (x̂p)xk

p (1− xp)
n−k ,

∥p−f∥C(Rp;X) ≤ max
xp∈[0,1]

max
x̂p∈Rp−1

∥∥p(x̂p,xp)−f (x̂p,xp)
∥∥

X < ε
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where p is a polynomial with coefficients in X .
In general, if Rp ≡∏

p
k=1 [ak,bk] , note that there is a linear function lk : [0,1]→ [ak,bk]

which is one to one and onto. Thus l (x)≡ (l1 (x1) , ..., lp (xp)) is a one to one and onto map
from [0,1]p to Rp and the above result can be applied to f ◦ l to obtain a polynomial p with
∥p−f ◦ l∥C([0,1]p;X) < ε. Thus

∥∥p◦ l−1−f
∥∥

C(Rp;X) < ε and p◦ l−1 is a polynomial. This
proves the following theorem.

Theorem 5.6.1 Let f be a function in C (R;X) for X a normed linear space where
R ≡∏

p
k=1 [ak,bk] . Then for any ε > 0 there exists a polynomial p having coefficients in X

such that ∥p−f∥C(R;X) < ε .

These Bernstein polynomials are very remarkable approximations. It turns out that if f
is C1 ([0,1] ;X) , then limn→∞ p′n (x)→ f ′ (x) uniformly on [0,1] . This all works for func-
tions of many variables as well, but here I will only show it for functions of one variable.

Lemma 5.6.2 Let f ∈ C1 ([0,1]) and let pm (x) ≡ ∑
m
k=0

(
m
k

)
xk (1− x)m−k f

( k
m

)
be

the mth Bernstein polynomial. Then in addition to ∥pm− f∥[0,1] → 0, it also follows that
∥p′m− f ′∥[0,1]→ 0.

Proof: From simple computations,

p′m (x) =
m

∑
k=1

(
m
k

)
kxk−1 (1− x)m−k f

(
k
m

)
−

m−1

∑
k=0

(
m
k

)
xk (m− k)(1− x)m−1−k f

(
k
m

)

=
m

∑
k=1

m(m−1)!
(m− k)!(k−1)!

xk−1 (1− x)m−k f
(

k
m

)
−

m−1

∑
k=0

(
m
k

)
xk (m− k)(1− x)m−1−k f

(
k
m

)

=
m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k f
(

k+1
m

)
−

m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k f
(

k
m

)

=
m−1

∑
k=0

m(m−1)!
(m−1− k)!k!

xk (1− x)m−1−k
(

f
(

k+1
m

)
− f

(
k
m

))

=
m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k

(
f
( k+1

m

)
− f

( k
m

)
1/m

)

By the mean value theorem,
f( k+1

m )− f( k
m )

1/m = f ′
(
xk,m
)
, xk,m ∈

( k
m ,

k+1
m

)
. Now the desired

result follows as before from the uniform continuity of f ′ on [0,1]. Let δ > 0 be such
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that if |x− y| < δ , then | f ′ (x)− f ′ (y)| < ε and let m be so large that 1/m < δ/2. Then if∣∣x− k
m

∣∣< δ/2, it follows that
∣∣x− xk,m

∣∣< δ and so

∣∣ f ′ (x)− f ′
(
xk,m
)∣∣= ∣∣∣∣∣ f ′ (x)− f

( k+1
m

)
− f

( k
m

)
1/m

∣∣∣∣∣< ε.

Now as before, letting M ≥ | f ′ (x)| for all x,

∣∣p′m (x)− f ′ (x)
∣∣≤ m−1

∑
k=0

(
m−1

k

)
xk (1− x)m−1−k ∣∣ f ′ (xk,m

)
− f ′ (x)

∣∣≤
∑{

x:|x− k
m |< δ

2

}
(

m−1
k

)
xk (1− x)m−1−k

ε +M
m−1

∑
k=0

(
m−1

k

)
4(k−mx)2

m2δ
2 xk (1− x)m−1−k

≤ ε +4M
1
4

m
1

m2δ
2 = ε +M

1

mδ
2 < 2ε

whenever m is large enough. Thus this proves uniform convergence. ■
There is a more general version of the Weierstrass theorem which is easy to get. It

depends on the Tietze extension theorem, a wonderful little result which is interesting for
its own sake.

5.7 A Generalization
This is an interesting theorem which holds in arbitrary normal topological spaces. In par-
ticular it holds in metric space and this is the context in which it will be discussed. First,
review Lemma 3.12.1.

Lemma 5.7.1 Let H,K be two nonempty disjoint closed subsets of X . Then there exists
a continuous function, g : X → [−1/3,1/3] such that g(H) = −1/3, g(K) = 1/3,g(X)⊆
[−1/3,1/3] .

Proof: Let f (x) ≡ dist(x,H)
dist(x,H)+dist(x,K) . The denominator is never equal to zero because

if dist(x,H) = 0, then x ∈ H because H is closed. (To see this, pick hk ∈ B(x,1/k)∩H.
Then hk → x and since H is closed, x ∈ H.) Similarly, if dist(x,K) = 0, then x ∈ K and
so the denominator is never zero as claimed. Hence f is continuous and from its definition,
f = 0 on H and f = 1 on K. Now let g(x) ≡ 2

3

(
f (x)− 1

2

)
. Then g has the desired

properties. ■

Definition 5.7.2 For f : M ⊆ X→R, let ∥ f∥M ≡ sup{| f (x)| : x ∈M} . This is just
notation. I am not claiming this is a norm.

Lemma 5.7.3 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function, g which is defined and continuous on all
of X such that ∥ f −g∥M ≤ 2

3 , g(X)⊆ [−1/3,1/3] . If X is a normed vector space,and f is
odd, meaning that M is symmetric (x ∈M if and only if −x ∈M) and f (−x) = − f (x) .
Then we can assume g is also odd.
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Proof: Let H = f−1 ([−1,−1/3]) ,K = f−1 ([1/3,1]) . Thus H and K are disjoint closed
subsets of M. Suppose first H,K are both nonempty. Then by Lemma 5.7.1 there exists g
such that g is a continuous function defined on all of X and g(H) = −1/3, g(K) = 1/3,
and g(X)⊆ [−1/3,1/3] . It follows ∥ f −g∥M < 2/3. If H = /0, then f has all its values in
[−1/3,1] and so letting g≡ 1/3, the desired condition is obtained. If K = /0, let g≡−1/3.
If both H,K = /0, let g = 0.

When M is symmetric and f is odd, g(x)≡ 1
3

dist(x,H)−dist(x,K)
dist(x,H)+dist(x,K) . When x ∈H this gives

1
3
−dist(x,K)
dist(x,K) = − 1

3 . Then x ∈ K, this gives 1
3

dist(x,H)
dist(x,H) =

1
3 . Also g(H) = −1/3, f (H) ⊆

[−1,−1/3] so for x ∈ H, |g(x)− f (x)| ≤ 2
3 . It is similar for x ∈ K. If x is in neither H

nor K, then g(x) ∈ [−1/3,1/3] and so is f (x) . Thus ∥ f −g∥M ≤ 2
3 . Now by assumption,

since f is odd, H =−K. It is clear that g is odd because

g(−x) =
1
3

dist(−x,H)−dist(−x,K)

dist(−x,H)+dist(−x,K)
=

1
3

dist(−x,−K)−dist(−x,−H)

dist(−x,−K)+dist(−x,−H)

=
1
3

dist(x,K)−dist(x,H)

dist(x,K)+dist(x,H)
=−g(x) . ■

Lemma 5.7.4 Suppose M is a closed set in X and suppose f : M→ [−1,1] is continuous
at every point of M. Then there exists a function g which is defined and continuous on all
of X such that g = f on M and g has its values in [−1,1] . If X is a normed linear space
and f is odd, then we can also assume g is odd.

Proof: Using Lemma 5.7.3, let g1 be such that g1 (X)⊆ [−1/3,1/3] and ∥ f −g1∥M ≤
2
3 . Suppose g1, · · · ,gm have been chosen such that g j (X)⊆ [−1/3,1/3] and∥∥∥∥∥ f −

m

∑
i=1

(
2
3

)i−1

gi

∥∥∥∥∥
M

<

(
2
3

)m

. (5.1)

This has been done for m = 1. Then
∥∥∥( 3

2

)m
(

f −∑
m
i=1
( 2

3

)i−1
gi

)∥∥∥
M
≤ 1 and so

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
can play the role of f in the first step of the proof. Therefore, there exists gm+1 defined and
continuous on all of X such that its values are in [−1/3,1/3] and∥∥∥∥∥

(
3
2

)m
(

f −
m

∑
i=1

(
2
3

)i−1

gi

)
−gm+1

∥∥∥∥∥
M

≤ 2
3
.

Thus
∥∥∥( f −∑

m
i=1
( 2

3

)i−1
gi

)
−
( 2

3

)m
gm+1

∥∥∥
M
≤
( 2

3

)m+1
. It follows there exists a sequence

{gi} such that each has its values in [−1/3,1/3] and for every m 5.1 holds. Then let
g(x) ≡ ∑

∞
i=1
( 2

3

)i−1
gi (x) . It follows |g(x)| ≤

∣∣∣∑∞
i=1
( 2

3

)i−1
gi (x)

∣∣∣ ≤ ∑
m
i=1
( 2

3

)i−1 1
3 ≤ 1

and
∣∣∣( 2

3

)i−1
gi (x)

∣∣∣ ≤ ( 2
3

)i−1 1
3 so the Weierstrass M test applies and shows convergence

is uniform. Therefore g must be continuous by Theorem 3.9.3. The estimate 5.1 implies
f = g on M. The last claim follows because we can take each gi odd. ■

The following is the Tietze extension theorem.
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Theorem 5.7.5 Let M be a closed nonempty subset of a metric space X and let
f : M→ [a,b] be continuous at every point of M. Then there exists a function g continuous
on all of X which coincides with f on M such that g(X)⊆ [a,b] . If [a,b] is centered on 0,
and if X is a normed linear space and f is odd, then we can obtain that g is also odd.

Proof: Let f1 (x) = 1+ 2
b−a ( f (x)−b) . Then f1 satisfies the conditions of Lemma

5.7.4 and so there exists g1 : X → [−1,1] such that g is continuous on X and equals f1 on
M. Let g(x) = (g1 (x)−1)

( b−a
2

)
+ b. This works. The last claim follows from the same

arguments which gave Lemma 5.7.4 or the change of variables just given. ■

Corollary 5.7.6 Let M be a closed nonempty subset of a metric space X and let f : M→
[a,b] be continuous at every point of M. Also let ∥ f −g∥ ≤ ε. Then there exists continuous
f̂ extending f with f̂ (X) ⊆ [a,b] and ĝ extending g such that ĝ(X) ⊆ [a− ε,b+ ε]. Also∥∥ f̂ − ĝ

∥∥≤ ε.

Proof: Let f̂ be the extension of f from the above theorem. Now let F be the extension
of f −g with ∥F∥ ≤ ε . Then let ĝ = f̂ −F. Then for x ∈M, ĝ(x) = f (x)− ( f (x)−g(x)) =
g(x). Thus it extends g and clearly ĝ(X)⊆ [a− ε,b+ ε]. ■

With the Tietze extension theorem, here is a better version of the Weierstrass approxi-
mation theorem.

Theorem 5.7.7 Let K be a closed and bounded subset of Rp and let f : K→ R be
continuous. Then there exists a sequence of polynomials {pm} such that

lim
m→∞

(sup{| f (x)− pm (x)| : x ∈ K}) = 0.

In other words, the sequence of polynomials converges uniformly to f on K.

Proof: By the Tietze extension theorem, there exists an extension of f to a continuous
function g defined on all Rp such that g = f on K. Now since K is bounded, there exist
intervals, [ak,bk] such that K ⊆∏

p
k=1 [ak,bk] = R. Then by the Weierstrass approximation

theorem, Theorem 5.6.1 there exists a sequence of polynomials {pm} converging uniformly
to g on R. Therefore, this sequence of polynomials converges uniformly to g = f on K as
well. This proves the theorem. ■

By considering the real and imaginary parts of a function which has values in C one
can generalize the above theorem.

Corollary 5.7.8 Let K be a closed and bounded subset of Rp and let f : K → F be
continuous. Then there exists a sequence of polynomials {pm} such that

lim
m→∞

(sup{| f (x)− pm (x)| : x ∈ K}) = 0.

In other words, the sequence of polynomials converges uniformly to f on K.

More generally, the function f could have values in Rp. There is no change in the
proof. You just use norm symbols rather than absolute values and nothing at all changes
in the theorem where the function is defined on a rectangle. Then you apply the Tietze
extension theorem to each component in the case the function has values in Rp.
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5.8 An Approach to the Integral
With the Weierstrass approximation theorem, you can give a rigorous definition of the
Riemann integral without wading in to Riemann sums. This shows the integral can be
defined directly from very simple ideas. First is a short review of the derivative of a function
of one variable.

Definition 5.8.1 Let f : [a,b]→ R. Then f ′ (x) ≡ limx→0
f (x+h)− f (x)

h where h is
always such that x,x+h are both in the interval [a,b] so we include derivatives at the right
and left end points in this definition.

The most important theorem about derivatives of functions of one variable is the mean
value theorem.

Theorem 5.8.2 Let f : [a,b]→ R be continuous. Then if the maximum value of f
occurs at a point x∈ (a,b) , it follows that if f ′ (x) = 0. If f achieves a minimum at x∈ (a,b)
where f ′ (x) exists, it also follows that f ′ (x) = 0.

Proof: By Theorem 3.7.2, f achieves a maximum at some point x. If f ′ (x) exists, then

f ′ (x) = lim
h→0+

f (x+h)− f (x)
h

= lim
h→0−

f (x+h)− f (x)
h

However, the first limit is non-positive while the second is non-negative and so f ′ (x) = 0.
The situation is similar if the minimum occurs at x ∈ (a,b). ■

The Cauchy mean value theorem follows. The usual one is obtained by letting g(x) = x.

Theorem 5.8.3 Let f ,g be continuous on [a,b] and differentiable on (a,b) . Then
there exists x∈ (a,b) such that f ′ (x)(g(b)−g(a)) = g′ (x)( f (b)− f (a)). If g(x) = x, this
yields f (b)− f (a) = f ′ (x)(b−a) , also f (a)− f (b) = f ′ (x)(a−b).

Proof: Let h(x)≡ f (x)(g(b)−g(a))−g(x)( f (b)− f (a)) . Then

h(a) = h(b) = f (a)g(b)−g(a) f (b) .

If h is constant, then pick any x ∈ (a,b) and h′ (x) = 0. If h is not constant, then it has
either a maximum or a minimum on (a,b) and so if x is the point where either occurs, then
h′ (x) = 0 which proves the theorem. ■

Recall that an antiderivative of a function f is just a function F such that F ′ = f .

You know how to find an antiderivative for a polynomial.
(

xn+1

n+1

)′
= xn so

∫
∑

n
k=1 akxk =

∑
n
k=1 ak

xk+1

k+1 +C. With this information and the Weierstrass theorem, it is easy to define
integrals of continuous functions with all the properties presented in elementary calculus
courses. It is an approach which does not depend on Riemann sums yet still gives the
fundamental theorem of calculus. Note that if F ′ (x) = 0 for x in an interval, then for x,y
in that interval, F (y)−F (x) = 0(y− x) so F is a constant. Thus, if F ′ = G′ on an open
interval, F,G continuous on the closed interval, it follows that F −G is a constant and so
F (b)−F (a) = G(b)−G(a). In words, any two antiderivatives differ by a constant.

Definition 5.8.4 For p(x) a polynomial on [a,b] , let P′ (x) = p(x) . Thus, by the
mean value theorem if P′, P̂′ both equal p, it follows that P(b)−P(a) = P̂(b)− P̂(a) . Then
define

∫ b
a p(x)dx≡ P(b)−P(a). If f ∈C ([a,b]) , define

∫ b
a f (x)dx≡ limn→∞

∫ b
a pn (x)dx

where limn→∞ ∥pn− f∥ ≡ limn→∞ maxx∈[a,b] | f (x)− pn (x)|= 0
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Proposition 5.8.5 The above integral is well defined and satisfies the following prop-
erties.

1.
∫ b

a f dx = f (x̂)(b−a) for some x̂ between a and b. Thus
∣∣∣∫ b

a f dx
∣∣∣≤ ∥ f∥|b−a| .

2. If f is continuous on an interval which contains all necessary intervals,∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx, so

∫ b

a
f dx+

∫ a

b
f dx =

∫ b

b
f dx = 0

3. If F (x) ≡
∫ x

a f dt, then F ′ (x) = f (x) so any continuous function has an antideriva-
tive, and for any a ̸= b,

∫ b
a f dx = G(b)−G(a) whenever G′ = f on the open interval

determined by a,b and G continuous on the closed interval determined by a,b. Also,∫ b

a
(α f (x)+βg(x))dx = α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx

If a < b, and f (x)≥ 0, then
∫ b

a f dx≥ 0. Also
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

4.
∫ b

a 1dx = b−a.

Proof: First, why is the integral well defined? With notation as in the above definition,
the mean value theorem implies∫ b

a
p(x)dx≡ P(b)−P(a) = p(x̂)(b−a) (5.2)

where x̂ is between a and b and so
∣∣∣∫ b

a p(x)dx
∣∣∣ ≤ ∥p∥|b−a| . If ∥pn− f∥ → 0, then

limm,n→∞ ∥pn− pm∥= 0 and so∣∣∣∣∫ b

a
pn (x)dx−

∫ b

a
pm (x)dx

∣∣∣∣= |(Pn (b)−Pn (a))− (Pm (b)−Pm (a))|

= |(Pn (b)−Pm (b))− (Pn (a)−Pm (a))|=
∣∣∣∣∫ b

a
(pn− pm)dx

∣∣∣∣≤ ∥pn− pm∥|b−a|

Thus the limit exists because
{∫ b

a pndx
}

n
is a Cauchy sequence and R is complete.

From 5.2, 1. holds for a polynomial p(x). Let ∥pn− f∥→ 0. Then by definition,∫ b

a
f dx≡ lim

n→∞

∫ b

a
pndx = pn (xn)(b−a) (5.3)

for some xn in the open interval determined by (a,b) . By compactness, there is a fur-
ther subsequence, still denoted with n such that xn → x ∈ [a,b] . Then fixing m such that
∥ f − pn∥< ε whenever n≥ m, assume n > m. Then ∥pm− pn∥ ≤ ∥pm− f∥+∥ f − pn∥<
2ε and so

| f (x)− pn (xn)| ≤ | f (x)− f (xn)|+ | f (xn)− pm (xn)|+ |pm (xn)− pn (xn)|

≤ | f (x)− f (xn)|+∥ f − pm∥+∥pm− pn∥< | f (x)− f (xn)|+3ε
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Now if n is still larger, continuity of f shows that | f (x)− pn (xn)|< 4ε. Since ε is arbitrary,
pn (xn)→ f (x) and so, passing to the limit with this subsequence in 5.3 yields 1.

Now consider 2. It holds for polynomials p(x) obviously. So let ∥pn− f∥→ 0. Then∫ c

a
pndx+

∫ b

c
pndx =

∫ b

a
pndx

Pass to a limit as n→ ∞ and use the definition to get 2. Also note that
∫ b

b f (x)dx = 0
follows from the definition.

Next consider 3. Let h ̸= 0 and let x be in the open interval determined by a and b.
Then for small h, F(x+h)−F(x)

h = 1
h
∫ x+h

x f (t)dt = f (xh) where xh is between x and x+ h.
Let h→ 0. By continuity of f , it follows that the limit of the right side exists and so

lim
h→0

F (x+h)−F (x)
h

= lim
h→0

f (xh) = f (x)

If x is either end point, the argument is the same except you have to pay attention to the
sign of h so that both x and x+h are in [a,b]. Thus F is continuous on [a,b] and F ′ exists
on (a,b) so if G is an antiderivative,∫ b

a
f (t)dt ≡ F (b) = F (b)−F (a) = G(b)−G(a)

The claim that the integral is linear is obvious from this. Indeed, if F ′ = f ,G′ = g,∫ b

a
(α f (t)+βg(t))dt = αF (b)+βG(b)− (αF (a)+βG(a))

= α (F (b)−F (a))+β (G(b)−G(a))

= α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt

If f ≥ 0, then the mean value theorem implies that for some

t ∈ (a,b) ,F (b)−F (a) =
∫ b

a
f dx = f (t)(b−a)≥ 0.

Thus
∫ b

a (| f |− f )dx ≥ 0,
∫ b

a (| f |+ f )dx ≥ 0 and so
∫ b

a | f |dx ≥
∫ b

a f dx and
∫ b

a | f |dx ≥
−
∫ b

a f dx so this proves
∣∣∣∫ b

a f dx
∣∣∣≤ ∫ b

a | f |dx. This, along with part 2 implies the other claim

that
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

The last claim is obvious because an antiderivative of 1 is F (x) = x. ■
Note also that the usual change of variables theorem is available because if F ′ = f , then

f (g(x))g′ (x) = d
dx F (g(x)) so that, from the above proposition, F (g(b))− F (g(a)) =∫ g(b)

g(a) f (y)dy =
∫ b

a f (g(x))g′ (x)dx.We usually let y = g(x) and dy = g′ (x)dx and then
change the limits as indicated above, equivalently we massage the expression to look like
the above. Integration by parts also follows from differentiation rules.

Definition 5.8.6 If f ∈ Cc (R) , define
∫
R f ≡

∫
∞

−∞
f (x)dx as

∫ b
a f (x)dx where the

interval [a,b] is chosen such that spt( f )⊆ [a,b].
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Proposition 5.8.7 The above definition is well defined.

Proof: Letting b ≡ sup{x : f (x) ̸= 0} , it follows f (b) = 0 and f (x) = 0 for x > b.
Similarly if a ≡ inf{x : f (x) ̸= 0} , it follows f (a) = 0 and f (x) = 0 for x < a. Thus, by
the mean value theorem, F ′= f requires F (x) =F (b) for x> b and F (x) =F (a) for x< a.
It follows that the above definition is not dependent on the interval [a,b] containing spt( f ).
■

Consider the iterated integral
∫ b1

a1
· · ·
∫ bp

ap
αxα1

1 · · ·x
α p
p dxp · · ·dx1. It means just what it

meant in calculus. You do the integral with respect to xp first, keeping the other variables
constant, obtaining a polynomial function of the other variables. Then you do this one with
respect to xp−1 and so forth. Thus, doing the computation, it reduces to

α

p

∏
k=1

(∫ bk

ak

xαk
k dxk

)
= α

p

∏
k=1

(
bαk+1

αk +1
− aαk+1

αk +1

)
and the same thing would be obtained for any other order of the iterated integrals. Since
each of these integrals is linear, it follows that if (i1, · · · , ip) is any permutation of (1, · · · , p) ,
then for any polynomial q,∫ b1

a1

· · ·
∫ bp

ap

q(x1, ...,xp)dxp · · ·dx1 =
∫ bi1

aip

· · ·
∫ bip

aip

q(x1, ...,xp)dxip · · ·dxi1

Now let f : ∏
p
k=1 [ak,bk]→ R be continuous. Then each iterated integral results in a con-

tinuous function of the remaining variables and so the iterated integral makes sense. For
example, by Proposition 5.8.5,

∣∣∣∫ d
c f (x,y)dy−

∫ d
c f (x̂,y)dy

∣∣∣=∣∣∣∣∫ d

c
( f (x,y)− f (x̂,y))dy

∣∣∣∣≤ max
y∈[c,d]

| f (x,y)− f (x̂,y)|< ε

if |x− x̂| is sufficiently small, thanks to uniform continuity of f on the compact set [a,b]×
[c,d]. Thus it makes perfect sense to consider the iterated integral

∫ b
a
∫ d

c f (x,y)dydx. Then
using Proposition 5.8.5 on the iterated integrals along with Theorem 5.6.1, there exists a
sequence of polynomials which converges to f uniformly {pn} . Then applying Proposition
5.8.5 repeatedly,∣∣∣∣∣
∫ bi1

aip

· · ·
∫ bip

aip

f (x)dxp · · ·dx1−
∫ bi1

aip

· · ·
∫ bip

aip

pn (x)dxp · · ·dx1

∣∣∣∣∣≤ ∥ f − pn∥
p

∏
k=1
|bk−ak|

(5.4)
With this, it is easy to prove a rudimentary Fubini theorem valid for continuous functions.

Theorem 5.8.8 f : ∏
p
k=1 [ak,bk]→ R be continuous. Then for (i1, · · · , ip) any per-

mutation of (1, · · · , p) ,∫ bi1

aip

· · ·
∫ bip

aip

f (x)dxip · · ·dxi1 =
∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1

If f ≥ 0, then the iterated integrals are nonnegative if each ak ≤ bk. Also, we can define for
f ∈Cc (Rp) ∫

Rp
f ≡

∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1
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where spt( f )⊆∏
p
k=1 [ak,bk] and the integral does not depend on the order of the iterated

integrals.

Proof: Let ∥pn− f∥
∏

p
k=1[ak,bk]

→ 0 where pn is a polynomial. Then from 5.4,

∫ bi1

ai1

· · ·
∫ bip

aip

f (x)dxip · · ·dxi1 = lim
n→∞

∫ bi1

aip

· · ·
∫ bip

aip

pn (x)dxip · · ·dxi1

= lim
n→∞

∫ b1

a1

· · ·
∫ bp

ap

pn (x)dxp · · ·dx1 =
∫ b1

a1

· · ·
∫ bp

ap

f (x)dxp · · ·dx1

The fact that this integral is well defined in the last claim follows from Proposition 5.8.7.
■

You could replace f with f XG where XG (x) = 1 if x ∈ G and 0 otherwise provided
each section of G consisting of holding all variables constant but one, consists of finitely
many intervals. Thus you can integrate over all the usual sets encountered in beginning
calculus.

5.9 The Stone Weierstrass Approximation Theorem
There is a profound generalization of the Weierstrass approximation theorem due to Stone.
It has to be one of the most elegant things available. It holds on locally compact Hausdorff
spaces but here I will show the version which is valid on compact sets.

Definition 5.9.1 A is an algebra of functions if A is a vector space and if whenever
f ,g ∈A then f g ∈A .

To begin with assume that the field of scalars is R. This will be generalized later.
Theorem 5.5.2 implies the following corollary. See Corollary 5.5.3.

Corollary 5.9.2 The polynomials are dense in C ([a,b]).

Here is another approach to proving this theorem. It is the original approach used by
Weierstrass. Let m ∈ N and consider cm such that

∫ 1
−1 cm

(
1− x2

)m dx = 1. Then

1 = 2
∫ 1

0
cm
(
1− x2)m

dx≥ 2cm

∫ 1

0
(1− x)m dx = 2cm

1
m+1

so cm ≤ m+1. Then∫ 1

δ

cm
(
1− x2)m

dx+
∫ −δ

−1
cm
(
1− x2)m

dx≤ 2(m+1)
(

1−δ
2
)m

which converges to 0. Thus

lim
m→∞

sup
x/∈[−δ ,δ ]

cm
(
1− x2)m

= 0 (5.5)

Now let φ n (t) ≡ cm
(
1− t2

)m. Consider f ∈ C ([−1,1]) and extend to let f (x) = f (1) if
x > 1 and f (x) = f (−1) if x <−1 and define pm (x)≡

∫ 1
−1 f (x− t)φ m (t)dt. Then

|pm (x)− f (x)| ≤
∫ 1

−1
| f (x− t)− f (x)|φ m (t)dt ≤
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∫ 1

−1
X[−δ ,δ ] (t) | f (x− t)− f (x)|φ m (t)dt +

∫ 1

−1
X[−1,1]\[−δ ,δ ] (t) | f (x− t)− f (x)|φ m (t)dt

Choose δ so small that if |x− y| < δ , then | f (x)− f (y)| < ε . Also let M ≥ maxx | f (x)|.
Then

|pm (x)− f (x)| ≤ ε

∫ 1

−1
φ m (t)dt +2M

∫ 1

−1
X[−1,1]\[−δ ,δ ] (t)φ m (t)dt

= ε +2M
∫ 1

−1
X[−1,1]\[−δ ,δ ] (t)φ m (t)dt

From 5.5, The second term is no larger than 2M
∫ 1
−1 X[−1,1]\[−δ ,δ ] (t)εdt ≤ 4Mε whenever

m is large enough. Hence, for large enough m, supx∈[−1,1] |pm (x)− f (x)| ≤ (1+4M)ε .
Since ε is arbitrary, this shows that the functions pm converge uniformly to f on [−1,1].
However, pm is actually a polynomial. To see this, change the variables and obtain

pm (x) =
∫ x+1

x−1
f (t)φ m (x− t)dt

which will be a polynomial. To see this, note that a typical term is of the form∫ x+1

x−1
f (t)a(x− t)k dt,

clearly a polynomial in x. This proves Corollary 5.9.2 in case [a,b] = [−1,1]. In the general
case, there is a linear one to one onto map l : [−1,1]→ [a,b].

l (t) =
b−a

2
(t +1)+a

Then if f ∈C ([a,b]) , f ◦ l ∈C ([−1,1]) . Hence there is a polynomial p such that

max
t∈[−1,1]

| f ◦ l (t)− p(t)|< ε

Then letting t = l−1 (x) = 2(x−a)
b−a − 1, for x ∈ [a,b] ,maxx∈[a,b]

∣∣ f (x)− p
(
l−1 (x)

)∣∣ < ε but
x→ p

(
l−1 (x)

)
is a polynomial. This gives an independent proof of that corollary. ■

The next result is the key to the profound generalization of the Weierstrass theorem due
to Stone in which an interval will be replaced by a compact set and polynomials will be
replaced with elements of an algebra satisfying certain axioms.

Corollary 5.9.3 On the interval [−M,M], there exist polynomials pn, pn (0) = 0, and
limn→∞ ∥pn−|·|∥∞

= 0. recall that ∥ f∥
∞
≡ supt∈[−M,M] | f (t)|.

Proof: By Corollary 5.9.2 there exists a sequence of polynomials, {p̃n} such that p̃n→
|·| uniformly. Then let pn (t)≡ p̃n (t)− p̃n (0) . ■

Definition 5.9.4 An algebra of functions, A defined on A, annihilates no point of
A if for all x ∈ A, there exists g ∈ A such that g(x) ̸= 0. The algebra separates points if
whenever x1 ̸= x2, then there exists g ∈A such that g(x1) ̸= g(x2).

The following generalization is known as the Stone Weierstrass approximation theorem.
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Theorem 5.9.5 Let A be a compact topological space and let A ⊆C (A;R) be an
algebra of functions which separates points and annihilates no point. Then A is dense in
C (A;R).

Proof: First here is a lemma.

Lemma 5.9.6 Let c1 and c2 be two real numbers and let x1 ̸= x2 be two points of A.
Then there exists a function fx1x2 such that

fx1x2 (x1) = c1, fx1x2 (x2) = c2.

Proof of the lemma: Let g ∈ A satisfy g(x1) ̸= g(x2). Such a g exists because the
algebra separates points. Since the algebra annihilates no point, there exist functions h and
k such that h(x1) ̸= 0, k (x2) ̸= 0. Then let u ≡ gh− g(x2)h, v ≡ gk− g(x1)k. It follows
that u(x1) ̸= 0 and u(x2) = 0 while v(x2) ̸= 0 and v(x1) = 0. Let fx1x2 ≡

c1u
u(x1)

+ c2v
v(x2)

. This
proves the lemma. Now continue the proof of Theorem 5.9.5.

First note that A satisfies the same axioms as A but in addition to these axioms, A is
closed. The closure of A is taken with respect to the usual norm on C (A),

∥ f∥
∞
≡max{| f (x)| : x ∈ A} .

Suppose f ∈A and suppose M is large enough that ∥ f∥
∞
< M. Using Corollary 5.9.3, let

pn be a sequence of polynomials such that

∥pn−|·|∥∞
→ 0, pn (0) = 0.

It follows that pn ◦ f ∈A and so | f | ∈A whenever f ∈A . Also note that

max( f ,g) =
| f −g|+( f +g)

2

min( f ,g) =
( f +g)−| f −g|

2
.

Therefore, this shows that if f ,g ∈ A then max( f ,g) , min( f ,g) ∈ A . By induction, if
fi, i = 1,2, · · · ,m are in A then

max( fi, i = 1,2, · · · ,m) , min( fi, i = 1,2, · · · ,m) ∈A .

Now let h ∈ C (A;R) and let x ∈ A. Use Lemma 5.9.6 to obtain fxy, a function of A
which agrees with h at x and y. Letting ε > 0, there exists an open set U (y) containing y
such that

fxy (z)> h(z)− ε if z ∈U(y).

Since A is compact, let U (y1) , · · · ,U (yl) cover A. Let

fx ≡max
(

fxy1 , fxy2 , · · · , fxyl

)
.

Then fx ∈A and fx (z)> h(z)−ε for all z∈ A and fx (x) = h(x). This implies that for each
x ∈ A there exists an open set V (x) containing x such that for z ∈ V (x), fx (z) < h(z)+ ε.
Let V (x1) , · · · ,V (xm) cover A and let f ≡ min( fx1 , · · · , fxm). Therefore, f (z) < h(z)+ ε

for all z ∈ A and since fx (z)> h(z)−ε for all z ∈ A, it follows f (z)> h(z)−ε also and so
| f (z)−h(z)|< ε for all z. Since ε is arbitrary, this shows h ∈A and proves A =C (A;R).
■
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5.10 Connectedness in Normed Linear Space
The main result is that a ball in a normed linear space is connected. This is the next
lemma. From this, it follows that for an open set, it is connected if and only if it is arcwise
connected.

Lemma 5.10.1 In a normed vector space, B(z,r) is arcwise connected.

Proof: This is easy from the convexity of the set. If x,y ∈ B(z,r) , then let γ (t) =
x+ t (y−x) for t ∈ [0,1] .

∥x+ t (y−x)−z∥= ∥(1− t)(x−z)+ t (y−z)∥

≤ (1− t)∥x−z∥+ t ∥y−z∥< (1− t)r+ tr = r

showing γ (t) stays in B(z,r).■

Proposition 5.10.2 If X ̸= /0 is arcwise connected, then it is connected.

Proof: Let p ∈ X . Then by assumption, for any x ∈ X , there is an arc joining p and x.
This arc is connected because it is the continuous image of an interval which is connected.
Since x is arbitrary, every x is in a connected subset of X which contains p. Hence Cp = X
and so X is connected. ■

Theorem 5.10.3 Let U be an open subset of a normed vector space. Then U is
arcwise connected if and only if U is connected. Also the connected components of an open
set are open sets.

Proof: By Proposition 5.10.2 it is only necessary to verify that if U is connected and
open in the context of this theorem, then U is arcwise connected. Pick p ∈U . Say x ∈U
satisfies P if there exists a continuous function, γ : [a,b]→ U such that γ (a) = p and
γ (b) = x.

A≡ {x ∈U such that x satisfies P .}

If x∈A, then Lemma 5.10.1 implies B(x,r)⊆U is arcwise connected for small enough
r. Thus letting y ∈ B(x,r) , there exist intervals, [a,b] and [c,d] and continuous functions
having values in U , γ,η such that γ (a) = p,γ (b) = x,η (c) = x, and η (d) = y. Then let
γ1 : [a,b+d− c]→U be defined as

γ1 (t)≡
{

γ (t) if t ∈ [a,b]
η (t + c−b) if t ∈ [b,b+d− c]

Then it is clear that γ1 is a continuous function mapping p to y and showing that B(x,r)⊆
A. Therefore, A is open. A ̸= /0 because since U is open there is an open set, B(p,δ )
containing p which is contained in U and is arcwise connected.

Now consider B ≡ U \A. I claim this is also open. If B is not open, there exists a
point z ∈ B such that every open set containing z is not contained in B. Therefore, letting
B(z,δ ) be such that z ∈ B(z,δ ) ⊆U, there exist points of A contained in B(z,δ ) . But
then, a repeat of the above argument shows z ∈ A also. Hence B is open and so if B ̸= /0,
then U = B∪A and so U is separated by the two sets B and A contradicting the assumption
that U is connected.
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It remains to verify the connected components are open. Let z ∈ Cp where Cp is the
connected component determined by p. Then picking B(z,δ ) ⊆U, Cp ∪B(z,δ ) is con-
nected and contained in U and so it must also be contained in Cp. Thus z is an interior
point of Cp. ■

As an application, consider the following corollary.

Corollary 5.10.4 Let f : Ω→ Z be continuous where Ω is a connected open set in a
normed vector space. Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l ̸= k. Then Ω =
f−1 (l)∪ f−1 ({m ∈ Z : m ̸= l}) and these are disjoint nonempty open sets which separate
Ω. To see they are open, note

f−1 ({m ∈ Z : m ̸= l}) = f−1
(
∪m ̸=l

(
m− 1

6
,m+

1
6

))
which is the inverse image of an open set while f−1 (l) = f−1

((
l− 1

6 , l +
1
6

))
also an open

set. ■

Definition 5.10.5 An important concept in a vector space is the concept of con-
vexity. A nonempty set K is called convex if whenever x,y ∈ K, it follows that for all
t ∈ [0,1] , tx+(1− t)y ∈ K also. That is, the line segment joining the two points x,y is in
K.

5.11 Saddle Points∗

A very useful idea in nonlinear analysis is the saddle point theorem also called the minmax
theorem. The proof of this theorem given here follows Brezis [6] which is where I found
it. A real valued function f defined on a linear space is convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

It is concave if the inequality is turned around. It can be shown that in finite dimensions,
convex functions are automatically continuous, similar for concave functions. Recall the
following definition of upper and lower semicontinuous functions defined on a metric space
and having values in [−∞,∞]. This is about functions which look like this, convex in one
direction and concave in the other.

Definition 5.11.1 A function is upper semicontinuous if whenever xn→ x, it follows
that f (x)≥ limsupn→∞ f (xn) and it is lower semicontinuous if f (x)≤ liminfn→∞ f (xn) .

The following lemma comes directly from the definition.

Lemma 5.11.2 If F is a set of functions which are upper semicontinuous, then g(x)≡
inf{ f (x) : f ∈F} is also upper semicontinuous. Similarly, if F is a set of functions which
are lower semicontinuous, then if g(x) ≡ sup{ f (x) : f ∈F} it follows that g is lower
semicontinuous.
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Note that in a metric space, the above definitions of upper and lower semicontinuity in
terms of sequences are equivalent to the definitions that

f (x)≥ lim
r→0

sup{ f (y) : y ∈ B(x,r)} , f (x)≤ lim
r→0

inf{ f (y) : y ∈ B(x,r)}

respectively.
Here is a technical lemma which will make the proof of the saddle point theorem

shorter. It seems fairly interesting also.

Lemma 5.11.3 Suppose H : A×B→R is strictly convex in the first argument and con-
cave in the second argument where A,B are compact convex nonempty subsets of Banach
spaces E,F respectively and x→H (x,y) is lower semicontinuous while y→H (x,y) is up-
per semicontinuous. Let H (g(y) ,y) ≡ minx∈A H (x,y). Then g(y) is uniquely defined and
also for t ∈ [0,1] , limt→0 g(y+ t (z− y)) = g(y).

Proof: First suppose both z,w yield the definition of g(y) . Then

H
(

z+w
2

,y
)
<

1
2

H (z,y)+
1
2

H (w,y)

which contradicts the definition of g(y). As to the existence of g(y) this is nothing more
than the theorem that a lower semicontinuous function defined on a compact set achieves
its minimum.

Now consider the last claim about “hemicontinuity”, continuity along a line. For all
x ∈ A, it follows from the definition of g that

H (g(y+ t (z− y)) ,y+ t (z− y))≤ H (x,y+ t (z− y))

By concavity of H in the second argument,

(1− t)H (g(y+ t (z− y)) ,y)+ tH (g(y+ t (z− y)) ,z) (5.6)
≤ H (x,y+ t (z− y)) (5.7)

Now let tn → 0. Does g(y+ tn (z− y))→ g(y)? Suppose not. By compactness, each of
g(y+ tn (z− y)) is in a compact set and so there is a further subsequence, still denoted by
tn such that g(y+ tn (z− y))→ x̂ ∈ A. Then passing to a limit in 5.7, one obtains, using the
upper semicontinuity in one and lower semicontinuity in the other the following inequality.

H (x̂,y) ≤ lim inf
n→∞

(1− tn)H (g(y+ tn (z− y)) ,y)

+ lim inf
n→∞

tnH (g(y+ tn (z− y)) ,z)

≤ lim inf
n→∞

(
(1− tn)H (g(y+ tn (z− y)) ,y)
+tnH (g(y+ tn (z− y)) ,z)

)
≤ lim sup

n→∞

H (x,y+ tn (z− y))≤ H (x,y)

This shows that x̂ = g(y) because this holds for every x. Since tn → 0 was arbitrary, this
shows that in fact limt→0+ g(y+ t (z− y)) = g(y) ■

Now with this preparation, here is the min-max theorem.
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Definition 5.11.4 A norm is called strictly convex if whenever x ̸= y,∥∥∥∥x+ y
2

∥∥∥∥< ∥x∥2 +
∥y∥
2

Theorem 5.11.5 Let E,F be Banach spaces with E having a strictly convex norm.
Also suppose that A ⊆ E,B ⊆ F are compact and convex sets and that H : A×B→ R is
such that

x→ H (x,y) is convex

y→ H (x,y) is concave

Assume that x→ H (x,y) is lower semicontinuous and y→ H (x,y) is upper semicontin-
uous. Then minx∈A maxy∈B H (x,y) = maxy∈B minx∈A H (x,y) . This condition is equivalent
to the existence of (x0,y0) ∈ A×B such that

H (x0,y)≤ H (x0,y0)≤ H (x,y0) for all x,y (5.8)

called a saddle point.

Proof: One part of the main equality is obvious.

max
y∈B

H (x,y)≥ H (x,y)≥min
x∈A

H (x,y)

and so for each x, maxy∈B H (x,y)≥maxy∈B minx∈A H (x,y) and so

min
x∈A

max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y) (5.9)

Next consider the other direction.
Define Hε (x,y)≡ H (x,y)+ ε ∥x∥2 where ε > 0. Then Hε is strictly convex in the first

variable. This results from the observation that∥∥∥∥x+ y
2

∥∥∥∥2

<

(
∥x∥+∥y∥

2

)2

≤ 1
2

(
∥x∥2 +∥y∥2

)
,

By Lemma 5.11.3 there exists a unique x ≡ g(y) with Hε (g(y) ,y) ≡ minx∈A Hε (x,y) and
also, whenever y,z ∈ A, limt→0+ g(y+ t (z− y)) = g(y). Thus

Hε (g(y) ,y) = min
x∈A

Hε (x,y) .

But also this shows that y→ Hε (g(y) ,y) is the minimum of functions which are upper
semicontinuous and so this function is also upper semicontinuous. Hence there exists y∗

such that
max
y∈B

Hε (g(y) ,y) = Hε (g(y∗) ,y∗) = max
y∈B

min
x∈A

Hε (x,y) (5.10)

Thus from concavity in the second argument and what was just defined, for t ∈ (0,1) ,

Hε (g(y∗) ,y∗)≥ Hε (g((1− t)y∗+ ty) ,(1− t)y∗+ ty)

≥ (1− t)Hε (g((1− t)y∗+ ty) ,y∗)+ tHε (g((1− t)y∗+ ty) ,y)

≥ (1− t)Hε (g(y∗) ,y∗)+ tHε (g((1− t)y∗+ ty) ,y) (5.11)
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This is because minx Hε (x,y∗)≡ Hε (g(y∗) ,y∗) so

Hε (g((1− t)y∗+ ty) ,y∗)≥ Hε (g(y∗) ,y∗)

Then subtracting the first term on the right, one gets

tHε (g(y∗) ,y∗)≥ tHε (g((1− t)y∗+ ty) ,y)

and cancelling the t,

Hε (g(y∗) ,y∗)≥ Hε (g((1− t)y∗+ ty) ,y)

Now apply Lemma 5.11.3 and let t→ 0+ . This along with lower semicontinuity yields

Hε (g(y∗) ,y∗)≥ lim inf
t→0+

Hε (g((1− t)y∗+ ty) ,y) = Hε (g(y∗) ,y) (5.12)

Hence for every x,y

Hε (x,y∗)≥ Hε (g(y∗) ,y∗)≥ Hε (g(y∗) ,y)

Thus
min

x
Hε (x,y∗)≥ Hε (g(y∗) ,y∗)≥max

y
Hε (g(y∗) ,y)

and so

max
y∈B

min
x∈A

Hε (x,y) ≥ min
x

Hε (x,y∗)≥ Hε (g(y∗) ,y∗)

≥ max
y

Hε (g(y∗) ,y)≥min
x∈A

max
y∈B

Hε (x,y)

Thus, letting C ≡max{∥x∥ : x ∈ A}

εC2 +max
y∈B

min
x∈A

H (x,y)≥min
x∈A

max
y∈B

H (x,y)

Since ε is arbitrary, it follows that

max
y∈B

min
x∈A

H (x,y)≥min
x∈A

max
y∈B

H (x,y)

This proves the first part because it was shown above in 5.9 that

min
x∈A

max
y∈B

H (x,y)≥max
y∈B

min
x∈A

H (x,y)

Now consider 5.8 about the existence of a “saddle point” given the equality of minmax
and maxmin. Let

α = max
y∈B

min
x∈A

H (x,y) = min
x∈A

max
y∈B

H (x,y)

Then from
y→min

x∈A
H (x,y) and x→max

y∈B
H (x,y)

being upper semicontinuous and lower semicontinuous respectively, there exist y0 and x0
such that

α = min
x∈A

H (x,y0) =

.

max
y∈B

minimum of u.s.c
min
x∈A

H (x,y) = min
x∈A

maximum of l.s.c.
max
y∈B

H (x,y) = max
y∈B

H (x0,y)
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Then
α = max

y∈B
H (x0,y)≥ H (x0,y0) , α = min

x∈A
H (x,y0)≤ H (x0,y0)

so in fact α = H (x0,y0) and from the above equalities,

H (x0,y0) = α = min
x∈A

H (x,y0)≤ H (x,y0)

H (x0,y0) = α = max
y∈B

H (x0,y)≥ H (x0,y)

and so H (x0,y) ≤ H (x0,y0) ≤ H (x,y0) . Thus if the minmax condition holds, then there
exists a saddle point, namely (x0,y0).

Finally suppose there is a saddle point (x0,y0) where

H (x0,y)≤ H (x0,y0)≤ H (x,y0)

Then

min
x∈A

max
y∈B

H (x,y)≤max
y∈B

H (x0,y)≤ H (x0,y0)≤min
x∈A

H (x,y0)≤max
y∈B

min
x∈A

H (x,y)

However, as noted above, it is always the case that

max
y∈B

min
x∈A

H (x,y)≤min
x∈A

max
y∈B

H (x,y) ■

What was really needed? You needed compactness of A,B and these sets needed to
be in a linear space. Of course there needed to be a norm for which x→ ∥x∥ is strictly
convex and lower semicontinuous, so the conditions given above are sufficient but maybe
not necessary.

5.12 Exercises
1. Consider the metric space C ([0,T ] ,Rn) with the norm ∥f∥ ≡ maxx∈[0,T ] ∥f (x)∥

∞
.

Explain why the maximum exists. Show this is a complete metric space. Hint: If you
have {fm} a Cauchy sequence in C ([0,T ] ,Rn) , then for each x, you have {fm (x)}
a Cauchy sequence in Rn. Recall that this is a complete space. Thus there exists
f (x) = limm→∞fm (x). You must show that f is continuous. This was in the section
on the Ascoli Arzela theorem in more generality if you need an outline of how this
goes. Write down the details for this case. Note how f is in bold face. This means it
is a function which has values in Rn. f (t) = ( f1 (t) , f2 (t) , · · · , fn (t)).

2. For f ∈C ([0,T ] ,Rn) , you define the Riemann integral in the usual way using Rie-
mann sums. Alternatively, you can define it as∫ t

0
f (s)ds =

(∫ t

0
f1 (s)ds,

∫ t

0
f2 (s)ds, · · · ,

∫ t

0
fn (s)ds

)
Then show that the following limit exists in Rn for each t ∈ (0,T ) .

lim
h→0

∫ t+h
0 f (s)ds−

∫ t
0 f (s)ds

h
= f (t) .

You should use the fundamental theorem of calculus from one variable calculus and
the definition of the norm to verify this. As a review, for f defined on an interval
[0,T ] and s ∈ [0,T ] , limt→sf (t) = l means that for all ε > 0, there exists δ > 0 such
that if 0 < |t− s|< δ , then ∥f (t)− l∥

∞
< ε .
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3. Suppose f :R→ R and f ≥ 0 on [−1,1] with f (−1) = f (1) = 0 and f (x)< 0 for all
x /∈ [−1,1] . Can you use a modification of the proof of the Weierstrass approximation
theorem for functions on an interval presented earlier to show that for all ε > 0 there
exists a polynomial p, such that |p(x)− f (x)| < ε for x ∈ [−1,1] and p(x) ≤ 0 for
all x /∈ [−1,1]?

4. This and the next few problems give an alternative treatment of the Arzella Ascolli
theorem of Chapter 3. collection of functions F of C ([0,T ] ,Rn) is said to be uni-
formly equicontinuous if for every ε > 0 there exists δ > 0 such that if f ∈F and
|t− s| < δ , then ∥f (t)−f (s)∥

∞
< ε . Thus the functions are uniformly continu-

ous all at once. The single δ works for every pair t,s closer together than δ and
for all functions f ∈F . As an easy case, suppose there exists K such that for all
f ∈F , ∥f (t)−f (s)∥

∞
≤K |t− s| . Show that F is uniformly equicontinuous. Now

suppose G is a collection of functions of C ([0,T ] ,Rn) which is bounded. That is,
∥f∥ = maxt∈[0,T ] ∥f (t)∥

∞
< M < ∞ for all f ∈ G . Then let F denote the func-

tions which are of the form F (t) ≡ y0 +
∫ t

0 f (s)ds where f ∈ G . Show that F is
uniformly equicontinuous. Hint: This is a really easy problem if you do the right
things. Here is the way you should proceed. Remember the triangle inequality from
one variable calculus which said that for a < b

∣∣∣∫ b
a f (s)ds

∣∣∣ ≤ ∫ b
a | f (s)|ds. Then∥∥∥∫ b

a f (s)ds
∥∥∥

∞

= maxi

∣∣∣∫ b
a fi (s)ds

∣∣∣ ≤ maxi
∫ b

a | fi (s)|ds ≤
∫ b

a ∥f (s)∥
∞

ds. Reduce to
the case just considered using the assumption that these f are bounded.

5. Suppose F is a set of functions in C ([0,T ] ,Rn) which is uniformly bounded and
uniformly equicontinuous as described above. Show it must be totally bounded.

6. ↑If A⊆ (X ,d) is totally bounded, show that Ā the closure of A is also totally bounded.
In the above problem, explain why F̄ the closure of F is compact. This uses the
big theorem on compactness. Try and do this on your own, but if you get stuck,
it is in the section on Arzela Ascoli theorem. When you have done this problem,
you have proved the important part of the Arzela Ascoli theorem in the special case
where the functions are defined on an interval. You can use this to prove one of
the most important results in the theory of differential equations. This theorem is a
really profound result because it gives compactness in a normed linear space which
is not finite dimensional. Thus this is a non trivial generalization of the Heine Borel
theorem.

7. Let (X ,∥·∥) be a normed linear space. A set A is said to be convex if whenever x,y ∈
A the line segment determined by these points given by tx+(1− t)y for t ∈ [0,1] is
also in A. Show that every open or closed ball is convex. Remember a closed ball
is D(x,r)≡ {x̂ : ∥x̂−x∥ ≤ r} while the open ball is B(x,r)≡ {x̂ : ∥x̂−x∥< r}.
This should work just as easily in any normed linear space with any norm.

8. Let K be a nonempty closed and convex set in an inner product space (X , |·|) which is
complete. For example, Fn or any other finite dimensional inner product space. Let
y /∈ K and let λ = inf{|y− x| : x ∈ K} . Let {xn} be a minimizing sequence. That is
λ = limn→∞ |y− xn| . Explain why such a minimizing sequence exists. Next explain
the following using the parallelogram identity in the above problem as follows.∣∣∣∣y− xn + xm

2

∣∣∣∣2 = ∣∣∣ y2 − xn

2
+

y
2
− xm

2

∣∣∣2
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=−
∣∣∣ y
2
− xn

2
−
( y

2
− xm

2

)∣∣∣2 + 1
2
|y− xn|2 +

1
2
|y− xm|2

Hence
∣∣ xm−xn

2

∣∣2 =− ∣∣y− xn+xm
2

∣∣2 + 1
2 |y− xn|2 + 1

2 |y− xm|2

≤−λ
2 +

1
2
|y− xn|2 +

1
2
|y− xm|2

Next explain why the right hand side converges to 0 as m,n→ ∞. Thus {xn} is a
Cauchy sequence and converges to some x ∈ X . Explain why x ∈ K and |x− y|= λ .
Thus there exists a closest point in K to y. Next show that there is only one closest
point. Hint: To do this, suppose there are two x1,x2 and consider x1+x2

2 using the
parallelogram law to show that this average works better than either of the two points
which is a contradiction unless they are really the same point. This theorem is of
enormous significance.

9. Let K be a closed convex nonempty set in a complete inner product space (H, |·|)
(Hilbert space) and let y ∈ H. Denote the closest point to y by Px. Show that Px
is characterized as being the solution to the following variational inequality given
by Re(z−Py,y−Py) ≤ 0 for all z ∈ K. That is, show that x = Py if and only if
Re(z− x,y− x)≤ 0 for all z ∈ K. Hint: Let x ∈ K. Then, due to convexity, a generic
thing in K is of the form x+ t (z− x) , t ∈ [0,1] for every z ∈ K. Then

|x+ t (z− x)− y|2 = |x− y|2 + t2 |z− x|2− t2Re(z− x,y− x)

If x = Px, then the minimum value of this on the left occurs when t = 0. Function
defined on [0,1] has its minimum at t = 0. What does it say about the derivative
of this function at t = 0? Next consider the case that for some x the inequality
Re(z− x,y− x)≤ 0. Explain why this shows x = Py.

10. Using Problem 9 and Problem 8 show the projection map, P onto a closed convex
subset is Lipschitz continuous with Lipschitz constant 1. That is |Px−Py| ≤ |x− y| .

11. Suppose, in an inner product space, you know Re(x,y) . Show that you also know
Im(x,y). That is, give a formula for Im(x,y) in terms of Re(x,y). Hint:

(x, iy) =−i(x,y) =−i(Re(x,y)+ iIm(x,y)) =−iRe(x,y)+ Im(x,y)

while, by definition, (x, iy) = Re(x, iy)+ iIm(x, iy) . Now consider matching real and
imaginary parts.

12. Let h > 0 be given and let f (t,x)∈Rn for each x∈Rn. Also let (t,x)→ f (t,x) be
continuous and supt,x ∥f (t,x)∥

∞
<C < ∞. Let xh (t) be a solution to the following

xh (t) = x0 +
∫ t

0
f (s,xh (s−h))ds

where xh (s−h) ≡ x0 if s− h ≤ 0. Explain why there exists a solution. Hint:
Consider the intervals [0,h] , [h,2h] and so forth. Next explain why these functions
{xh}h>0 are equicontinuous and uniformly bounded. Now use the result of Problem
6 to argue that there exists a subsequence, still denoted by xh such that limh→0xh =x
in C ([0,T ] ;Rn) as discussed in Problem 5. Use what you learned about the Riemann
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integral in single variable advanced calculus to explain why you can pass to a limit
and conclude that x(t) = x0 +

∫ t
0 f (s,x(s))ds Hint:∥∥∥∥∫ t

0
f (s,x(s))ds−

∫ t

0
f (s,xh (s−h))ds

∥∥∥∥
∞

≤
∥∥∥∥∫ t

0
f (s,x(s))ds−

∫ t

0
f (s,x(s−h))ds

∥∥∥∥
∞

+

∥∥∥∥∫ t

0
f (s,x(s−h))ds−

∫ t

0
f (s,xh (s−h))ds

∥∥∥∥
∞

≤
∫ T

0
∥f (s,x(s))−f (s,x(s−h))∥

∞
ds

+
∫ T

0
∥f (s,x(s−h))−f (s,xh (s−h))∥

∞
ds

Now use Problem 2 to verify that x′ = f (t,x) , x(0) = x0. When you have done
this, you will have proved the celebrated Peano existence theorem from ordinary
differential equations.

13. Let |α| ≡ ∑i α i. Let G denote all finite sums of functions of the form p(x)e−a|x|2

where p(x) is a polynomial and a > 0. If you consider all real valued continu-
ous functions defined on the closed ball B(0,R) show that if f is such a function,
then for every ε > 0, there exists g ∈ G such that ∥ f −g∥

∞
< ε where ∥h∥

∞
≡

max
x∈B(0,R) |h(x)|. Thus, from multi-variable calculus, every continuous function f

is uniformly close to an infinitely differentiable function on any closed ball centered
at 0.

14. Suppose now that f ∈ C0 (Rp) . This means that f is everywhere continuous and
that lim∥x∥→∞ | f (x)| = 0. Show that for every ε > 0 there exists g ∈ G such that
supx∈Rp | f (x)−g(x)| < ε . Thus you can approximate such a continuous function
f uniformly on all ofRp with a function which has infinitely many continuous partial
derivatives. I assume the reader has had a beginning course in multi-variable calcu-
lus including partial derivatives. If not, a partial derivative is just a derivative with
respect to one of the variables, fixing all the others.

15. In Problem 23 on Page 112, and V ≡ span( fp1 , ..., fpn) , fr (x) ≡ xr,x ∈ [0,1] and
− 1

2 < p1 < p2 < · · · with limk→∞ pk = ∞. The distance between fm and V is

1√
2m+1 ∏

j≤n

∣∣m− p j
∣∣

(p j +m+1)
= d

Let dn = d so more functions are allowed to be included in V . Show that ∑n
1
pn

= ∞

if and only if limn→∞ dn = 0. Explain, using the Weierstrass approximation theorem
why this shows that if g is a function continuous on [0,1] , then there is a function
∑

N
k=1 ak fpk with

∣∣g−∑
N
k=1 ak fpk

∣∣ < ε . Here |g|2 ≡
∫ 1

0 |g(x)|
2 dx. This is Müntz’s

first theorem. Hint: dn → 0, if and only if lndn → −∞ so you might want to
arrange things so that this happens. You might want to use the fact that for x ∈
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[0,1/2] ,−x ≥ ln(1− x) ≥ −2x. See [8] which is where I read this. That product is

∏ j≤n

(
1−
(

1− |m−p j|
(p j+m+1)

))
and so ln of this expression is

n

∑
j=1

ln

(
1−

(
1−

∣∣m− p j
∣∣

(p j +m+1)

))

which is in the interval[
−2

n

∑
j=1

(
1−

∣∣m− p j
∣∣

(p j +m+1)

)
,−

n

∑
j=1

(
1−

∣∣m− p j
∣∣

(p j +m+1)

)]

and so dn → 0 if and only if ∑
∞
j=1

(
1− |m−p j|

(p j+m+1)

)
= ∞. Since pn → ∞ it suffices

to consider the convergence of ∑ j

(
1− p j−m

(p j+m+1)

)
= ∑ j

(
2m+1

(p j+m+1)

)
. Now recall

theorems from calculus.

16. For f ∈ C ([a,b] ;R) , real valued continuous functions, let | f | ≡
(∫ b

a | f (t)|
2
)1/2

≡

( f , f )1/2 where ( f ,g) ≡
∫ b

a f (x)g(x)dx. Recall the Cauchy Schwarz inequality
|( f ,g)| ≤ | f | |g| . Now suppose 1

2 < p1 < p2 · · · where limk→∞ pk = ∞. Let Vn =
span(1, fp1 , fp2 , ..., fpn) . For ∥·∥ the uniform approximation norm, show that for ev-
ery g ∈C ([0,1]) , there exists there exists a sequence of functions, fn ∈Vn such that
∥g− fn∥→ 0. This is the second Müntz theorem. Hint: Show that you can approxi-
mate x→ xm uniformly. To do this, use the above Müntz to approximate mxm−1 with
∑k ckxpk−1 in the inner product norm.

∫ 1
0

∣∣mxm−1−∑
n
k=1 ckxpk−1

∣∣2 dx ≤ ε2. Then
xm−∑

n
k=1

ck
pk

xpk =
∫ x

0
(
mtm−1−∑

n
k=1 ckt pk−1

)
dt. Then∣∣∣∣∣xm−

n

∑
k=1

ck

pk
xpk

∣∣∣∣∣≤
∫ x

0

∣∣∣∣∣mtm−1−
n

∑
k=1

ckt pk−1

∣∣∣∣∣dt ≤
∫ 1

0
1

∣∣∣∣∣mtm−1−
n

∑
k=1

ckt pk−1

∣∣∣∣∣dt

Now use the Cauchy Schwarz inequality on that last integral to obtain

max
x∈[0,1]

∣∣∣∣∣xm−
n

∑
k=1

ck

pk
xpk

∣∣∣∣∣≤ ε.

In case m = 0, there is nothing to show because 1 is in Vn. Explain why the result
follows from this and the Weierstrass approximation theorem.

17. Suppose f : [a,b]→ [0,1] is piecewise linear, equal to 1 on [a+h,b−h] and 0 at a,b.
Show that

∫ b
a f (x)dx = h+(b−a−2h) = b−a−h.



Chapter 6

The Derivative
6.1 Limits of a Function

As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points x, which are limit points of D(f) and this concept is defined next. In all that follows
(V,∥·∥) and (W,∥·∥) are two normed linear spaces. Recall the definition of limit point first.

Definition 6.1.1 Let A ⊆W be a set. A point x, is a limit point of A if B(x,r)
contains infinitely many points of A for every r > 0.

Definition 6.1.2 Let f : D(f)⊆V →W be a function and let x be a limit point of
D(f). Then

lim
y→x

f (y) =L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < ∥y−x∥< δ , and y ∈ D(f)

then,
∥L−f (y)∥< ε.

Theorem 6.1.3 If limy→xf (y) =L and limy→xf (y) =L1, then L=L1.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y−x| < δ and y ∈
D(f), then ∥f (y)−L∥< ε, ∥f (y)−L1∥< ε. Pick such a y. There exists one because
x is a limit point of D(f). Then ∥L−L1∥ ≤ ∥L−f (y)∥+∥f (y)−L1∥ < ε + ε = 2ε .
Since ε > 0 was arbitrary, this shows L=L1. ■

One can define what it means for limy→x f (x) = ±∞. as in the case of real valued
functions.

Definition 6.1.4 If f (x) ∈ R, limy→x f (x) = ∞ if for every number l, there exists
δ > 0 such that whenever ∥y−x∥ < δ and y ∈ D(f), then f (x) > l. Also the asser-
tion that limy→x f (x) = −∞ means that for every number l, there exists δ > 0 such that
whenever ∥y−x∥< δ and y ∈ D(f), then f (x)< l.

The following theorem is just like the one variable version of calculus.

Theorem 6.1.5 Suppose f : D(f)⊆V → Fm. Then for x a limit point of D(f),

lim
y→x

f (y) =L (6.1)

if and only if
lim
y→x

fk (y) = Lk (6.2)

where f (y)≡ ( f1 (y) , · · · , fp (y)) and L≡ (L1, · · · ,Lp).
Suppose here that f has values in W, a normed linear space and

lim
y→x

f (y) = L, lim
y→x

g(y) = K

141
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where K,L ∈W. Then if a, b ∈ F,

lim
y→x

(a f (y)+bg(y)) = aL+bK, (6.3)

If W is an inner product space,

lim
y→x

( f ,g)(y) = (L,K) (6.4)

If g is scalar valued with limy→x g(y) = K,

lim
y→x

f (y)g(y) = LK. (6.5)

Also, if h is a continuous function defined near L, then

lim
y→x

h◦ f (y) = h(L) . (6.6)

Suppose limy→x f (y) = L. If ∥ f (y)−b∥≤ r for all y sufficiently close to x, then |L−b| ≤ r
also.

Proof: Suppose 6.1. Then letting ε > 0 be given there exists δ > 0 such that if 0 <
∥y− x∥< δ , it follows

| fk (y)−Lk| ≤ ∥f (y)−L∥< ε

which verifies 6.2.
Now suppose 6.2 holds. Then letting ε > 0 be given, there exists δ k such that if 0 <

∥y− x∥< δ k, then | fk (y)−Lk|< ε. Let 0< δ <min(δ 1, · · · ,δ p). Then if 0< ∥y− x∥< δ ,
it follows ∥f (y)−L∥

∞
< ε . Any other norm on Fm would work out the same way because

the norms are all equivalent.
Each of the remaining assertions follows immediately from the coordinate descriptions

of the various expressions and the first part. However, I will give a different argument for
these.

The proof of 6.3 is left for you. Now 6.4 is to be verified. Let ε > 0 be given. Then by
the triangle inequality,

|( f ,g)(y)− (L,K)| ≤ |( f ,g)(y)− ( f (y) ,K)|+ |( f (y) ,K)− (L,K)|
≤ ∥ f (y)∥∥g(y)−K∥+∥K∥∥ f (y)−L∥ .

There exists δ 1 such that if 0 < ∥y− x∥< δ 1 and y∈D( f ), then ∥ f (y)−L∥< 1,and so for
such y, the triangle inequality implies, ∥ f (y)∥< 1+∥L∥. Therefore, for 0 < ∥y− x∥< δ 1,

|( f ,g)(y)− (L,K)| ≤ (1+∥K∥+∥L∥) [∥g(y)−K∥+∥ f (y)−L∥] . (6.7)

Now let 0 < δ 2 be such that if y ∈ D( f ) and 0 < ∥x− y∥< δ 2,

∥ f (y)−L∥< ε

2(1+∥K∥+∥L∥)
, ∥g(y)−K∥< ε

2(1+∥K∥+∥L∥)
.

Then letting 0 < δ ≤min(δ 1,δ 2), it follows from 6.7 that |( f ,g)(y)− (L,K)|< ε and this
proves 6.4.

The proof of 6.5 is left to you.
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Consider 6.6. Since h is continuous near L, it follows that for ε > 0 given, there exists
η > 0 such that if ∥y−L∥< η , then ∥h(y)−h(L)∥< ε. Now since limy→x f (y) = L, there
exists δ > 0 such that if 0 < ∥y− x∥< δ , then ∥ f (y)−L∥< η .Therefore, if 0 < ∥y− x∥<
δ , ∥h( f (y))−h(L)∥< ε.

It only remains to verify the last assertion. Assume ∥ f (y)−b∥ ≤ r. It is required to
show that ∥L−b∥ ≤ r. If this is not true, then ∥L−b∥ > r. Consider B(L,∥L−b∥− r).
Since L is the limit of f , it follows f (y) ∈ B(L,∥L−b∥− r) whenever y ∈ D( f ) is close
enough to x. Thus, by the triangle inequality, ∥ f (y)−L∥< ∥L−b∥− r and so

r < ∥L−b∥−∥ f (y)−L∥ ≤ |∥b−L∥−∥ f (y)−L∥| ≤ ∥b− f (y)∥ ,

a contradiction to the assumption that ∥b− f (y)∥ ≤ r. ■
The relation between continuity and limits is as follows.

Theorem 6.1.6 For f : D( f )→W and x ∈ D( f ) a limit point of D( f ), f is contin-
uous at x if and only if limy→x f (y) = f (x) .

Proof: First suppose f is continuous at x a limit point of D( f ). Then for every ε > 0
there exists δ > 0 such that if ∥x− y∥ < δ and y ∈ D( f ), then | f (x)− f (y)| < ε . In
particular, this holds if 0 < ∥x− y∥ < δ and this is just the definition of the limit. Hence
f (x) = limy→x f (y).

Next suppose x is a limit point of D( f ) and limy→x f (y) = f (x). This means that if ε >
0 there exists δ > 0 such that for 0 < ∥x− y∥< δ and y ∈D( f ), it follows | f (y)− f (x)|<
ε . However, if y = x, then | f (y)− f (x)| = | f (x)− f (x)| = 0 and so whenever y ∈ D( f )
and ∥x− y∥< δ , it follows | f (x)− f (y)|< ε , showing f is continuous at x. ■

Example 6.1.7 Find lim(x,y)→(3,1)

(
x2−9
x−3 ,y

)
.

It is clear that lim(x,y)→(3,1)
x2−9
x−3 = 6 and lim(x,y)→(3,1) y= 1. Therefore, this limit equals

(6,1).

Example 6.1.8 Find lim(x,y)→(0,0)
xy

x2+y2 .

First of all, observe the domain of the function is R2 \{(0,0)}, every point in R2 except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit may
not exist. In fact, this is the case here. To see this, take points on the line y = 0. At these
points, the value of the function equals 0. Now consider points on the line y = x where the
value of the function equals 1/2. Since, arbitrarily close to (0,0), there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take ε = 1/10 for example. You cannot be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and there are no easy ways to do limit problems for functions of
more than one variable. It is what it is and you will not deal with these concepts without
suffering and anguish.
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6.2 Basic Definitions
The concept of derivative generalizes right away to functions of many variables. However,
no attempt will be made to consider derivatives from one side or another. This is because
when you consider functions of many variables, there isn’t a well defined side. However,
it is certainly the case that there are more general notions which include such things. I will
present a fairly general notion of the derivative of a function which is defined on a normed
vector space which has values in a normed vector space. The case of most interest is that
of a function which maps Fn to Fm but it is no more trouble to consider the extra generality
and it is sometimes useful to have this extra generality because sometimes you want to
consider functions defined, for example on subspaces of Fnand it is nice to not have to
trouble with ad hoc considerations. Also, you might want to consider Fn with some norm
other than the usual one.

In what follows, X ,Y will denote normed vector spaces. Thanks to Theorem 5.2.4 all
the definitions and theorems given below work the same for any norm given on the vector
spaces.

Let U be an open set in X , and let f : U → Y be a function.

Definition 6.2.1 A function g is o(v) if

lim
∥v∥→0

g (v)

∥v∥
= 0 (6.8)

A function f : U → Y is differentiable at x ∈ U if there exists a linear transformation
L ∈L (X ,Y ) such that

f (x+v) = f (x)+Lv+o(v)

This linear transformation L is the definition of Df (x). This derivative is often called the
Frechet derivative.

Note that from Theorem 5.2.4 the question whether a given function is differentiable is
independent of the norm used on the finite dimensional vector space. That is, a function is
differentiable with one norm if and only if it is differentiable with another norm.

The definition 6.8 means the error f (x+v)−f (x)−Lv converges to 0 faster than
∥v∥. Thus the above definition is equivalent to saying

lim
∥v∥→0

∥f (x+v)−f (x)−Lv∥
∥v∥

= 0 (6.9)

or equivalently,

lim
y→x

∥f (y)−f (x)−Df (x)(y−x)∥
∥y−x∥

= 0. (6.10)

The symbol, o(v) should be thought of as an adjective. Thus, if t and k are constants,

o(v) = o(v)+o(v) , o(tv) = o(v) , ko(v) = o(v)

and other similar observations hold.

Theorem 6.2.2 The derivative is well defined.
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Proof: First note that for a fixed nonzero vector v, o(tv) = o(t). This is because

lim
t→0

o(tv)
|t|

= lim
t→0
∥v∥ o(tv)∥tv∥

= 0

Now suppose both L1 and L2 work in the above definition. Then let v be any vector and let
t be a real scalar which is chosen small enough that tv+x ∈U . Then

f (x+ tv) = f (x)+L1tv+o(tv) , f (x+ tv) = f (x)+L2tv+o(tv) .

Therefore, subtracting these two yields (L2−L1)(tv) = o(tv) = o(t). Therefore, dividing
by t yields (L2−L1)(v) =

o(t)
t . Now let t → 0 to conclude that (L2−L1)(v) = 0. Since

this is true for all v, it follows L2 = L1. This proves the theorem. ■
In the following lemma, ∥Df (x)∥ is the operator norm of the linear transformation,

Df (x).

Lemma 6.2.3 Let f be differentiable at x. Then f is continuous at x and in fact, there
exists K > 0 such that whenever ∥v∥ is small enough,

∥f (x+v)−f (x)∥ ≤ K ∥v∥

Also if f is differentiable at x, then

o(∥f (x+v)−f (x)∥) = o(v)

Proof: From the definition of the derivative,

f (x+v)−f (x) = Df (x)v+o(v) .

Let ∥v∥ be small enough that o(∥v∥)
∥v∥ < 1 so that ∥o(v)∥ ≤ ∥v∥. Then for such v,

∥f (x+v)−f (x)∥ ≤ ∥Df (x)v∥+∥v∥ ≤ (∥Df (x)∥+1)∥v∥

This proves the lemma with K = ∥Df (x)∥+ 1. Recall the operator norm discussed in
Definition 5.2.2.

The last assertion is implied by the first as follows. Define

h(v)≡

{
o(∥f(x+v)−f(x)∥)
∥f(x+v)−f(x)∥ if ∥f (x+v)−f (x)∥ ̸= 0

0 if ∥f (x+v)−f (x)∥= 0

Then lim∥v∥→0h(v) = 0 from continuity of f at x which is implied by the first part. Also
from the above estimate, if ∥v∥ is sufficiently small,∥∥∥∥o(∥f (x+v)−f (x)∥)

∥v∥

∥∥∥∥= ∥h(v)∥ ∥f (x+v)−f (x)∥
∥v∥

≤ ∥h(v)∥(∥Df (x)∥+1)

and lim∥v∥→0 ∥h(v)∥= 0. This establishes the second claim. ■
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6.3 The Chain Rule
With the above lemma, it is easy to prove the chain rule.

Theorem 6.3.1 (The chain rule) Let U and V be open sets U ⊆ X and V ⊆ Y . Sup-
pose f : U → V is differentiable at x ∈ U and suppose g : V → Fq is differentiable at
f (x) ∈V . Then g ◦f is differentiable at x and

D(g ◦f)(x) = Dg (f (x))Df (x) .

Proof: This follows from a computation. Let B(x,r)⊆U and let r also be small enough
that for ∥v∥ ≤ r, it follows that f (x+v) ∈V . Such an r exists because f is continuous at
x. For ∥v∥< r, the definition of differentiability of g and f implies

g (f (x+v))−g (f (x)) =

Dg (f (x))(f (x+v)−f (x))+o(f (x+v)−f (x))

= Dg (f (x)) [Df (x)v+o(v)]+o(f (x+v)−f (x))

= D(g (f (x)))D(f (x))v+o(v)+o(f (x+v)−f (x)) (6.11)
= D(g (f (x)))D(f (x))v+o(v)

By Lemma 6.2.3. From the definition of the derivative D(g ◦f)(x) exists and equals
D(g (f (x)))D(f (x)). ■

6.4 The Matrix of the Derivative
The case of most interest here is the only one I will discuss. It is the case where X =Rn and
Y = Rm, the function being defined on an open subset of Rn. Of course this all generalizes
to arbitrary vector spaces and one considers the matrix taken with respect to various bases.
However, I am going to restrict to the case just mentioned here. As above, f will be defined
and differentiable on an open set U ⊆ Rn.

As discussed in the review material on linear maps, the matrix of Df (x) is the matrix
having the ith column equal to Df (x)ei and so it is only necessary to compute this. Let t
be a small real number such that

f (x+ tei)−f (x)−Df (x)(tei)

t
=

o(t)
t

Therefore,
f (x+ tei)−f (x)

t
= Df (x)(ei)+

o(t)
t

The limit exists on the right and so it exists on the left also. Thus

∂f (x)

∂xi
≡ lim

t→0

f (x+ tei)−f (x)

t
= Df (x)(ei)

and so the matrix of the derivative is just the matrix which has the ith column equal to the
ith partial derivative of f . Note that this shows that whenever f is differentiable, it follows
that the partial derivatives all exist. It does not go the other way however as discussed later.
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Theorem 6.4.1 Let f : U ⊆ Fn→ Fm and suppose f is differentiable at x. Then all
the partial derivatives ∂ fi(x)

∂x j
exist and if Jf (x) is the matrix of the linear transformation,

Df (x) with respect to the standard basis vectors, then the i jth entry is given by ∂ fi
∂x j

(x)

also denoted as fi, j or fi,x j . It is the matrix whose ith column is

∂f (x)

∂xi
≡ lim

t→0

f (x+ tei)−f (x)

t
.

Of course there is a generalization of this idea called the directional derivative.

Definition 6.4.2 In general, the symbol Dvf (x) is defined by

lim
t→0

f (x+ tv)−f (x)

t

where t ∈ F. In case |v|= 1,F = R, and the norm is the standard Euclidean norm, this is
called the directional derivative. More generally, with no restriction on the size of v and in
any linear space, it is called the Gateaux derivative. f is said to be Gateaux differentiable
at x if there exists Dvf (x) such that

lim
t→0

f (x+ tv)−f (x)

t
= Dvf (x)

where v → Dvf (x) is linear. Thus we say it is Gateaux differentiable if the Gateaux
derivative exists for each v and v→ Dvf (x) is linear. Note that ∂f(x)

∂xi
= Deif (x). 1

Here is an interesting application which is used a lot in introductory courses on multi-
variable calculus.

Theorem 6.4.3 Suppose U is an open set in a normed linear space X and f : U→R
has a Gateaux derivative Dv f at x∈U and that for all x̂ sufficiently close to x, on the line
through x having direction vector v it follows that f (x)≥ f (x̂)( f (x)≤ f (x̂)). In other
words, f has a local maximum/minimum at x when restricted to the line t → x+ tv, then
Dv f (x) = 0. If D f (x) exists and f has a local max/min at x for all v, then D f (x) = 0.

Proof: Consider h(t) = f (x+ tv) . Then from single variable calculus,

h′ (0) = Dv f (x) = 0.

In case f is differentiable, then for every v,

0 = Dv f (x) = lim
t→0

f (x+ tv)− f (x)
t

= lim
t→0

D f (x)(tv)+o(t)
t

= D f (x)v

Since this holds for every v it follows that D f (x) = 0. ■
What if all the partial derivatives of f exist? Does it follow that f is differentiable?

Consider the following function, f : R2→ R,

f (x,y) =
{ xy

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

.

1René Gateaux was one of the many young French men killed in world war I. This derivative is named after
him, but it developed naturally from ideas used in the calculus of variations which were due to Euler and Lagrange
back in the 1700’s.
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Then from the definition of partial derivatives,

lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0

and

lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0−0
h

= 0

However f is not even continuous at (0,0) which may be seen by considering the behavior
of the function along the line y = x and along the line x = 0. By Lemma 6.2.3 this implies
f is not differentiable. Therefore, it is necessary to consider the correct definition of the
derivative given above if you want to get a notion which generalizes the concept of the
derivative of a function of one variable in such a way as to preserve continuity whenever
the function is differentiable.

What if the one dimensional derivative in the definition of the Gateaux derivative exists
for all nonzero v? Is the function differentiable then? Maybe not. See Problem 11 in the
exercises for example.

6.5 A Mean Value Inequality
The following theorem will be very useful in much of what follows. It is a version of the
mean value theorem as is the next lemma. The mean value theorem depends on the function
having values in R and in the lemma and theorem, it has values in a normed vector space.

Lemma 6.5.1 Let Y be a normed vector space and suppose h : [0,1]→Y is continuous
and differentiable from the right and satisfies

∥∥h′ (t)∥∥≤M, M≥ 0. Then ∥h(1)−h(0)∥≤
M.

Proof: Let ε > 0 be given and let

S≡ {t ∈ [0,1] : for all s ∈ [0, t] ,∥h(s)−h(0)∥ ≤ (M+ ε)s}

Then 0 ∈ S. Let t = supS. Then by continuity of h it follows

∥h(t)−h(0)∥= (M+ ε) t (6.12)

Suppose t < 1. Then there exist positive numbers, hk decreasing to 0 such that

∥h(t +hk)−h(0)∥> (M+ ε)(t +hk)

and now it follows from 6.12 and the triangle inequality that

∥h(t +hk)−h(t)∥+∥h(t)−h(0)∥
= ∥h(t +hk)−h(t)∥+(M+ ε) t > (M+ ε)(t +hk)

Thus
∥h(t +hk)−h(t)∥> (M+ ε)hk

Now dividing by hk and letting k→∞,
∥∥h′ (t)∥∥≥M+ε,a contradiction. Thus t = 1. Since

ε is arbitrary, the conclusion of the lemma follows. ■
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Theorem 6.5.2 Suppose U is an open subset of X and f : U → Y has the property
that Df (x) exists for all x in U and that, x+ t (y−x) ∈U for all t ∈ [0,1]. (The line
segment joining the two points lies in U.) Suppose also that for all points on this line
segment, ∥Df (x+t (y−x))∥ ≤M. Then ∥f (y)−f (x)∥ ≤M |y−x| . More generally if
∥Dvf (y)∥≤M for all y on the segment joining x and x+v, then ∥f (x+av)−f (x)∥≤
Ma. Also Davf (x) = aDf (x) if a ̸= 0.

Proof: Let h(t) ≡ f (x+ t (y−x)) .Then by the chain rule applied to h(t), h′ (t) =
Df (x+ t (y−x))(y−x) and so∥∥h′ (t)∥∥= ∥Df (x+ t (y−x))(y−x)∥ ≤M ∥y−x∥

by Lemma 6.5.1, ∥h(1)−h(0)∥= ||f (y)−f (x)|| ≤M ||y−x|| . For the second part, let
h(t)≡ f (x+ tav). Then

h′ (t) = lim
h→0

h(t +h)−h(t)
h

≡ lim
h→0

a
ha

(f (x+ tav+hav)−f (x+ tav))

= Dvf (x+ tav)a.

This shows that Davf (x) = aDvf (x) . Now for the inequality, there is nothing to show
if a = 0 so assume a ̸= 0. Then by assumption and Lemma 6.5.1, ∥h(1)−h(0)∥ =
∥f (x+av)−f (x)∥ ≤Ma. ■

6.6 Existence of the Derivative, C1 Functions
There is a way to get the differentiability of a function from the existence and continuity of
one dimensional directional derivatives. The following theorem is the main result. It gives
easy to verify one dimensional conditions for the existence of the derivative. The meaning
of ∥·∥ will be determined by context in what follows. This theorem says that if the Gateaux
derivatives exist for each vector in a basis and they are also continuous, then the function
is differentiable.

Theorem 6.6.1 Let X be a normed vector space having basis {v1, · · · ,vn} and let
Y be another normed vector space. Let U be an open set in X and let f : U → Y have the
property that the one dimensional limits

Dvkf (x)≡ lim
t→0

f (x+ tvk)−f (x)

t

exist and x→ Dvkf (x) are continuous functions of x ∈U as functions with values in Y .
Then Df (x) exists and

Df (x) v =
n

∑
k=1

Dvkf (x)ak

where v = ∑
n
k=1 akvk. Furthermore, x→ Df (x) is continuous; that is

lim
y→x
∥Df (y)−Df (x)∥= 0.

Proof: Let v = ∑
n
k=1 akvk where all ak are small enough that for all k ≥ 0,

x+
k

∑
j=1

a jv j ∈ B(x,r)⊆U,
0

∑
k=1

akvk ≡ 0.
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The mapping v → (a1, ...,an) is an isomorphism of V and Fn and we can define a norm
as ∑k |ak| which is equivalent to the norm on V thanks to Theorem 5.2.4. Let hk (x) ≡
f
(
x+∑

k−1
j=1 a jv j

)
−f (x) . Then collecting the terms,

f (x+v)−f (x) =
n

∑
k=1

(hk (x+akvk)−hk (x))+
n

∑
k=1

(f (x+akvk)−f (x)) (6.13)

Using Theorem 6.5.2,∥∥Dakvkhk (x+ takvk)
∥∥ =

∥∥akDvkhk (x+ takvk)
∥∥

=

∥∥∥∥∥ak

(
Dvkf

(
x+

k−1

∑
j=1

a jv j + takvk

)
−Dvkf (x+ takvk)

)∥∥∥∥∥
≤ C∥v∥ε

provided ∥v∥ is sufficiently small, thanks to the assumption that the Dvkf are continuous.
It follows, since ε is arbitrary that the first sum on the right in 6.13 is o(v). Now

(f (x+akvk)−f (x))−Dvkf (x)ak =

f (x+akvk)−
(
f (x)+Dvkf (x)ak

)
= ak

(
f (x+akvk)−f (x)

ak
−Dvkf (x)

)
= o(v)

because ∥∥∥∥ak

(
f (x+akvk)−f (x)

ak
−Dvkf (x)

)∥∥∥∥
≤ ∥v∥

∥∥∥∥(f (x+akvk)−f (x)

ak
−Dvkf (x)

)∥∥∥∥ .
Collecting terms in 6.13,

f (x+v)−f (x) = o(v)+
n

∑
k=1

(f (x+akvk)−f (x)) = o(v)+
n

∑
k=1

Dvkf (x)ak

which shows that Df (x)(v) = ∑
n
k=1 Dvkf (x)ak where v = ∑

n
k=1 akvk. This formula also

shows that x→ Df (x) is continuous because of the continuity of these Dvkf . ■
Note how if X =Rp and the basis vectors are the ek, then the a are just the components

of the vector v taken with respect to the usual basis vectors. Thus this gives the above result
about the matrix of Df (x).

This motivates the following definition of what it means for a function to be C1.

Definition 6.6.2 Let U be an open subset of a normed finite dimensional vector
space, X and let f : U → Y another finite dimensional normed vector space. Then f
is said to be C1 if there exists a basis for X ,{v1, · · · ,vn} such that the Gateaux deriva-
tives,Dvkf (x) exist on U and are continuous functions of x.

Note that as a special case where X = Rn, you could let the vk = ek and the condition
would reduce to nothing more than a statement that the partial derivatives ∂f

∂xi
are all con-

tinuous. If X =R, this is not a very interesting condition. It would say the derivative exists
if the derivative exists and is continuous.

Here is another definition of what it means for a function to be C1.
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Definition 6.6.3 Let U be an open subset of a normed finite dimensional vector
space, X and let f : U→Y another finite dimensional normed vector space. Then f is said
to be C1 if f is differentiable and x→Df (x) is continuous as a map from U to L (X ,Y ).

Now the following major theorem states these two definitions are equivalent. This is
obviously so in the special case where X =Rn and the special basis is the usual one because,
as observed earlier, the matrix of Df (x) is just the one which has for its columns the partial
derivatives which are given to be continuous.

Theorem 6.6.4 Let U be an open subset of a normed finite dimensional vector space
X and let f : U → Y another finite dimensional normed vector space. Then the two defini-
tions above are equivalent.

Proof: It was shown in Theorem 6.6.1, the one about the continuity of the Gateaux
derivatives yielding differentiability, that Definition 6.6.2 implies 6.6.3. Suppose then that
Definition 6.6.3 holds. Then if v is any vector,

lim
t→0

f (x+ tv)−f (x)

t
= lim

t→0

Df (x) tv+o(tv)
t

= Df (x)v+ lim
t→0

o(tv)
t

= Df (x)v

Thus Dvf (x) exists and equals Df (x)v. By continuity of x→ Df (x) , this establishes
continuity of x→ Dvf (x) and proves the theorem. ■

Note that the proof of the theorem also implies the following corollary.

Corollary 6.6.5 Let U be an open subset of a normed finite dimensional vector space, X
and let f :U→Y another finite dimensional normed vector space. Then if there is a basis of
X ,{v1, · · · ,vn} such that the Gateaux derivatives, Dvkf (x) exist and are continuous, then
all Gateaux derivatives, Dvf (x) exist and are continuous for all v ∈X. Also Df (x)(v) =
Dvf (x).

From now on, whichever definition is more convenient will be used.

6.7 Higher Order Derivatives
If f : U ⊆ X → Y for U an open set, then x→ Df (x) is a mapping from U to L (X ,Y ), a
normed vector space. Therefore, it makes perfect sense to ask whether this function is also
differentiable.

Definition 6.7.1 The following is the definition of the second derivative. D2f (x)≡
D(Df (x)) .

Thus, Df (x+v)−Df (x) = D2f (x)v+o(v) .This implies

D2f (x) ∈L (X ,L (X ,Y )) , D2f (x)(u)(v) ∈ Y,

and the map (u,v)→D2f (x)(u)(v) is a bilinear map having values in Y . In other words,
the two functions,

u→ D2f (x)(u)(v) , v→ D2f (x)(u)(v)

are both linear.
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The same pattern applies to taking higher order derivatives. For example, D3f (x) ≡
D
(
D2f (x)

)
and D3f (x) may be considered as a trilinear map having values in Y . In

general Dkf (x) may be considered a k linear map. This means

(u1, · · · ,uk)→ Dkf (x)(u1) · · ·(uk)

has the property u j→ Dkf (x)(u1) · · ·(u j) · · ·(uk) is linear.
Also, instead of writing D2f (x)(u)(v) , or D3f (x)(u)(v)(w) the following notation

is often used.
D2f (x)(u,v) or D3f (x)(u,v,w)

with similar conventions for higher derivatives than 3. Another convention which is often
used is the notation Dkf (x)vk instead of Dkf (x)(v, · · · ,v) .

Note that for every k, Dkf maps U to a normed vector space. As mentioned above,
Df (x) has values in L (X ,Y ) ,D2f (x) has values in L (X ,L (X ,Y )) , etc. Thus it makes
sense to consider whether Dkf is continuous. This is described in the following definition.

Definition 6.7.2 Let U be an open subset of X , a normed vector space, and let
f : U → Y. Then f is Ck (U) if f and its first k derivatives are all continuous. Also,
Dkf (x) when it exists can be considered a Y valued multi-linear function. Sometimes
these are called tensors in case f has scalar values.

6.8 Some Standard Notation
In the case where X = Rn there is a special notation which is often used to describe higher
order mixed partial derivatives. It is called multi-index notation.

Definition 6.8.1 α = (α1, · · · ,αn) for α1 · · ·αn positive integers is called a multi-
index, as before with polynomials. For α a multi-index, |α| ≡ α1 + · · ·+αn, and if x ∈ X,

x= (x1, · · · ,xn),

and f a function, define

xα ≡ xα1
1 xα2

2 · · ·x
αn
n , Dαf(x)≡ ∂ |α|f(x)

∂xα1
1 ∂xα2

2 · · ·∂xαn
n

.

Then in this special case, the following is another description of what is meant by a Ck

function.

Definition 6.8.2 Let U be an open subset of Rn and let f : U → Y. Then for k a
nonnegative integer, a differentiable function f is Ck if for every |α| ≤ k, Dαf exists and
is continuous.

Theorem 6.8.3 Let U be an open subset of Rn and let f : U → Y. Then if Drf (x)
exists for r ≤ k, then Drf is continuous at x for r ≤ k if and only if Dαf is continuous at x
for each |α| ≤ k.

Proof: First consider the case of a single derivative. Then as shown above, the matrix
of Df (x) is just

J (x)≡
(

∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)
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and to say that x→ Df (x) is continuous is the same as saying that each of these partial
derivatives is continuous. Written out in more detail,

f (x+v)−f (x) = Df (x)v+o(v) =
n

∑
k=1

∂f

∂xk
(x)vk +o(v)

Thus Df (x)v = ∑
n
k=1

∂f
∂xk

(x)vk. Now consider the second derivative.

D2f (x)(w)(v) =

Df (x+w)v−Df (x)v+o(w)(v)=
n

∑
k=1

(
∂f

∂xk
(x+w)− ∂f

∂xk
(x)

)
vk +o(w)(v)

=
n

∑
k=1

(
n

∑
j=1

∂ 2f (x)

∂x j∂xk
w j +o(w)

)
vk +o(w)(v) = ∑

j,k

∂ 2f (x)

∂x j∂xk
w jvk +o(w)(v)

and so D2f (x)(w)(v) = ∑ j,k
∂ 2f(x)
∂x j∂xk

w jvk. Hence D2f is continuous if and only if each of

these coefficients x→ ∂ 2f(x)
∂x j∂xk

is continuous. Obviously you can continue doing this and

conclude that Dkf is continuous if and only if all of the partial derivatives of order up to k
are continuous. ■

In practice, this is usually what people are thinking when they say that f is Ck. But as
just argued, this is the same as saying that the r linear form x→Drf (x) is continuous into
the appropriate space of linear transformations for each r ≤ k.

Of course the above is based on the assumption that the first k derivatives exist and gives
two equivalent formulations which state that these derivatives are continuous. Can anything
be said about the existence of the derivatives based on the existence and continuity of the
partial derivatives? As pointed out, if the partial derivatives exist and are continuous, then
the function is differentiable and has continuous derivative. However, I want to emphasize
the idea of the Cartesian product.

6.9 The Derivative and the Cartesian Product
There are theorems which can be used to get differentiability of a function based on exis-
tence and continuity of the partial derivatives. A generalization of this was given above.
Here a function defined on a product space is considered. It is very much like what was
presented above and could be obtained as a special case but to reinforce the ideas, I will do
it from scratch because certain aspects of it are important in the statement of the implicit
function theorem.

The following is an important abstract generalization of the concept of partial derivative
presented above. Insead of taking the derivative with respect to one variable, it is taken with
respect to several but not with respect to others. This vague notion is made precise in the
following definition. First here is a lemma.

Lemma 6.9.1 Suppose U is an open set in X×Y. Then the set, Uy defined by

Uy ≡ {x ∈ X : (x,y) ∈U}
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is an open set in X. Here X ×Y is a finite dimensional vector space in which the vector
space operations are defined componentwise. Thus for a,b ∈ F,

a(x1,y1)+b(x2,y2) = (ax1 +bx2,ay1 +by2)

and the norm can be taken to be

∥(x,y)∥ ≡max(∥x∥ ,∥y∥)

Proof: Recall by Theorem 5.2.4 it does not matter how this norm is defined and the
definition above is convenient. It obviously satisfies most axioms of a norm. The only one
which is not obvious is the triangle inequality. I will show this now.

∥(x,y)+(x1,y1)∥ ≡ ∥(x+x1,y+y1)∥ ≡max(∥x+x1∥ ,∥y+y1∥)
≤ max(∥x∥+∥x1∥ ,∥y∥+∥y1∥)
≤ max(∥x∥ ,∥y∥)+max(∥x1∥ ,∥y1∥)
≡ ∥(x,y)∥+∥(x1,y1)∥

Let x ∈Uy. Then (x,y) ∈U and so there exists r > 0 such that B((x,y) ,r) ∈U. This
says that if (u,v) ∈ X×Y such that ∥(u,v)− (x,y)∥< r, then (u,v) ∈U. Thus if

∥(u,y)− (x,y)∥= ∥u−x∥X < r,

then (u,y) ∈U. This has just said that B(x,r)X , the ball taken in X is contained in Uy .
This proves the lemma. ■

Or course one could also consider Ux≡{y : (x,y) ∈U} in the same way and conclude
this set is open in Y . Also, the generalization to many factors yields the same conclusion.
In this case, for x ∈∏

n
i=1 Xi, let

∥x∥ ≡max
(
∥xi∥Xi

: x= (x1, · · · ,xn)
)

Then a similar argument to the above shows this is a norm on ∏
n
i=1 Xi. Consider the triangle

inequality.

∥(x1, · · · ,xn)+(y1, · · · ,yn)∥= max
i

(
∥xi +yi∥Xi

)
≤max

i

(
∥xi∥Xi

+∥yi∥Xi

)
≤max

i

(
∥xi∥Xi

)
+max

i

(
∥yi∥Xi

)
= ∥x∥+∥y∥

Corollary 6.9.2 Let U ⊆∏
n
i=1 Xi be an open set and let

U(x1,··· ,xi−1,xi+1,··· ,xn) ≡ {x ∈ F
ri : (x1, · · · ,xi−1,x,xi+1, · · · ,xn) ∈U} .

Then U(x1,··· ,xi−1,xi+1,··· ,xn) is an open set in Fri .

Proof: Let z ∈U(x1,··· ,xi−1,xi+1,··· ,xn). Then (x1, · · · ,xi−1,z,xi+1, · · · ,xn)≡ x ∈U by
definition. Therefore, since U is open, there exists r > 0 such that B(x,r)⊆U. It follows
that for B(z,r)Xi

denoting the ball in Xi, it follows that B(z,r)Xi
⊆U(x1,··· ,xi−1,xi+1,··· ,xn)

because to say that ∥z−w∥Xi
< r is to say that

∥(x1, · · · ,xi−1,z,xi+1, · · · ,xn)− (x1, · · · ,xi−1,w,xi+1, · · · ,xn)∥< r

and so w ∈U(x1,··· ,xi−1,xi+1,··· ,xn). ■
Next is a generalization of the partial derivative.



6.9. THE DERIVATIVE AND THE CARTESIAN PRODUCT 155

Definition 6.9.3 Let g : U ⊆∏
n
i=1 Xi→ Y , where U is an open set. Then the map

z→ g (x1, · · · ,xi−1,z,xi+1, · · · ,xn)

is a function from the open set in Xi,

{z : x= (x1, · · · ,xi−1,z,xi+1, · · · ,xn) ∈U}

to Y . When this map is differentiable, its derivative is denoted by Dig (x). To aid in the
notation, for v ∈ Xi, let θ iv ∈∏

n
i=1 Xi be the vector (0, · · · ,v, · · · ,0) where the v is in the

ith slot and for v ∈∏
n
i=1 Xi, let vi denote the entry in the ith slot of v. Thus, by saying

z→ g (x1, · · · ,xi−1,z,xi+1, · · · ,xn)

is differentiable is meant that for v ∈ Xi sufficiently small,

g (x+θ iv)−g (x) = Dig (x)v+o(v) .

Note Dig (x) ∈L (Xi,Y ) .

As discussed above, we have the following definition of C1 (U) .

Definition 6.9.4 Let U ⊆ X be an open set. Then f : U →Y is C1 (U) if f is differ-
entiable and the mapping x→ Df (x) , is continuous as a function from U to L (X ,Y ).

With this definition of partial derivatives, here is the major theorem. Note the resem-
blance with the matrix of the derivative of a function having values in Rm in terms of the
partial derivatives.

Theorem 6.9.5 Let g,U,∏n
i=1 Xi, be given as in Definition 6.9.3. Then g is C1 (U)

if and only if Dig exists and is continuous on U for each i. In this case, g is differentiable
and

Dg (x)(v) = ∑
k

Dkg (x)vk (6.14)

where v = (v1, · · · ,vn) .

Proof: Suppose then that Dig exists and is continuous for each i. Note ∑
k
j=1 θ jv j =

(v1, · · · ,vk,0, · · · ,0) . Thus ∑
n
j=1 θ jv j = v and define ∑

0
j=1 θ jv j ≡ 0. Therefore,

g (x+v)−g (x) =
n

∑
k=1

[
g

(
x+

k

∑
j=1

θ jv j

)
−g

(
x+

k−1

∑
j=1

θ jv j

)]
(6.15)

=
n

∑
k=1

[(
g

(
x+

k

∑
j=1

θ jv j

)
−g (x+θ kvk)

)
−

(
g

(
x+

k−1

∑
j=1

θ jv j

)
−g (x)

)]

+
n

∑
k=1

(g (x+θ kvk)−g (x))

If hk (x) ≡ g
(
x+∑

k−1
j=1 θ jv j

)
− g (x) then the top sum is ∑

n
k=1hk (x+θ kvk)−hk (x)

and from the definition of hk, ∥Dhk (x)∥ < ε a sufficiently small ball containing x. Thus
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this top sum is dominated by ε ∥v∥ whenever ∥v∥ is small enough. Since ε is arbitrary, this
term is o(v) . The last term is ∑

n
k=1 Dkg (x)vk +o(vk) and so, collecting terms obtains

g (x+v)−g (x) =
n

∑
k=1

Dkg (x)vk +o(v)

which shows Dg (x) exists and equals the formula given in 6.14. Also x→ Dg (x) is
continuous since each of the Dkg (x) are.

Next suppose g is C1. I need to verify that Dkg (x) exists and is continuous. Let v ∈ Xk
sufficiently small. Then

g (x+θ kv)−g (x) = Dg (x)θ kv+o(θ kv) = Dg (x)θ kv+o(v)

since ∥θ kv∥ = ∥v∥. Then Dkg (x) exists and equals Dg (x) ◦ θ k. Now x→ Dg (x) is
continuous. Since θ k is linear, it follows from Lemma 5.2.1 that θ k : Xk→∏

n
i=1 Xi is also

continuous. ■
Note that the above argument also works at a single point x. That is, continuity at x of

the partials implies Dg (x) exists and is continuous at x.
The way this is usually used is in the following corollary which has already been ob-

tained. Remember the matrix of Df (x). Recall that if a function is C1 in the sense that
x→Df (x) is continuous then all the partial derivatives exist and are continuous. The next
corollary says that if the partial derivatives do exist and are continuous, then the function is
differentiable and has continuous derivative.

Corollary 6.9.6 Let U be an open subset of Fn and let f :U → Fm be C1 in the sense
that all the partial derivatives of f exist and are continuous. Then f is differentiable and

f (x+v) = f (x)+
n

∑
k=1

∂f

∂xk
(x)vk +o(v) .

Similarly, if the partial derivatives up to order k exist and are continuous, then the function
is Ck in the sense that the first k derivatives exist and are continuous.

6.10 Mixed Partial Derivatives
Continuing with the special case where f is defined on an open set in Fn, I will next con-
sider an interesting result which was known to Euler in around 1734 about mixed partial
derivatives. It was proved by Clairaut some time later. It turns out that the mixed partial
derivatives, if continuous will end up being equal. Recall the notation fx =

∂ f
∂x = De1 f and

fxy =
∂ 2 f
∂y∂x = De1e2 f .

Theorem 6.10.1 Suppose f : U ⊆ F2→ R where U is an open set on which fx, fy,
fxy and fyx exist. Then if fxy and fyx are continuous at the point (x,y) ∈U, it follows

fxy (x,y) = fyx (x,y) .

Proof: Since U is open, there exists r > 0 such that B((x,y) ,r)⊆U. Now let |t| , |s|<
r/2, t,s real numbers and consider

∆(s, t)≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x+ t,y+ s)− f (x+ t,y)−

h(0)︷ ︸︸ ︷
( f (x,y+ s)− f (x,y))}. (6.16)
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Note that (x+ t,y+ s) ∈U because

|(x+ t,y+ s)− (x,y)| = |(t,s)|=
(
t2 + s2)1/2

≤
(

r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h(t) ≡ f (x+ t,y+ s)− f (x+ t,y). Therefore, by the mean value theo-
rem from one variable calculus and the (one variable) chain rule,

∆(s, t) =
1
st
(h(t)−h(0)) =

1
st

h′ (αt) t

=
1
s
( fx (x+αt,y+ s)− fx (x+αt,y))

for some α ∈ (0,1) . Applying the mean value theorem again,

∆(s, t) = fxy (x+αt,y+β s)

where α,β ∈ (0,1).
If the terms f (x+ t,y) and f (x,y+ s) are interchanged in 6.16, ∆(s, t) is unchanged

and the above argument shows there exist γ,δ ∈ (0,1) such that

∆(s, t) = fyx (x+ γt,y+δ s) .

Letting (s, t)→ (0,0) and using the continuity of fxy and fyx at (x,y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x,y) = fyx (x,y) .■

The following is obtained from the above by simply fixing all the variables except for
the two of interest.

Corollary 6.10.2 Suppose U is an open subset of X and f : U → R has the property
that for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both
continuous at x ∈U. Then fxkxl (x) = fxlxk (x) .

By considering the real and imaginary parts of f in the case where f has values in C
you obtain the following corollary.

Corollary 6.10.3 Suppose U is an open subset of Fn and f : U → F has the property
that for two indices, k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both
continuous at x ∈U. Then fxkxl (x) = fxlxk (x) .

Finally, by considering the components of f you get the following generalization.

Corollary 6.10.4 Suppose U is an open subset of Fn and f : U → Fm has the property
that for two indices, k, l, f xk

, f xl
,f xlxk

, and f xkxl
exist on U and f xkxl

and f xlxk
are both

continuous at x ∈U. Then f xkxl
(x) = f xlxk

(x) .
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This can be generalized to functions which have values in a normed linear space, but
I plan to stop with what is given above. One way to proceed would be to reduce to a
consideration of the coordinate maps and then apply the above. It would even hold in
infinite dimensions through the use of the Hahn Banach theorem. The idea is to reduce to
the scalar valued case as above.

In addition, it is obvious that for a function of many variables you could pick any pair
and say these are equal if they are both continuous.

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [2].

Example 6.10.5 Let

f (x,y) =

{
xy(x2−y2)

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

From the definition of partial derivatives it follows that fx (0,0) = fy (0,0) = 0. Using
the standard rules of differentiation, for (x,y) ̸= (0,0) ,

fx = y
x4− y4 +4x2y2

(x2 + y2)2 , fy = x
x4− y4−4x2y2

(x2 + y2)2

Now

fxy (0,0)≡ lim
y→0

fx (0,y)− fx (0,0)
y

= lim
y→0

−y4

(y2)2 =−1

while

fyx (0,0)≡ lim
x→0

fy (x,0)− fy (0,0)
x

= lim
x→0

x4

(x2)2 = 1

showing that although the mixed partial derivatives do exist at (0,0) , they are not equal
there.

Incidentally, the graph of this function appears very innocent. Its fundamental sickness
is not apparent. It is like one of those whited sepulchers mentioned in the Bible.

6.11 A Cofactor Identity
Lemma 6.11.1 Suppose det(A) = 0. Then for all sufficiently small nonzero ε, it follows
that det(A+ εI) ̸= 0.

Proof: Let det(λ I−A) = λ
p +a1λ

p−1 + · · ·+ap−1λ +ap. First suppose A is a p× p
matrix. If det(A) ̸= 0, this will still be true for all ε small enough. Now suppose also that
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det(A) = 0. Thus, the constant term of det(λ I−A) is 0. Consider εI +A ≡ Aε for small
real ε . The characteristic polynomial of Aε is

det(λ I−Aε) = det((λ − ε) I−A)

This is of the form

(λ − ε)p +a1 (λ − ε)p−1 + · · ·+(λ − ε)m am

where the a j are the coefficients in the characteristic polynomial for A and ak = 0 for
k > m,am ̸= 0. The constant term of this polynomial in λ must be nonzero for all ε small
enough because it is of the form

(−1)m
ε

mam +(higher order terms in ε) = ε
m [am (−1)m + εC (ε)]

which is nonzero for all positive but very small ε. Thus εI +A is invertible for all ε small
enough but nonzero. ■

Recall that for A an p× p matrix, cof(A)i j is the determinant of the matrix which results
from deleting the ith row and the jth column and multiplying by (−1)i+ j. In the proof and
in what follows, I am using Dg to equal the matrix of the linear transformation Dg taken
with respect to the usual basis on Rp. Thus (Dg)i j = ∂gi/∂x j where g = ∑i giei for the ei
the standard basis vectors.

Lemma 6.11.2 Let g : U → Rp be C2 where U is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Proof: From the cofactor expansion theorem,

δ k j det(Dg) =
p

∑
i=1

gi,k cof(Dg)i j (6.17)

This is because if k ̸= j, that on the right is the cofactor expansion of a determinant with
two equal columns while if k = j, it is just the cofactor expansion of the determinant. In
particular,

∂ det(Dg)

∂gi, j
= cof(Dg)i j (6.18)

which shows the last claim of the lemma. Assume that Dg (x) is invertible to begin with.
Differentiate 6.17 with respect to x j and sum on j. This yields

∑
r,s, j

δ k j
∂ (detDg)

∂gr,s
gr,s j = ∑

i j
gi,k j (cof(Dg))i j +∑

i j
gi,k cof(Dg)i j, j .

Hence, using δ k j = 0 if j ̸= k and 6.18,

∑
rs
(cof(Dg))rs gr,sk = ∑

rs
gr,ks (cof(Dg))rs +∑

i j
gi,kcof(Dg)i j, j .
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Subtracting the first sum on the right from both sides and using the equality of mixed
partials,

∑
i

gi,k

(
∑

j
(cof(Dg))i j, j

)
= 0.

Since it is assumed Dg is invertible, this shows ∑ j (cof(Dg))i j, j = 0. If det(Dg) = 0, use
Lemma 6.11.1 to let gk (x) = g (x)+εkx where εk→ 0 and det(Dg+ εkI)≡ det(Dgk) ̸=
0. Then

∑
j
(cof(Dg))i j, j = lim

k→∞
∑

j
(cof(Dgk))i j, j = 0 ■

6.12 Exercises
1. Here are some scalar valued functions of several variables. Determine which of these

functions are o(v). Here v is a vector in Rn, v = (v1, · · · ,vn).

(a) v1v2

(b) v2 sin(v1)

(c) v2
1 + v2

(d) v2 sin(v1 + v2)

(e) v1 (v1 + v2 + xv3)

(f) (ev1 −1− v1)

(g) (x ·v) |v|

2. Here is a function of two variables. f (x,y) = x2y+ x2. Find D f (x,y) directly from
the definition. Recall this should be a linear transformation which results from mul-
tiplication by a 1×2 matrix. Find this matrix.

3. Let f (x,y) =
(

x2 + y
y2

)
. Compute the derivative directly from the definition. This

should be the linear transformation which results from multiplying by a 2×2 matrix.
Find this matrix.

4. You have h(x) = g (f (x)) Here x ∈ Rn, f (x) ∈ Rm and g (y) ∈ Rp. where f,g
are appropriately differentiable. Thus Dh(x) results from multiplication by a matrix.
Using the chain rule, give a formula for the i jth entry of this matrix. How does this
relate to multiplication of matrices? In other words, you have two matrices which
correspond to Dg (f (x)) and Df (x) Call z = g (y) ,y = f (x) . Then

Dg (y) =
(

∂z
∂y1

· · · ∂z
∂ym

)
,Df (x) =

(
∂y
∂x1

· · · ∂y
∂xn

)
Explain the manner in which the i jth entry of Dh(x) is ∑k

∂ zi
∂yk

∂yy
∂x j

. This is a review

of the way we multiply matrices. what is the ith row of Dg (y) and the jth column of
Df (x)?

5. Find fx, fy, fz, fxy, fyx, fzy for the following. Verify the mixed partial derivatives are
equal.

(a) x2y3z4 + sin(xyz)

(b) sin(xyz)+ x2yz
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6. As an important application of Theorem 6.4.3 consider the following. Experiments
are done at n times, t1, t2, · · · , tn and at each time there results a collection of nu-
merical outcomes. Denote by {(ti,xi)}p

i=1 the set of all such pairs and try to find
numbers a and b such that the line x = at + b approximates these ordered pairs as
well as possible in the sense that out of all choices of a and b, ∑

p
i=1 (ati +b− xi)

2

is as small as possible. In other words, you want to minimize the function of two
variables f (a,b) ≡ ∑

p
i=1 (ati +b− xi)

2. Find a formula for a and b in terms of the
given ordered pairs. You will be finding the formula for the least squares regression
line.

7. Let f be a function which has continuous derivatives. Show that u(t,x) = f (x− ct)
solves the wave equation utt−c2∆u = 0. What about u(x, t) = f (x+ ct)? Here ∆u =
uxx.

8. Show that if ∆u = λu where u is a function of only x, then eλ tu solves the heat
equation ut −∆u = 0. Here ∆u = uxx.

9. Show that if f (x) = o(x), then f ′ (0) = 0.

10. Let f (x,y) be defined on R2 as follows. f
(
x,x2

)
= 1 if x ̸= 0. Define f (0,0) = 0,

and f (x,y) = 0 if y ̸= x2. Show that f is not continuous at (0,0) but that

lim
h→0

f (ha,hb)− f (0,0)
h

= 0

for (a,b) an arbitrary vector. Thus the Gateaux derivative exists at (0,0) in every
direction but f is not even continuous there.

11. Let

f (x,y)≡

{
xy4

x2+y8 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

Show that this function is not continuous at (0,0) but that the Gateaux derivative
limh→0

f (ha,hb)− f (0,0)
h exists and equals 0 for every vector (a,b).

12. Let U be an open subset of Rn and suppose that f : [a,b]×U → R satisfies

(x,y)→ ∂ f
∂yi

(x,y) ,(x,y)→ f (x,y)

are all continuous. Show that
∫ b

a f (x,y)dx,
∫ b

a
∂ f
∂yi

(x,y)dx all make sense and that in
fact

∂

∂yi

(∫ b

a
f (x,y)dx

)
=
∫ b

a

∂ f
∂yi

(x,y)dx

Also explain why y →
∫ b

a
∂ f
∂yi

(x,y)dx is continuous. Hint: You will need to use
the theorems from one variable calculus about the existence of the integral for a
continuous function. You may also want to use theorems about uniform continuity
of continuous functions defined on compact sets.
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13. I found this problem in Apostol’s book [1]. This is a very important result and is ob-

tained very simply. Read it and fill in any missing details. Let g(x)≡
∫ 1

0
e−x2(1+t2)

1+t2 dt

and f (x)≡
(∫ x

0 e−t2
dt
)2

. Note ∂

∂x

(
e−x2(1+t2)

1+t2

)
=−2xe−x2(1+t2). Explain why this

is so. Also show the conditions of Problem 12 are satisfied so that

g′ (x) =
∫ 1

0

(
−2xe−x2(1+t2)

)
dt.

Now use the chain rule and the fundamental theorem of calculus to find f ′ (x) . Then
change the variable in the formula for f ′ (x) to make it an integral from 0 to 1 and
show f ′ (x)+g′ (x) = 0. Now this shows f (x)+g(x) is a constant. Show the constant
is π/4 by letting x→ 0. Next take a limit as x→ ∞ to obtain the following formula

for the improper integral,
∫

∞

0 e−t2
dt,
(∫

∞

0 e−t2
dt
)2

= π/4. In passing to the limit in
the integral for g as x→ ∞ you need to justify why that integral converges to 0. To
do this, argue the integrand converges uniformly to 0 for t ∈ [0,1] and then explain
why this gives convergence of the integral. Thus

∫
∞

0 e−t2
dt =

√
π/2.

14. Recall the treatment of integrals of continuous functions in Proposition 5.8.5 or what
you used in beginning calculus. The gamma function is defined for x > 0 as Γ(x)≡∫

∞

0 e−ttx−1dt ≡ limR→∞

∫ R
0 e−ttx−1dt. Show this limit exists. Note you might have to

give a meaning to
∫ R

0 e−ttx−1dt if x < 1. Also show that Γ(x+1) = xΓ(x) , Γ(1) = 1.
How does Γ(n) for n an integer compare with (n−1)!?

15. Show the mean value theorem for integrals. Suppose f ∈C ([a,b]) . Then there exists
x ∈ (a,b), not just in [a,b] such that f (x)(b−a) =

∫ b
a f (t)dt. Hint: Let F (x) ≡∫ x

a f (t)dt and use the mean value theorem, Theorem 5.8.3 along with F ′ (x) = f (x).

16. Show, using the Weierstrass approximation theorem that linear combinations of the
form ∑i, j ai jgi (s)h j (t) where gi,h j are continuous functions on [0,b] are dense in
C ([0,b]× [0,b]) , the continuous functions defined on [0,b]× [0,b] with norm given
by

∥ f∥ ≡max{| f (x,y)| : (x,y) ∈ [0,b]× [0,b]}

Show that for h,g continuous,
∫ b

0
∫ s

0 g(s)h(t)dtds−
∫ b

0
∫ b

t g(s)h(t)dsdt = 0. Now
explain why if f is in C ([0,b]× [0,b]) ,∫ b

0

∫ s

0
f (s, t)dtds−

∫ b

0

∫ b

t
f (s, t)dsdt = 0.

17. Let f (x)≡
(∫ x

0 e−t2
dt
)2

. Use Proposition 5.8.5 which includes the fundamental the-
orem of calculus and elementary change of variables, show that

f ′ (x) = 2e−x2
(∫ x

0
e−t2

dt
)
= 2e−x2

(∫ 1

0
e−(xs)2

xds
)
=
∫ 1

0
2xe−x2(1+s2)ds.

Now show

f (x) =
∫ 1

0

∫ x

0
2te−t2(1+s2)dtds.

Show limx→∞

∫ x
0 e−t2

dt = 1
2
√

π



Chapter 7

Implicit Function Theorem
The implicit function theorem is one of the greatest theorems in mathematics. There are
many versions of this theorem which are of far greater generality than the one given here.
The proof given here is like one found in one of Caratheodory’s books on the calculus
of variations. It is not as elegant as some of the others which are based on a contraction
mapping principle but it may be shorter and is based on more elementary ideas. For a more
elegant proof which generalizes better see my book Real and Abstract Analysis. The proof
given here is based on a mean value theorem in the following lemma.

Lemma 7.0.1 Let U be an open set in Rp which contains the line segment t → y+
t (z−y) for t ∈ [0,1] and let f : U → R be differentiable at y+ t (z−y) for t ∈ (0,1) and
continuous for t ∈ [0,1]. Then there exists x on this line segment such that f (z)− f (y) =
D f (x)(z−y) .

Proof: Let h(t)≡ f (y+ t (z−y)) for t ∈ [0,1] . Then h is continuous on [0,1] and has
a derivative, h′ (t) = D f (y+ t (z−y))(z−y), this by the chain rule. Then by the mean
value theorem of one variable calculus, there exists t ∈ (0,1) such that

f (z)− f (y) = h(1)−h(0) = h′ (t) = D f (y+ t (z−y))(z−y)

and we let x= y+ t (z−y) for this t. ■
Also of use is the following lemma.

Lemma 7.0.2 Let A be an m×n matrix and suppose that for all i, j,
∣∣Ai j
∣∣≤C. Then the

operator norm satisfies ∥A∥ ≤Cmn.

Proof: Note that if z is a vector, |z| = sup|y|≤1 (z,y) . Indeed, for |y| ≤ 1, the right
side is no more than |z| thanks to the Cauchy Schwarz inequality and this can be achieved
by letting y = z/ |z|.

∥A∥ ≡ sup
|x|≤1
|Ax|= sup

|x|≤1
sup
|y|≤1
|(Ax,y)|= sup

|x|≤1
sup
|y|≤1

∣∣∣∣∣∑i
∑

j
Ai jx jyi

∣∣∣∣∣
≤ sup

|x|≤1
sup
|y|≤1

∑
i

∑
j

C
∣∣x j
∣∣ |yi| ≤C∑

i
∑

j
|x| |y|=Cmn. ■

Definition 7.0.3 Suppose U is an open set in Rn ×Rm and (x,y) will denote a
typical point of Rn×Rm with x ∈ Rn and y ∈ Rm. Let f : U → Rp be in C1 (U) meaning
that all partial derivatives exist and are continuous. Then define

D1f (x,y) ≡

 f1,x1 (x,y) · · · f1,xn (x,y)
...

...
fp,x1 (x,y) · · · fp,xn (x,y)

 ,

D2f (x,y) ≡

 f1,y1 (x,y) · · · f1,ym (x,y)
...

...
fp,y1 (x,y) · · · fp,ym (x,y)

 .

163
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Definition 7.0.4 Let δ ,η > 0 satisfy: B(x0,δ )×B(y0,η)⊆U where f : U ⊆Rn×
Rm→ Rp is given as

f (x,y) =


f1 (x,y)
f2 (x,y)

...
fp (x,y)


and for

(
x1 · · · xn

)
∈ B(x0,δ )

p
and y ∈ B(y0, η̂) define

J
(
x1, · · · ,xp,y

)
≡

 f1,x1

(
x1,y

)
· · · f1,xn

(
x1,y

)
...

...
fp,x1 (x

p,y) · · · fp,xn (x
p,y)

 . (∗)

Thus, its ith row is D1 fi
(
xi,y

)
. Let K,r be constants.

By Theorem 6.9.5 f is differentiable and its derivative is the p× (n+m) matrix,(
D1f (x,y) D2f (x,y)

)
.

Also, by Lemma 7.0.1, and (x,y) ∈ B(x0,δ )×B(y0,η)⊆U, and h,k sufficiently small,
there are xi on the line segment between x and x+h such that

f (x+h,y+k)−f (x,y) = f (x+h,y+k)−f (x,y+k)+f (x,y +k)−f (x,y)

= J
(
x1, · · · ,xp,y+k

)
h+D2f (x,y)k+o(k) (7.1)

Proposition 7.0.5 Suppose g : B(x0,δ )×B(y0,η0)→ [0,∞) is continuous and also
that g(x0,y0) = 0 and if x ̸= x0,g(x,y0)> 0. Then there exists η < η0 such that if y ∈
B(y0,η) , then the function x→ g(x,y) achieves its minimum on the open set B(x0,δ ).

Proof: If not, then there is a sequence yk→ y0 but the minimum of x→ g(x,yk) for
x ∈ B(x0,δ ) happens on ∂B(x0,δ ) ≡ ∂B ≡ {x : |x−x0|= δ} at xk. Now ∂B is closed
and bounded and so compact. Hence there is a subsequence, still denoted with subscript k
such that xk→ x ∈ ∂B and yk→ y0. Let 0 < 2ε < min{g(x̂,y0) : x̂ ∈ ∂B} .

Then for k large, |g(xk,yk)−g(x,y0)|< ε, and |g(xk,yk)−g(xk,y0)|< ε , the sec-
ond inequality from uniform continuity. Then from these inequalities, for k large,

g(x0,yk) ≥ g(xk,yk)> g(xk,y0)− ε

> min{g(x̂,y0) : x̂ ∈ ∂B}− ε > 2ε− ε = ε

Now let k→ ∞ to conclude that g(x0,y0)≥ ε , a contradiction. ■
Here is the implicit function theorem. It is based on the mean value theorem from one

variable calculus, the extreme value theorem from calculus, and the formula for the inverse
of a matrix in terms of the transpose of the cofactor matrix divided by the determinant.

Theorem 7.0.6 (implicit function theorem) Suppose U is an open set in Rn×Rm.
Let f : U → Rn be in C1 (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 exists. (7.2)
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Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (7.3)

Furthermore, the mapping, y→ x(y) is in C1 (B(y0,η)).

Proof: Let f (x,y) =
(

f1 (x,y) f2 (x,y) · · · fn (x,y)
)T

. Also define the ex-
pression J

(
x1, · · · ,xn,y

)
to be given above in ∗. Then by the assumption of continuity of

all the partial derivatives, there exists r > 0 and δ 0,η0 > 0 such that if δ ≤ δ 0 and η ≤ η0,

it follows that for all
(
x1, · · · ,xn

)
∈ B(x0,δ )

n ≡ B(x0,δ )×B(x0,δ )× ·· · ×B(x0,δ ),

and y ∈ B(y0,η),
detJ

(
x1, · · · ,xn,y

)
/∈ (−r,r). (7.4)

and B(x0,δ 0)× B(y0,η0)⊆U . Therefore, from the formula for the inverse of a matrix and
continuity of all entries of the various matrices, there exists a constant K such that all entries
of J

(
x1, · · · ,xn,y

)
,J
(
x1, · · · ,xn,y

)−1
, and D2f (x,y) have absolute value smaller than

K on the convex set B(x0,δ )
n×B(y0,η) whenever δ ,η are sufficiently small. It is always

tacitly assumed that these radii are this small.
Next it is shown that for a given y ∈ B(y0,η) ,η ≤ η0, there is at most one x ∈

B(x0,δ 0) such that f (x,y) = 0.
Pick y ∈ B(y0,η) and suppose there exist x,z ∈ B(x0,δ ) such that

f (x,y) = f (z,y) = 0.

Then applying Lemma 7.0.1 on the components, there are xi such that

J
(
x1, · · · ,xn,y

)
(z−x) = 0

and so from 7.4 z−x= 0. (The matrix J
(
x1, · · · ,xn,y

)
is invertible since its determinant

is nonzero.) Now it will be shown that if η is chosen sufficiently small, then for all y ∈
B(y0,η) , there exists a unique x(y) ∈ B(x0,δ ) such that f (x(y) ,y) = 0.

Claim: If η is small enough, then the function, x→ hy (x) ≡ |f (x,y)|2 achieves its
minimum value on B(x0,δ ) at a point of B(x0,δ ) . This is Proposition 7.0.5.

Choose η < η0 and also small enough that the above claim holds and let x(y) denote
a point of B(x0,δ ) at which the minimum of hy on B(x0,δ ) is achieved. Since x(y) is
an interior point, it follows that you can consider hy (x(y)+ tv) for |t| small and conclude
this function of t has a zero derivative at t = 0. Now

hy (x(y)+ tv) =
n

∑
i=1

f 2
i (x(y)+ tv,y)

and so from the chain rule,

d
dt

hy (x(y)+ tv) =
n

∑
i=1

n

∑
j=1

2 fi (x(y)+ tv,y)
∂ fi (x(y)+ tv,y)

∂x j
v j.

Therefore, letting t = 0, it is required that for every v,

n

∑
i=1

n

∑
j=1

2 fi (x(y) ,y)
∂ fi (x(y) ,y)

∂x j
v j = 0.
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In terms of matrices this reduces to 0 = 2f (x(y) ,y)T D1f (x(y) ,y)v for every vector
v. Therefore, 0 = f (x(y) ,y)T D1f (x(y) ,y) . From 7.4, it follows f (x(y) ,y) = 0.

(Multiply by D1f (x(y) ,y)−1 on the right.) This proves the existence of the function
y→ x(y) such that f (x(y) ,y) = 0 for all y ∈ B(y0,η) .

It remains to verify this function is a C1 function. To do this, let y1 and y2 be points of
B(y0,η) . Then as before, consider the ith component of f and consider the same argument
using the mean value theorem to write

0 = fi (x(y1) ,y1)− fi (x(y2) ,y2)

= fi (x(y1) ,y1)− fi (x(y2) ,y1)+ fi (x(y2) ,y1)− fi (x(y2) ,y2)

= D1 fi
(
xi,y1

)
(x(y1)−x(y2))+D2 fi

(
x(y2) ,y

i)(y1−y2) (7.5)

where yi is a point on the line segment joining y1 and y2 and xi is a point on the line
segment joining x(y1) and x(y2) . Thus

(x(y1)−x(y2)) =−J
(
x1, · · · ,xn,y1

)−1
M (y1−y2)

where M denotes the matrix having the ith row equal to D2 fi
(
x(y2) ,y

i
)

all entries being
bounded by K. It follows that

|x(y1)−x(y2)| ≤ Kn |M (y1−y2)| ≤ K2nm |y1−y2|

Thus y→ x(y) is continuous near y0.
Now let y2 = y,y1 = y+hek for small h. Then M described above depends on h and

limh→0 M (h) = D2f (x(y) ,y) thanks to the continuity of y→ x(y) just shown. Also,

x(y+hek)−x(y)

h
=−J

(
x1 (h) , · · · ,xn (h) ,y+hek

)−1
M (h)ek

Passing to a limit and using the formula for the inverse of a matrix in terms of the cofactor
matrix, and the continuity of y→ x(y) shown above, this yields

∂x

∂yk
=−D1f (x(y) ,y)−1 D2 fi (x(y) ,y)ek

Then continuity of y→ x(y) and the assumed continuity of the partial derivatives of f
shows that each partial derivative of y→ x(y) exists and is continuous. ■

This theorem implies the inverse function theorem stated next.

Theorem 7.0.7 (inverse function theorem) Let x0 ∈U, an open set in Rn , and let
f : U → Rn. Suppose

f is C1 (U) , and Df(x0)
−1 exists. (7.6)

Then there exist open sets W, and V such that x0 ∈W ⊆U, f : W → V is one to one and
onto,f−1 is C1.

Proof: Apply the implicit function theorem to the function F (x,y)≡ f (x)−y where
y0 ≡ f (x0). Thus the function y→ x(y) defined in that theorem is f−1 and there is
B(y0,η) where this function is defined. Now let W ≡ f−1 (B(y0,η)) and V ≡B(y0,η) .■
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7.1 More Continuous Partial Derivatives
The implicit function theorem will now be improved slightly. If f is Ck, it follows that
the function which is implicitly defined is also Ck, not just C1, meaning all mixed partial
derivatives of f up to order k are continuous. Since the inverse function theorem comes
as a case of the implicit function theorem, this shows that the inverse function also inherits
the property of being Ck. First some notation is convenient. Let α = (α1, · · · ,αn) where
each α i is a nonnegative integer. Then letting |α|= ∑i α i,

Dαf (x)≡ ∂ |α|f

∂ α1∂ α2 · · ·∂ αn
(x) , D0f (x)≡ f (x)

The symbol on the right means to take the αn partial derivative with respect to xn, then the
αn−1 partial derivative with respect to xn−1 of what you just got and so on till you take the
α1 partial derivative with respect to x1. The idea is to show that all mixed partial derivatives
such that |α| ≤ k exist and are continuous.

Theorem 7.1.1 (implicit function theorem) Suppose U is an open set in Fn×Fm.
Let f : U → Fn be in Ck (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 ∈L (Fn,Fn) . (7.7)

Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (7.8)

Furthermore, the mapping y→ x(y) is in Ck (B(y0,η)).

Proof: From the implicit function theorem y→ x(y) is C1. It remains to show that it
is Ck for k > 1 assuming that f is Ck. From 7.8

∂x

∂yl =−D1f (x,y)−1 ∂f

∂yl .

By the formula for the inverse in terms of cofactors, if f is C2, one can use the chain rule
to take another continuous derivative. Thus, the following formula holds for q = 1 and
|α|= q.

Dαx(y) = ∑
|β |≤q

Mβ (x,y)Dβf (x,y) (7.9)

where Mβ is a matrix whose entries are differentiable functions of Dγx for |γ| < q and
Dτf (x,y) for |τ| ≤ q. This follows easily from the description of D1f (x,y)−1 in terms
of the cofactor matrix and the determinant of D1f (x,y). Suppose 7.9 holds for |α|= q< k.
Then by induction, this yields x is Cq. Then

∂Dαx(y)

∂yp = ∑
|β |≤|α|

∂Mβ (x,y)

∂yp Dβf (x,y)+Mβ (x,y)
∂Dβf (x,y)

∂yp .

By the chain rule
∂Mβ (x,y)

∂yp is a matrix whose entries are differentiable functions of the
matrix Dτf (x,y) for |τ| ≤ q+1 and Dγx for |γ|< q+1. It follows, since yp was arbitrary,
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that for any |α|= q+1, a formula like 7.9 holds with q being replaced by q+1. Continuing
this way, x is Ck. ■

As a simple corollary, this yields the inverse function theorem. You just let F (x,y) =
y−f (x) and apply the implicit function theorem.

Theorem 7.1.2 (inverse function theorem) Let x0 ∈ U ⊆ Fn and let f : U → Fn.
Suppose for k a positive integer, f isCk (U) , and Df(x0)

−1 ∈L (Fn,Fn). Then there exist
open sets W, and V such that x0 ∈W ⊆U, f : W →V is one to one and onto, f−1 is Ck.

7.2 Normed Linear Space
The implicit function theorem and inverse function theorem continue to hold if Rn and Rm

are replaced by finite dimensional normed linear spaces X ,Y respectively of dimension n
and m.

Theorem 7.2.1 (implicit function theorem) Suppose U is an open set in X×Y where
X ,Y are normed linear space of dimension n,m and suppose f : U→ Z be in Ck (U) where
Z is an n dimensional normed linear space. Suppose also

f (x0,y0) = 0, D1 f (x0,y0)
−1 exists. (7.10)

Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (7.11)

Furthermore, the mapping, y→ x(y) is in Ck (B(y0,η)).

Proof: Denote the coordinate maps for X ,Y,Z in terms of bases for these spaces by
θ X ,θY ,θ Z . These are all linear maps and so, since we are in finite dimensions, they are
each Ck for every positive integer k with respect to any norm on Rn,Rm thanks to Theorem
4.4.9 on equivalence of norms and the same is true of their inverses. Denote by x,y,z the
coordinate vectors for x,y,z∈X ,Y,Z respectively. Let f = θ Z f and note that the conditions
for the implicit function theorem, Theorem 7.1.1 for f (x0,y0) = 0 all hold and so this
proves the theorem. Since we are in finite dimensions, D1 f (x0,y0)

−1 exists if D1 f (x0,y0)

is one to one which implies D1f (x0,y0)
−1 exists. ■

Of course the inverse function theorem follows from this in the case of normed linear
spaces. This also illustrates how you can always reduce to Rp by doing everything in terms
of coordinates.

7.3 The Method of Lagrange Multipliers
As an application of the implicit function theorem, consider the method of Lagrange mul-
tipliers from calculus. Recall the problem is to maximize or minimize a function subject to
equality constraints. Let f : U → R be a C1 function where U ⊆ Rn and let

gi (x) = 0, i = 1, · · · ,m (7.12)

be a collection of equality constraints with m < n. Now consider the system of nonlinear
equations

f (x) = a, gi (x) = 0, i = 1, · · · ,m.
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x0 is a local maximum if f (x0)≥ f (x) for all x near x0 which also satisfies the constraints
7.12. A local minimum is defined similarly. Let F : U×R→ Rm+1 be defined by

F (x,a)≡


f (x)−a
g1 (x)

...
gm (x)

 . (7.13)

Now consider the m + 1× n Jacobian matrix, the matrix of the linear transformation,
D1F (x,a) with respect to the usual basis for Rn and Rm+1.

fx1 (x0) · · · fxn (x0)
g1x1 (x0) · · · g1xn (x0)

...
...

gmx1 (x0) · · · gmxn (x0)

 .

If this matrix has rank m+1 then some m+1×m+1 submatrix has nonzero determinant.
It follows from the implicit function theorem that there exist m+1 variables, xi1 , · · · ,xim+1
such that the system

F (x,a) = 0 (7.14)

specifies these m+ 1 variables as a function of the remaining n− (m+1) variables and
a in an open set of Rn−m. Thus there is a solution (x,a) to 7.14 for some x close to x0
whenever a is in some open interval. Therefore, x0 cannot be either a local minimum or a
local maximum. It follows that if x0 is either a local maximum or a local minimum, then
the above matrix must have rank less than m+ 1 which requires the rows to be linearly
dependent. Thus, there exist m scalars λ 1, · · · ,λ m, and a scalar µ, not all zero such that

µ

 fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 . (7.15)

If the column vectors  g1x1 (x0)
...

g1xn (x0)

 , · · ·

 gmx1 (x0)
...

gmxn (x0)

 (7.16)

are linearly independent, then, µ ̸= 0 and dividing by µ yields an expression of the form fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 (7.17)

at every point x0 which is either a local maximum or a local minimum. This proves the
following theorem.

Theorem 7.3.1 Let U be an open subset of Rn and let f : U → R be a C1 function.
Then if x0 ∈U is either a local maximum or local minimum of f subject to the constraints
7.12, then 7.15 must hold for some scalars µ,λ 1, · · · ,λ m not all equal to zero. If the vectors
in 7.16 are linearly independent, it follows that an equation of the form 7.17 holds.
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7.4 Taylor Approximations
First recall the following one variable calculus theorem. It is in my on line book “Calculus
of One and Many Variables” or in any elementary Calculus book. See Problem 3 below on
Page 176.

Theorem 7.4.1 Let h : (−δ ,1+δ )→ R have m+ 1 derivatives. Then there exists
t ∈ (0,1) such that

h(1) = h(0)+
m

∑
k=1

h(k) (0)
k!

+
h(m+1) (t)
(m+1)!

.

Now suppose U is an open set in Rp and f : U → R is Cm+1 with x0 ∈U . For x ∈
B(x0,r)⊆U , let h(t) = f (x0 + t (x−x0)) , t ∈ (0,1) . Then

h′ (t) = ∑
i

∂ f (x0 + t (x−x0))

∂xi
(xi− x0i) , h′′ (t) = ∑

i1,i2

∂ 2 f
∂xi1∂xi2

(xi1 − x0i1)(xi2 − x0i2)

and continuing this way,

h(k) (t) = ∑
i1,··· ,ik

∂ k f
∂xi1∂xi2 · · ·∂xik

k

∏
j=1

(
xi j − x0i j

)
(7.18)

Then the Taylor approximation is of the form h(1) = f (x) =

f (x0)+
m

∑
k=1

1
k! ∑

i1,··· ,ik

∂ k f (x0)

∂xi1∂xi2 · · ·∂xik

k

∏
j=1

(
xi j − x0i j

)
+

1
(m+1)! ∑

i1,··· ,im+1

∂ m+1 f (x0 + t (x−x0))

∂xi1∂xi2 · · ·∂xim+1

m+1

∏
j=1

(
xi j − x0i j

)
(7.19)

The last term being the remainder with t ∈ (0,1). Thus, if the (m+1)st partial derivatives
are all bounded, this shows that if ∥x−x0∥ is sufficiently small, then the difference be-
tween f (x) and that series on the right in 7.19 other than the remainder term will also be
very small.

7.5 Second Derivative Test
Now consider the case where U ⊆ Rn and f : U → R is C2 (U). Then from Taylor’s theo-
rem, if v is small enough, there exists t ∈ (0,1) such that

f (x+v) = f (x)+D f (x)v+
D2 f (x+tv)v2

2
. (7.20)

Consider

D2 f (x+tv)(ei)(e j) ≡ D(D( f (x+tv))ei)e j

= D
(

∂ f (x+ tv)
∂xi

)
e j =

∂ 2 f (x+ tv)
∂x j∂xi
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where ei are the usual basis vectors. Lettin v = ∑
n
i=1 viei, the second derivative term in

7.20 reduces to

1
2 ∑

i, j
D2 f (x+tv)(ei)(e j)viv j =

1
2 ∑

i, j
Hi j (x+tv)viv j

where

Hi j (x+tv) = D2 f (x+tv)(ei)(e j) =
∂ 2 f (x+tv)

∂x j∂xi
.

Definition 7.5.1 The matrix whose i jth entry is ∂ 2 f (x)
∂x j∂xi

is called the Hessian matrix,
denoted as H (x).

From Theorem 6.10.1, this is a symmetric real matrix, thus self adjoint. By the conti-
nuity of the second partial derivative,

f (x+v) = f (x)+D f (x)v+
1
2
vT H (x)v+

1
2
(
vT (H (x+tv)−H (x))v

)
. (7.21)

where the last two terms involve ordinary matrix multiplication and

vT =
(

v1 · · · vn
)

for vi the components of v relative to the standard basis.

Definition 7.5.2 Let f : D→ R where D is a subset of some normed vector space.
Then f has a local minimum at x ∈ D if there exists δ > 0 such that for all y ∈ B(x,δ ),
f (y)≥ f (x) . Also f has a local maximum at x ∈ D if there exists δ > 0 such that for all
y ∈ B(x,δ ) , f (y)≤ f (x).

Theorem 7.5.3 If f : U → R where U is an open subset of Rn and f is C2, suppose
D f (x) = 0. Then if H (x) has all positive eigenvalues, x is a local minimum. If the
Hessian matrix H (x) has all negative eigenvalues, then x is a local maximum. If H (x)
has a positive eigenvalue, then there exists a direction in which f has a local minimum at
x, while if H (x) has a negative eigenvalue, there exists a direction in which H (x) has a
local maximum at x.

Proof: Since D f (x)= 0, formula 7.21 holds and by continuity of the second derivative,
H (x) is a symmetric matrix. Thus H (x) has all real eigenvalues. Suppose first that H (x)

has all positive eigenvalues and that all are larger than δ
2 > 0. Then by Theorem 1.4.1,

H (x) has an orthonormal basis of eigenvectors, {vi}n
i=1 and if u is an arbitrary vector,

such that u= ∑
n
j=1 u jv j where u j = u ·v j, then

uT H (x) u=
n

∑
j=1

u jv
T
j H (x)

n

∑
j=1

u jv j =
n

∑
j=1

u2
jλ j ≥ δ

2
n

∑
j=1

u2
j = δ

2 |u|2 .

From 7.21 and the continuity of H, if v is small enough,

f (x+v)≥ f (x)+
1
2

δ
2 |v|2− 1

4
δ

2 |v|2 = f (x)+
δ

2

4
|v|2 .
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This shows the first claim of the theorem. The second claim follows from similar reason-
ing. Suppose H (x) has a positive eigenvalue λ

2. Then let v be an eigenvector for this
eigenvalue. Then from 7.21,

f (x+tv) = f (x)+
1
2

t2vT H (x)v+
1
2

t2 (vT (H (x+tv)−H (x))v
)

which implies

f (x+tv) = f (x)+
1
2

t2
λ

2 |v|2 + 1
2

t2 (vT (H (x+tv)−H (x))v
)

≥ f (x)+
1
4

t2
λ

2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. This proves
the theorem. ■

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x,y) = x4 + y2, f2 (x,y) =−x4 + y2.

Then D fi (0,0) = 0 and for both functions, the Hessian matrix evaluated at (0,0) equals(
0 0
0 2

)
but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

7.6 The Rank Theorem
This is a very interesting result. The proof follows Marsden and Hoffman. First here is
some linear algebra.

Theorem 7.6.1 Let L : Rn→ RN have rank m. Then there exists a basis

{u1, · · · ,um,um+1, · · · ,un}

such that a basis for ker(L) is {um+1, · · · ,un} .

Proof: Since L has rank m, there is a basis for L(Rn) which is of the form

{Lu1, · · · ,Lum}

Then if ∑i ciui = 0 you can do L to both sides and conclude that each ci = 0. Hence
{u1, · · · ,um} is linearly independent. Let {v1, · · · ,vk} be a basis for ker(L) . Let x ∈ Rn.
Then Lx = ∑

m
i=1 ciLui for some choice of scalars ci. Hence L(x−∑

m
i=1 ciui) = 0 which

shows that there exist d j such that x= ∑
m
i=1 ciui +∑

k
j=1 d jv j It follows that

span(u1, · · · ,um,v1, · · · ,vk) = Rn
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Is this set of vectors linearly independent? Suppose ∑
m
i=1 ciui+∑

k
j=1 d jv j = 0 Do L to both

sides to get ∑
m
i=1 ciLui = 0 Thus each ci = 0. Hence ∑

k
j=1 d jv j = 0 and so each d j = 0 also.

It follows that k = n−m and we can let

{v1, · · · ,vk}= {um+1, · · · ,un} . ■

Another useful linear algebra result is the following lemma.

Lemma 7.6.2 Let V ⊆Rn be a subspace and suppose A(x) ∈L
(
V,RN

)
for x in some

open set U. Also suppose x→ A(x) is continuous for x ∈U. Then if A(x0) is one to one
on V for some x0 ∈U, then it follows that for all x close enough to x0, A(x) is also one
to one on V .

Proof: Consider V as an inner product space with the inner product from Rn and
A(x)∗A(x) . Then A(x)∗A(x) ∈L (V,V ) and x→ A(x)∗A(x) is also continuous. Also
for v ∈V, (

A(x)∗A(x)v,v
)

V = (A(x)v,A(x)v)RN

If A(x0)
∗A(x0)v = 0, then from the above, it follows that A(x0)v = 0 also. Therefore,

v = 0 and so A(x0)
∗A(x0) is one to one on V . For all x close enough to x0, it follows

from continuity that A(x)∗A(x) is also one to one. Thus, for such x, if A(x)v = 0, Then
A(x)∗A(x)v = 0 and so v = 0. Thus, for x close enough to x0, it follows that A(x) is
also one to one on V . ■

Theorem 7.6.3 Let f : A⊆Rn→RN where A is open in Rn. Let f be a Cr function
and suppose that Df (x) has rank m for all x ∈ A. Let x0 ∈ A. Then there are open sets
U,V ⊆ Rn with x0 ∈ V, and a Cr function h : U → V with inverse h−1 : V →U also Cr

such that f ◦h depends only on (x1, · · · ,xm).

Proof: Let L = Df (x0), and N0 = kerL. Using the above linear algebra theorem, there
exists

{u1, · · · ,um}

such that {Lu1, · · · ,Lum} is a basis for LRn. Extend to form a basis for Rn,

{u1, · · · ,um,um+1, · · · ,un}

such that a basis for N0 = kerL is {um+1, · · · ,un}. Let

M ≡ span(u1, · · · ,um) .

Let the coordinate maps be ψk so that if x ∈ Rn,

x= ψ1 (x)u1 + · · ·+ψn (x)un

Since these coordinate maps are linear, they are infinitely differentiable.
Next I will define coordinate maps for x ∈ RN . Then by the above construction,

{Lu1, · · · ,Lum} is a basis for L(Rn). Let a basis for RN be

{Lu1, · · · ,Lum,vm+1, · · · ,vN}
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(Note that, since the rank of Df (x) = m you must have N ≥ m.) The coordinate maps φ i
will be defined as follows for x ∈ RN .

x= φ 1 (x)Lu1 + · · ·φ m (x)Lum +φ m+1 (x)vm+1 + · · ·+φ N (x)vN

Now define two infinitely differentiable maps G : Rn→ Rn and H : RN → Rn,

G(x)≡
(
0, · · · ,0,ψm+1 (x) , · · · ,ψn (x)

)
H (y)≡ (φ 1 (y) , · · · ,φ m (y) ,0, · · · ,0)

For x ∈ A⊆ Rn, let
g (x)≡ H (f (x))+G(x) ∈ Rn

Thus the first term picks out the first m entries of f (x) and the second term the last n−m
entries of x. It is of the form(

φ 1 (f (x)) , · · · ,φ m (f (x)) ,ψm+1 (x) , · · · ,ψn (x)
)

Then
Dg (x0)(v) = HL(v)+G v = HLv+Gv (7.22)

which is of the form

Dg (x0)(v) =
(
φ 1 (Lv) , · · · ,φ m (Lv) ,ψm+1 (v) , · · · ,ψn (v)

)
If this equals 0, then all the components of v, ψm+1 (v) , · · · ,ψn (v) are equal to 0. Hence
v = ∑

m
i=1 ciui. But also the coordinates of Lv,φ 1 (Lv) , · · · ,φ m (Lv) are all zero so Lv = 0

and so 0 =∑
m
i=1 ciLui so by independence of the Lui, each ci = 0 and consequently v = 0.

This proves the conditions for the inverse function theorem are valid for g. Therefore,
there is an open ball U and an open set V , x0 ∈V , such that g : V →U is a Cr map and its
inverse g−1 : U →V is also. We can assume by continuity and Lemma 7.6.2 that V and U
are small enough that for each x ∈V,Dg (x) is one to one. This follows from the fact that
x→ Dg (x) is continuous.

Since it is assumed that Df (x) is of rank m,Df (x)(Rn) is a subspace which is m
dimensional, denoted as Px. Also denote L(Rn) = L(M) as P.

PPx

M ⊆ Rn

RN

Thus {Lu1, · · · ,Lum} is a basis for P. Using Lemma 7.6.2 again, by making V,U
smaller if necessary, one can also assume that for each x ∈ V, Df (x) is one to one on M
(although not on Rn) and HDf (x) is one to one on M. This follows from continuity and
the fact that L =Df (x0) is one to one on M. Therefore, it is also the case that Df (x) maps
the m dimensional space M onto the m dimensional space Px and H is one to one on Px.
The reason for this last claim is as follows: If Hz = 0 where z ∈ Px, then HDf (x)w = 0
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where w ∈ M and Df (x)w= z. Hence w = 0 because HDf (x) is one to one, and so
z = 0 which shows that indeed H is one to one on Px.

Denote as Lx the inverse of H which is defined on Rm×0, Lx : Rm×0→ Px. That 0
refers to the N−m string of zeros in the definition given above for H.

Define h≡ g−1 and consider f1 ≡ f ◦h. It is desired to show that f1 depends only on
x1, · · · ,xm. Let D1 refer to (x1, · · · ,xm) and let D2 refer to (xm+1, · · · ,xn). Then f = f1 ◦g
and so by the chain rule

Df (x)(y) = Df1 (g (x))Dg (x)(y) (7.23)

Now as in 7.22, for y ∈ Rn,

Dg (x)(y) = HDf (x)(y)+Gy

=
(
φ 1 (Df (x)y) , · · · ,φ m (Df (x)y) ,ψm+1 (y) , · · · ,ψn (y)

)
Recall that from the above definitions of H and G,

G(y)≡
(
0, · · · ,0,ψm+1 (y) , · · · ,ψn (y)

)
H (Df (x)(y)) = (φ 1 (Df (x)y) , · · · ,φ m (Df (x)y) ,0, · · · ,0)

Let π1 : Rn → Rm denote the projection onto the first m positions and π2 the projection
onto the last n−m. Thus

π1Dg (x)(y) = (φ 1 (Df (x)y) , · · · ,φ m (Df (x)y))

π2Dg (x)(y) =
(
ψm+1 (y) , · · · ,ψn (y)

)
Now in general, for z ∈ Rn,

Df1 (g (x))z = D1f1 (g (x))π1z+D2f1 (g (x))π2z

Therefore, it follows that Df1 (g (x))Dg (x)(y) is given by

Df (x)(y) = Df1 (g (x))Dg (x)(y)

= D1f1 (g (x))π1Dg (x)(y)+D2f1 (g (x))π2Dg (x)(y)

Df (x)(y) = Df1 (g (x))Dg (x)(y) = D1f1 (g (x))

=π1Dg(x)(y)︷ ︸︸ ︷
π1HDf (x)(y)

+D2f1 (g (x))π2Gy

We need to verify the last term equals 0. Solving for this term,

D2f1 (g (x))π2Gy = Df (x)(y)−D1f1 (g (x))π1HDf (x)(y)

As just explained, Lx ◦H is the identity on Px, the image of Df (x). Then

D2f1 (g (x))π2Gy = Lx ◦HDf (x)(y)−D1f1 (g (x))π1HDf (x)(y)

=
(

Lx ◦HDf (x)−D1f1 (g (x))π1HDf (x)
)
(y)
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Factoring out that underlined term,

D2f1 (g (x))π2Gy = [Lx−D1f1 (g (x))π1]HDf (x)(y)

Now Df (x) : M→Px =Df (x)(Rn) is onto. (This is based on the assumption that Df (x)
has rank m.) Thus it suffices to consider only y ∈M in the right side of the above. However,
for such y,π2Gy = 0 because to be in M,ψk (y) = 0 if k ≥ m+ 1, and so the left side of
the above equals 0. Thus it appears this term on the left is 0 for any y chosen. How can
this be so? It can only take place if D2f1 (g (x)) = 0 for every x ∈ V . Thus, since g is
onto, it can only take place if D2f1 (x) = 0 for all x ∈U . Therefore on U it must be the
case that f1 depends only on x1, · · · ,xm as desired. ■

7.7 Exercises
1. Consider the question about level surfaces. Let S =

{
x ∈ Rn+1 : f (x) = c

}
. We

usually refer to this as a level surface in Rn+1 and we give examples of things like
ellipsoids and spheres. Then everyone is deceived into thinking they know what is
going on because of the examples. After this deception, and this is indeed what it
is, we give specious arguments to justify the method of Lagrange multipliers (I have
spent my career giving such specious arguments.) by showing that the gradient of
the objective function is perpendicular to the direction vector of every smooth curve
lying in S at a point where the maximum or minimum exists using the chain rule.
One thing which is missing in this kind of stupidity is a consideration whether there
even exist such smooth curves. Use the implicit function theorem to give conditions
which imply the existence of such smooth curves near a point on S.

2. State and give a short proof of the inverse function theorem for normed linear spaces
using Theorem 7.2.1.

3. Prove Theorem 7.4.1. Hint: Let K be such that

h(1) = h(0)+
m

∑
k=1

1
k!

h(k) (0)+K.

Now define g(u) ≡ h(1)−
(

h(u)+∑
m
k=1

1
k! h(k) (u)(1−u)k +K (1−u)m+1

)
. Then

g(0) = 0 and g(1) = 0 so by the mean value theorem, there is t ∈ (0,1) where
g′ (t) = 0. Compute g′ (u) and simplify then choose the t just mentioned and solve
for K.

4. Let f : R2×R→ R2

f (x,y,λ ) =
(

x+ xy+ y2 + sin(λ )
x+ y2− x2 +λ

)
Then f (0,0,λ ) = 0,

D1f (x,y,λ ) =
(

1+ y x+2y
1−2x 2y

)
so D1f ((0,0) ,0) =

(
1 0
1 0

)
.
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Thus you can’t say f (x,y,λ ) = 0 defines (x,y) as a function of λ near (0,0,0).
However, let

Q

(
α

β

)
≡

(
1/2 1/2
1/2 1/2

)(
α

β

)
=

(
α+β

2
α+β

2

)

(I−Q)

(
α

β

)
=

(
α

β

)
−

(
α+β

2
α+β

2

)
=

(
1
2 α− 1

2 β

1
2 β − 1

2 α

)

The equation f (x,y,λ ) = 0 can be written in the form

Qf (x,y,λ ) =

(
− 1

2 x2 + 1
2 xy+ x+ y2 + 1

2 λ + 1
2 sinλ

− 1
2 x2 + 1

2 xy+ x+ y2 + 1
2 λ + 1

2 sinλ

)
= 0 (7.24)

(I−Q)f (x,y,λ ) =
( 1

2 x2 + 1
2 yx− 1

2 λ + 1
2 sinλ

− 1
2 x2− 1

2 yx+ 1
2 λ − 1

2 sinλ

)
= 0

DxQf (0,0,0) =
(

1
1

)
which is one to one on R. Indeed, if

(
1
1

)
u =

(
0
0

)
,

then u = 0. By Theorem 7.2.1, the first equation in 7.24 defines x = x(y,λ ) for
small y,λ . Also, you know it is a Ck function for every k so you can use Taylor
approximation for functions of many variables to approximate x(y,λ ). In the top
equation, xy = 0. Also xλ = −1 so x(y,λ ) ≈ −λ other than higher order terms for
small y,λ . Now plug in to the bottom equation

1
2

x2 (y,λ )+
1
2

yx(y,λ )− 1
2

λ +
1
2

sinλ

=
1
2
(−λ )2 +

1
2

y(−λ )− 1
2

λ +
1
2

sinλ = 0

Solve this for y to find y(λ ) = −1+ sin(λ )
λ

+λ at least approximately. This kind of
procedure is called the Lyapunov Schmidt procedure. It deals with the case where
the partial derivative used in the statement of the implicit function theorem is not
invertible. Note how it was possible to solve for a solution f (x,y,λ ) = 0 in this
example.

5. Let f ((x,y) ,λ ) =
(

x+ xy+ y2 + xsin(λ )
x+ y2− x2 + xλ

)
. One solution to f ((x,y) ,λ ) = 0 is

x(λ ) = y(λ ) = 0. Use the above procedure to show there is a nonzero solution to
this non-linear system of equations for small λ .

6. Let X ,Y be finite dimensional vector spaces and let L ∈L (X ,Y ). Let {Lx1, ...,Lxm}
be a basis for L(X). Show that if {z1, ...,zr} is a basis for ker(L) , then a basis
for X is {x1, ...,xm,z1, ...,zr} is a basis for X . Show that L is one to one on X1 ≡
span(x1, ...,xm) .

7. Go through the details of the following argument. Let f : U ⊆Rn×Rm→Rn where
U is open in Rn×Rm,(0,0) ∈U . Let f be Ck for k ≥ 1. Also suppose f (0,0) =
0. If L = D1f (0,0) and if L−1 exists, then by the implicit function theorem, the
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equation f (x,λ) = 0 defines x= x(λ) for small λ and x is Ck. Let {y1, ...,ym}
be a basis for L(Rn) and enlarge to get {y1, ...,ym,wm+1, ...,wn} as a basis for
Rn. Letting Lxk = yk use the above problem to have a basis for X which is of the
form {x1, ...,xm,zm+1, ...,zn} with {zm+1, ...,zn} a basis for ker(L) . Thus, from
the above problem L is one to one on X1 ≡ span(x1, ...,xm) . For x̂ ∈ X1, show
Dx̂f (0,0) is the restriction of L to X1 and so Dx̂f (0,0) is one to one on X1. Now
define the linear map Q : Rn → Rn by Q

(
∑

m
k=1 akyk +∑

n
k=m+1 bkwk

)
≡ ∑

m
k=1 akyk.

Thus Q2 = Q. We can write the original equations f (x,λ) = 0 as

Qf (x̂, x̃,λ) = Qf (x,λ) = 0, x̃ ∈ ker(L)
(I−Q)f (x̂, x̃,λ) = 0

Thus Qf (x,λ)∈ span(y1, ...,ym)≡Y1. Now show that for x̂ the variable in X1, and
if v ∈ X1, and Dx̂Qf (0,0,0)v = 0, then v = 0 and so we can apply the implicit
function theorem to obtain x̂= x̂(x̃,λ) as the solution to Qf (x,λ) = 0 for x̃,λ
small where here x̃ is in ker(L). Since everything in sight is Ck, one can use Tay-
lor series for functions of many variables to approximate the solution in these two
equations. See the Taylor formula 7.19. This is the general idea in the above two
problems.



Chapter 8

Measures and Measurable Functions
The Lebesgue integral is much better than the Rieman integral. This has been known for
over 100 years. It is much easier to generalize to many dimensions and it is much easier to
use in applications. It is also this integral which is most important in probability. However,
this integral is more abstract. This chapter will develop the abstract machinery for this
integral.

The next definition describes what is meant by a σ algebra. This is the fundamental
object which is studied in probability theory. The events come from a σ algebra of sets.
Recall that P (Ω) is the set of all subsets of the given set Ω. It may also be denoted by 2Ω

but I won’t refer to it this way.

Definition 8.0.1 F ⊆P (Ω) , the set of all subsets of Ω, is called a σ algebra if
it contains /0,Ω, and is closed with respect to countable unions and complements. That
is, if {An}∞

n=1 is countable and each An ∈F , then ∪∞
n=1An ∈F also and if A ∈F , then

Ω\A ∈F . It is clear that any intersection of σ algebras is a σ algebra. If K ⊆P (Ω) ,
σ (K ) is the smallest σ algebra which contains K . In fact, the intersection of all σ

algebras containing K is obviously a σ algebra so this intersection is σ (K ).

If F is a σ algebra, then it is also closed with respect to countable intersections. Here

is why. Let {Fk}∞

k=1 ⊆ F . Then (∩kFk)
C = ∪kFC

k ∈ F and so ∩kFk =
(
(∩kFk)

C
)C

=(
∪kFC

k

)C ∈F .

Example 8.0.2 You could consider N and for your σ algebra, you could have P (N). This
satisfies all the necessary requirements. Note that in fact, P (S) works for any S. However,
useful examples are not typically the set of all subsets.

8.1 Simple Functions and Measurable Functions
A σ algebra is a collection of subsets of a set Ω which includes /0,Ω, and is closed with
respect to countable unions and complements.

Definition 8.1.1 A measurable space, denoted as (Ω,F ) , is one for which F is a
σ algebra contained in P (Ω). Let f : Ω→ X where X is a metric space. Then f is said to
be measurable means f−1 (U) ∈F whenever U is open.

It is important to have a theorem about pointwise limits of measurable functions. The
following is a fairly general such theorem which holds in the situations to be considered
in this book. First recall dist(x,S) in Lemma 3.12.1 which impliles that x→ dist(x,S) is
continuous.

Theorem 8.1.2 Let { fn} be a sequence of measurable functions mapping Ω to the
metric space (X ,d) where (Ω,F ) is a measureable space. Suppose the pointwise limit
f (ω) = limn→∞ fn (ω) for all ω. Then f is also a measurable function.

Proof: It is required to show f−1 (U) is measurable for all U open. Let

Vm ≡
{

x ∈U : dist
(
x,UC)> 1

m

}
.

179
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Thus, since dist is continuous, (Lemma 3.12.1), Vm ⊆
{

x ∈U : dist
(
x,UC

)
≥ 1

m

}
, Vm ⊆

Vm ⊆Vm+1, and ∪mVm =U. Then since Vm is open, f−1 (Vm) = ∪∞
n=1∩∞

k=n f−1
k (Vm) and so

f−1 (U) = ∪∞
m=1 f−1 (Vm) = ∪∞

m=1∪∞
n=1∩∞

k=n f−1
k (Vm)

⊆ ∪∞
m=1 f−1 (Vm

)
= f−1 (U)

which shows f−1 (U) is measurable. ■
Important examples of a metric spaces are R,C,Fn, where F is either R or C. However,

it is also very convenient to consider the metric space (−∞,∞], the real line with ∞ tacked
on at the end. This can be considered as a metric space in a very simple way.

ρ (x,y) = |arctan(x)− arctan(y)|

with the understanding that arctan(∞) ≡ π/2. It is easy to show that this metric restricted
to R gives the same open sets on R as the usual metric given by d (x,y) = |x− y| but in
addition, allows the inclusion of that ideal point out at the end of the real line denoted as
∞. This is considered mainly because it makes the development of the theory easier. The
open sets in (−∞,∞] are described in the following lemma.

Lemma 8.1.3 The open balls in (−∞,∞] consist of sets of the form (a,b) for a,b real
numbers and (a,∞]. This is a separable metric space.

Proof: If the center of the ball is a real number, then the ball will result in an interval
(a,b) where a,b are real numbers. If the center of the ball is ∞, then the ball results in
something of the form (a,∞]. It is obvious that this is a separable metric space with the
countable dense set being Q since every ball contains a rational number. ■

If you kept both −∞ and ∞ with the obvious generalization that arctan(−∞) ≡ −π

2 ,
then the resulting metric space would be a complete separable metric space. However, it is
not convenient to include −∞, so this won’t be done. The reason is that it will be desired
to make sense of things like f +g.

Then for functions which have values in (−∞,∞] we have the following extremely
useful description of what it means for a function to be measurable.

Lemma 8.1.4 Let f : Ω→ (−∞,∞] where F is a σ algebra of subsets of Ω. Here
(−∞,∞] is the metric space just described with the metric given by

ρ (x,y) = |arctan(x)− arctan(y)| .

Then the following are equivalent.

f−1((d,∞]) ∈F , for all finite d,

f−1((−∞,d)) ∈F , for all finite d,

f−1([d,∞]) ∈F , for all finite d,

f−1((−∞,d]) ∈F , for all finite d,

f−1 ((a,b)) ∈F for all a < b,−∞ < a < b < ∞.

Any of these equivalent conditions is equivalent to the function being measurable.
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Proof: First note that the first and the third are equivalent. To see this, observe
f−1([d,∞]) = ∩∞

n=1 f−1((d− 1/n,∞]), and so if the first condition holds, then so does the
third. f−1((d,∞]) = ∪∞

n=1 f−1([d+1/n,∞]), and so if the third condition holds, so does the
first.

Similarly, the second and fourth conditions are equivalent. Now from the definition
of inverse image, f−1((−∞,d]) = ( f−1((d,∞]))C so the first and fourth conditions are
equivalent. Thus the first four conditions are equivalent and if any of them hold, then
for −∞ < a < b < ∞, f−1((a,b)) = f−1((−∞,b))∩ f−1((a,∞]) ∈F . Finally, if the last
condition holds, f−1 ([d,∞]) =

(
∪∞

k=1 f−1 ((−k+d,d))
)C ∈F and so the third condition

holds. Therefore, all five conditions are equivalent.
Since (−∞,∞] is a separable metric space, it follows from Theorem 3.4.2 that every

open set U is a countable union of open intervals U = ∪kIk where Ik is of the form (a,b)
or (a,∞] and, as just shown if any of the equivalent conditions holds, then f−1 (U) =
∪k f−1 (Ik) ∈F . Conversely, if f−1 (U) ∈F for any open set U ∈ (−∞,∞], then in partic-
ular, f−1 ((a,b)) ∈F which is one of the equivalent conditions and so all the equivalent
conditions hold. ■

Note that if f is continuous and g is measurable, then f ◦g is always measurable. This
is because, for U open, ( f ◦g)−1 (U) = g−1

(
f−1 (U)

)
= g−1 (open) which is measurable.

There is a fundamental theorem about the relationship of simple functions to measur-
able functions given in the next theorem.

Definition 8.1.5 Let E ∈F for F a σ algebra. Then

XE (ω)≡
{

1 if ω ∈ E
0 if ω /∈ E

This is called the indicator function of the set E. Let s : (Ω,F )→ R. Then s is a sim-
ple function if it is of the form s(ω) = ∑

n
i=1 ciXEi (ω) where Ei ∈F and ci ∈ R, the Ei

being disjoint. Thus simple functions are those which have finitely many values and are
measurable. In the next theorem, it will also be assumed that each ci ≥ 0.

Each simple function is measurable. This is easily seen as follows. First of all, you can
assume the ci are distinct because if not, you could just replace those Ei which correspond
to a single value with their union. Then if you have any open interval (a,b) ,s−1 ((a,b)) =
∪{Ei : ci ∈ (a,b)} and this is measurable because it is the finite union of measurable sets.

Theorem 8.1.6 Let f ≥ 0 be measurable. Then there exists a sequence of nonnega-
tive simple functions {sn} satisfying

0≤ sn(ω) (8.1)

· · · sn(ω)≤ sn+1(ω) · · ·
f (ω) = lim

n→∞
sn(ω) for all ω ∈Ω. (8.2)

If f is bounded, the convergence is actually uniform. Conversely, if f is nonnegative and is
the pointwise limit of such simple functions, then f is measurable.

Proof: Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n

∑
k=0

k
n
X f−1([ k

n ,
k+1

n ))(ω)+2nXI(ω).
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Then tn(ω)≤ f (ω) for all ω and limn→∞ tn(ω) = f (ω) for all ω . This is because tn (ω) =
2n for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0≤ f (ω)− tn (ω)≤ 1
n
. (8.3)

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max(t1, t2) , s3 = max(t1, t2, t3) , · · · .

Then the sequence {sn} satisfies 8.1-8.2. Also each sn has finitely many values and is
measurable. To see this, note that s−1

n ((a,∞]) = ∪n
k=1t−1

k ((a,∞]) ∈F
To verify the last claim, note that in this case the term 2nXI(ω) is not present and for

n large enough, 2n/n is larger than all values of f . Therefore, for all n large enough, 8.3
holds for all ω . Thus the convergence is uniform.

The last claim follows right away from Theorem 8.1.2. ■
Another useful observation is that the set where a sequence of measurable functions

converges is also a measurable set.

Proposition 8.1.7 Let { fn} be measurable with values in (−∞,∞). Let

A≡ {ω : { fn (ω)} converges} .

Then A is measurable.

Proof: The set A is the same as the set on which { fn (ω)} is a Cauchy sequence. This
set is

∩∞
n=1∪∞

m=1∩p,q>m

[∥∥ fp (ω)− fq (ω)
∥∥< 1

n

]
which is a measurable set thanks to the measurability of each fn. ■

8.2 Measures and Their Properties
What is meant by a measure?

Definition 8.2.1 Let (Ω,F ) be a measurable space. Here F is a σ algebra of sets
of Ω. Then µ : F → [0,∞] is called a measure if whenever {Fi}∞

i=1 is a sequence of disjoint
sets of F , it follows that

µ (∪∞
i=1Fi) =

∞

∑
i=1

µ (Ei)

Note that the series could equal ∞. If µ (Ω) < ∞, then µ is called a finite measure. An
important case is when µ (Ω) = 1 when it is called a probability measure.

Note that µ ( /0) = µ ( /0∪ /0) = µ ( /0)+µ ( /0) and so µ ( /0) = 0.

Example 8.2.2 You could have P (N) = F and you could define µ (S) to be the number
of elements of S. This is called counting measure. It is left as an exercise to show that this
is a measure.
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Example 8.2.3 Here is a pathological example. Let Ω be uncountable and F will be those
sets which have the property that either the set is countable or its complement is countable.
Let µ (E) = 0 if E is countable and µ (E) = 1 if E is uncountable. It is left as an exercise
to show that this is a measure.

Of course the most important measure in this book will be Lebesgue measure which
gives the “volume” of a subset of Rn.

Lemma 8.2.4 If µ is a measure and Fi ∈ F , then µ (∪∞
i=1Fi) ≤ ∑

∞
i=1 µ (Fi). Also if

Fn ∈F and Fn ⊆ Fn+1 for all n, then if F = ∪nFn,

µ (F) = lim
n→∞

µ (Fn)

If Fn ⊇ Fn+1 for all n, then if µ (F1)< ∞ and F = ∩nFn, then

µ (F) = lim
n→∞

µ (Fn)

Proof: Let G1 = F1 and if G1, · · · ,Gn have been chosen disjoint, let Gn+1 ≡ Fn+1 \
∪n

i=1Gi. Thus the Gi are disjoint. In addition, these are all measurable sets. Now

µ (Gn+1)+µ (Fn+1∩ (∪n
i=1Gi)) = µ (Fn+1)

and so µ (Gn)≤ µ (Fn). Therefore,

µ (∪∞
i=1Gi) = ∑

i
µ (Gi)≤∑

i
µ (Fi) .

Now consider the increasing sequence of Fn ∈F . If F ⊆ G and these are sets of F ,
then µ (G) = µ (F)+ µ (G\F) so µ (G) ≥ µ (F). Also F = ∪∞

i=1 (Fi+1 \Fi)+F1. Then
µ (F) = ∑

∞
i=1 µ (Fi+1 \Fi)+µ (F1). Now µ (Fi+1 \Fi)+µ (Fi) = µ (Fi+1). If any µ (Fi) =

∞, there is nothing to prove. Assume then that these are all finite. Then µ (Fi+1 \Fi) =
µ (Fi+1)−µ (Fi) and so

µ (F) =
∞

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1)

= lim
n→∞

n

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1) = lim
n→∞

µ (Fn+1)

Next suppose µ (F1)< ∞ and {Fn} is a decreasing sequence. Then F1 \Fn is increasing
to F1 \F and so by the first part,

µ (F1)−µ (F) = µ (F1 \F) = lim
n→∞

µ (F1 \Fn) = lim
n→∞

(µ (F1)−µ (Fn))

This is justified because µ (F1 \Fn)+µ (Fn) = µ (F1) and all numbers are finite by assump-
tion. Hence µ (F) = limn→∞ µ (Fn). ■

I like to remember this as En ↑ E ⇒ µ (En) ↑ µ (E) and En ↓ E ⇒ µ (En) ↓ µ (E) if
µ (E1)< ∞.

There is a monumentally important theorem called the Borel Cantelli lemma. This is
next.
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Lemma 8.2.5 If (Ω,F ,µ) is a measure space and if {Ei} ⊆F and ∑
∞
i=1 µ (Ei) < ∞,

then there exists a set N of measure 0 (µ (N) = 0) such that if ω /∈ N, then ω is in only
finitely many of the Ei.

Proof: The set of ω in infinitely many Ei is N ≡ ∩∞
n=1 ∪k≥n Ek because this consists

of those ω which are in some Ek for k ≥ n for any choice of n. Now µ (N) ≤ ∑
∞
k=n µ (Ek)

which is just the tail of a convergent series. Thus, it converges to 0 as n→ ∞. Hence it is
less than ε for n large enough. Thus µ (N) is no more than ε for any ε > 0. ■

8.3 Dynkin’s Lemma
Dynkin’s lemma is a very useful result. It is like something used in other books called
monotone classes containing something called an algebra of sets, but it is easier to use.

Definition 8.3.1 Let Ω be a set and let K be a collection of subsets of Ω. Then K
is called a π system if /0,Ω ∈K and whenever A,B ∈K , it follows A∩B ∈K .

The following is the fundamental lemma which shows these π systems are useful. This
is due to Dynkin.

Lemma 8.3.2 Let K be a π system of subsets of Ω, a set. Also let G be a collection of
subsets of Ω which satisfies the following three properties.

1. K ⊆ G

2. If A ∈ G , then AC ∈ G

3. If {Ai}∞

i=1 is a sequence of disjoint sets from G then ∪∞
i=1Ai ∈ G .

Then G ⊇ σ (K ) , where σ (K ) is the smallest σ algebra which contains K .

Proof: First note that if
H ≡ {G : 1 - 3 all hold}

then ∩H yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume in
the argument that G is the smallest collection satisfying 1 - 3. Let A ∈K and define

GA ≡ {B ∈ G : A∩B ∈ G } .

I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈K and B ∈ G , A∩B ∈ G . This information will then be used to show that if A,B ∈ G
then A∩B ∈ G . From this it will follow very easily that G is a σ algebra which will imply
it contains σ (K ). Now here are the details of the argument.

Since K is given to be a π system contained in G , K ⊆ GA. Indeed, if C ∈K then
A∩C ∈K ⊆ G so C ∈ GA. Property 3 is obvious because if {Bi} is a sequence of disjoint
sets in GA, then

A∩∪∞
i=1Bi = ∪∞

i=1A∩Bi ∈ G

because A∩Bi ∈ G and the property 3 of G .
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It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA. In other
words, I need to show that A∩BC ∈ G . However,

A∩BC =
(
AC ∪ (A∩B)

)C ∈ G

Here is why. Since B ∈ GA, A∩B ∈ G and since A ∈K ⊆ G it follows AC ∈ G by as-
sumption 2. It follows from assumption 3 the union of the disjoint sets, AC and (A∩B) is
in G and then from 2 the complement of their union is in G . Thus GA satisfies 1 - 3 and
this implies, since G is the smallest such, that GA ⊇ G . However, GA is constructed as a
subset of G . This proves that for every B ∈ G and A ∈K , A∩B ∈ G . Now pick B ∈ G and
consider

GB ≡ {A ∈ G : A∩B ∈ G } .

I just proved K ⊆ GB. The other arguments are identical to show GB satisfies 1 - 3 and is
therefore equal to G . This shows that whenever A,B ∈ G it follows A∩B ∈ G .

This implies G is a σ algebra. To show this, all that is left is to verify G is closed under
countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G . Then let A′1 = A1
and

A′n+1 ≡ An+1 \ (∪n
i=1Ai) = An+1∩

(
∩n

i=1AC
i
)
= ∩n

i=1
(
An+1∩AC

i
)
∈ G

because finite intersections of sets of G are in G . Since the A′i are disjoint, it follows
∪∞

i=1Ai = ∪∞
i=1A′i ∈ G . Therefore, G ⊇ σ (K ). ■

Corollary 8.3.3 Given 2, closed with respect to complements, the condition that G is
closed with respect to countable disjoint unions is equivalent to G the condition that G is
closed with respect to countable intersections.

Proof: ⇒ Consider ∩kEk where Ek ∈ G . Then ∩kEk =
(
∪kEC

k

)C. Now the EC
k are not

necessarily disjoint, but each is in G and so one can use the scheme of the last part of the
proof of Lemma 8.3.2 to reduce to this case and conclude ∪kEC

k ∈ G . Then the countable
intersection is just the complement of this last set.
⇐ Suppose the countable intersection of sets of G is in G and consider a countable

union ∪kEk of sets of G . Then ∪kEk =
(
∩kEC

k

)C ∈ G . ■

8.4 Outer Measures
There is also something called an outer measure which is defined on the set of all subsets.

Definition 8.4.1 Let Ω be a nonempty set and let λ : P (Ω)→ [0,∞) satisfy the
following:

1. λ ( /0) = 0

2. If A⊆ B, then λ (A)≤ λ (B)

3. λ (∪∞
i=1Ei)≤ ∑

∞
i=1 λ (Ei)

Then λ is called an outer measure.
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Every measure determines an outer measure. For example, suppose that µ is a measure
on F a σ algebra of subsets of Ω. Then define

µ̄ (S)≡ inf{µ (E) : E ⊇ S, E ∈F} .

This is easily seen to be an outer measure. Also, we have the following Proposition.

Proposition 8.4.2 Let µ be a measure defined on a σ algebra of subsets F of Ω as
just described. Then µ̄ as defined above, is an outer measure and also, if E ∈ F , then
µ̄ (E) = µ (E).

Proof: The first two properties of an outer measure are obvious. What of the third? If
any µ̄ (Ei) = ∞, then there is nothing to show so suppose each of these is finite. Let Fi ⊇ Ei
such that Fi ∈F and µ̄ (Ei)+

ε

2i > µ (Fi) . Then

µ̄ (∪∞
i=1Ei)≤ µ (∪∞

i=1Fi)≤
∞

∑
i=1

µ (Fi)<
∞

∑
i=1

(
µ̄ (Ei)+

ε

2i

)
=

∞

∑
i=1

µ̄ (Ei)+ ε

Since ε is arbitrary, this establishes the third condition. Finally, if E ∈F , then by defini-
tion, µ̄ (E)≤ µ (E) because E ⊇ E. Also, µ (E)≤ µ (F) for all F ∈F such that F ⊇ E. It
follows that µ (E) is a lower bound of all such µ (F) and so µ̄ (E)≥ µ (E) .■

8.5 Measures From Outer Measures
There is a general procedure for constructing a σ algebra and a measure from an outer
measure which is due to Caratheodory about 1918.

Thus, when you have a measure on (Ω,F ), you can obtain an outer measure on
(Ω,P (Ω)) from this measure as in Proposition 8.4.2, and if you have an outer measure on
(Ω,P (Ω)) , this will define a σ algebra F and a measure on (Ω,F ). This last assertion
is the topic of this section.

Definition 8.5.1 Let Ω be a nonempty set and let µ : P(Ω)→ [0,∞] be an outer
measure. For E ⊆Ω, E is µ measurable if for all S⊆Ω,

µ(S) = µ(S\E)+µ(S∩E). (8.4)

To help in remembering 8.4, think of a measurable set E, as a process which divides a
given set into two pieces, the part in E and the part not in E as in 8.4. In the Bible, there
are several incidents recorded in which a process of division resulted in more stuff than
was originally present.1 Measurable sets are exactly those which are incapable of such a
miracle. With an outer measure, it is always the case that µ(S) ≤ µ(S \E)+ µ(S∩E).
The set is measurable, when equality is always obtained for any choice of S ∈P (Ω). You
might think of the measurable sets as the non-miraculous sets. The idea is to show that
these sets form a σ algebra on which the outer measure µ is a measure.

First here is a definition and a lemma.
11 Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff involved was

either oil, bread, flour or fish. In mathematics such things have also been done with sets. In the book by Bruckner
Bruckner and Thompson there is an interesting discussion of the Banach Tarski paradox which says it is possible
to divide a ball in R3 into five disjoint pieces and assemble the pieces to form two disjoint balls of the same size as
the first. The details can be found in: The Banach Tarski Paradox by Wagon, Cambridge University press. 1985.
It is known that all such examples must involve the axiom of choice.
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Definition 8.5.2 (µ⌊S)(A) ≡ µ(S∩A) for all A ⊆ Ω. Thus µ⌊S is the name of a
new outer measure, called µ restricted to S.

The next lemma indicates that the property of measurability is not lost by considering
this restricted measure.

Lemma 8.5.3 If A is µ measurable, then for any S, A is µ⌊S measurable.

Proof: Suppose A is µ measurable. It is desired to to show that for all T ⊆Ω,

(µ⌊S)(T ) = (µ⌊S)(T ∩A)+(µ⌊S)(T \A).

Thus it is desired to show

µ(S∩T ) = µ(T ∩A∩S)+µ(T ∩S∩AC). (8.5)

But 8.5 holds because A is µ measurable. Apply Definition 8.5.1 to S∩T instead of S. ■
If A is µ⌊S measurable, it does not follow that A is µ measurable. Indeed, if you believe

in the existence of non measurable sets which is discussed later, you could let A = S for
such a µ non measurable set and verify that S is µ⌊S measurable.

The next theorem is the main result on outer measures which shows that starting with
an outer measure you can obtain a measure.

Theorem 8.5.4 Let Ω be a set and let µ be an outer measure on P (Ω). The col-
lection of µ measurable sets S , forms a σ algebra and

If Fi ∈S, Fi∩Fj = /0, then µ(∪∞
i=1Fi) =

∞

∑
i=1

µ(Fi). (8.6)

If · · ·Fn ⊆ Fn+1 ⊆ ·· · , then if F = ∪∞
n=1Fn and Fn ∈S , it follows that

µ(F) = lim
n→∞

µ(Fn). (8.7)

If · · ·Fn ⊇ Fn+1 ⊇ ·· · , and if F = ∩∞
n=1Fn for Fn ∈S then if µ(F1)< ∞,

µ(F) = lim
n→∞

µ(Fn). (8.8)

This measure space is also complete which means that if µ (F) = 0 for some F ∈S then
if G⊆ F, it follows G ∈S also.

Proof: First note that /0 and Ω are obviously in S . Now suppose A,B∈S . I will show
A\B≡ A∩BC is in S . To do so, consider the following picture.

S
⋂

AC⋂BC

S
⋂

AC⋂B

S
⋂

A
⋂

B
S
⋂

A
⋂

BC

A

B

S



188 CHAPTER 8. MEASURES AND MEASURABLE FUNCTIONS

It is required to show that µ (S) = µ (S\ (A\B))+ µ (S∩ (A\B)) . First consider S \
(A\B) . From the picture, it equals(

S∩AC ∩BC)∪ (S∩A∩B)∪
(
S∩AC ∩B

)
Therefore, µ (S)≤ µ (S\ (A\B))+µ (S∩ (A\B))

≤ µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ (S∩ (A\B))

= µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ

(
S∩A∩BC)

= µ
(
S∩AC ∩BC)+µ

(
S∩A∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
= µ

(
S∩BC)+µ (S∩B) = µ (S)

and so this shows that A\B ∈S whenever A,B ∈S .
Since Ω ∈S , this shows that A ∈S if and only if AC ∈S . Now if A,B ∈S , A∪B =

(AC ∩ BC)C = (AC \ B)C ∈ S . By induction, if A1, · · · ,An ∈ S , then so is ∪n
i=1Ai. If

A,B ∈S , with A∩B = /0,

µ(A∪B) = µ((A∪B)∩A)+µ((A∪B)\A) = µ(A)+µ(B).

By induction, if Ai∩A j = /0 and Ai ∈S ,

µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai). (8.9)

Now let A = ∪∞
i=1Ai where Ai ∩A j = /0 for i ̸= j. ∑

∞
i=1 µ(Ai) ≥ µ(A) ≥ µ(∪n

i=1Ai) =

∑
n
i=1 µ(Ai). Since this holds for all n, you can take the limit as n → ∞ and conclude,

∑
∞
i=1 µ(Ai) = µ(A) which establishes 8.6.

Consider part 8.7. Without loss of generality µ (Fk)< ∞ for all k since otherwise there
is nothing to show. Suppose {Fk} is an increasing sequence of sets of S . Then letting
F0 ≡ /0, {Fk+1 \Fk}∞

k=0 is a sequence of disjoint sets of S since it was shown above that
the difference of two sets of S is in S . Also note that from 8.9

µ (Fk+1 \Fk)+µ (Fk) = µ (Fk+1)

and so if µ (Fk)< ∞, then

µ (Fk+1 \Fk) = µ (Fk+1)−µ (Fk) .

Therefore, letting F ≡ ∪∞
k=1Fk which also equals ∪∞

k=1 (Fk+1 \Fk) , it follows from part 8.6
just shown that

µ (F) =
∞

∑
k=0

µ (Fk+1 \Fk) = lim
n→∞

n

∑
k=0

µ (Fk+1 \Fk)

= lim
n→∞

n

∑
k=0

µ (Fk+1)−µ (Fk) = lim
n→∞

µ (Fn+1) .

In order to establish 8.8, let the Fn be as given there. Then, since (F1 \Fn) increases to
(F1 \F), 8.7 implies

lim
n→∞

(µ (F1)−µ (Fn)) = lim
n→∞

µ (F1 \Fn) = µ (F1 \F) .
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The problem is, I don’t know F ∈S and so it is not clear that µ (F1 \F) = µ (F1)−µ (F).
However, µ (F1 \F)+µ (F)≥ µ (F1) and so µ (F1 \F)≥ µ (F1)−µ (F). Hence

lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F)≥ µ (F1)−µ (F)

which implies limn→∞ µ (Fn) ≤ µ (F) . But since F ⊆ Fn, µ (F) ≤ limn→∞ µ (Fn) and this
establishes 8.8. Note that it was assumed µ (F1) < ∞ because µ (F1) was subtracted from
both sides.

It remains to show S is closed under countable unions. Recall that if A ∈ S , then
AC ∈S and S is closed under finite unions. Let Ai ∈S , A = ∪∞

i=1Ai, Bn = ∪n
i=1Ai. Then

µ(S) = µ(S∩Bn)+µ(S\Bn) (8.10)
= (µ⌊S)(Bn)+(µ⌊S)(BC

n ).

By Lemma 8.5.3 Bn is (µ⌊S) measurable and so is BC
n . I want to show µ(S) ≥ µ(S \A)+

µ(S∩A). If µ(S) = ∞, there is nothing to prove. Assume µ(S)< ∞. Then apply Parts 8.8
and 8.7 to the outer measure µ⌊S in 8.10 and let n→ ∞. Thus Bn ↑ A, BC

n ↓ AC and this
yields µ(S) = (µ⌊S)(A)+(µ⌊S)(AC) = µ(S∩A)+µ(S\A).

Therefore A ∈S and this proves Parts 8.6, 8.7, and 8.8.
It only remains to verify the assertion about completeness. Letting G and F be as

described above, let S⊆Ω. I need to verify µ (S)≥ µ (S∩G)+µ (S\G). However,

µ (S∩G)+µ (S\G) ≤ µ (S∩F)+µ (S\F)+µ (F \G)

= µ (S∩F)+µ (S\F) = µ (S)

because by assumption, µ (F \G)≤ µ (F) = 0. ■

Corollary 8.5.5 Completeness is the same as saying that if (E \E ′)∪(E ′ \E)⊆N ∈F
and µ (N) = 0, then if E ∈F , it follows that E ′ ∈F also.

Proof: If the new condition holds, then suppose G⊆ F where µ (F) = 0,F ∈F . Then
= /0︷ ︸︸ ︷

(G\F)∪ (F \G)⊆ F and µ (F) is given to equal 0. Therefore, G ∈F .
Now suppose the earlier version of completeness and let(

E \E ′
)
∪
(
E ′ \E

)
⊆ N ∈F

where µ (N) = 0 and E ∈F . Then we know (E \E ′) ,(E ′ \E) ∈F and all have measure
zero. It follows E \ (E \E ′) = E ∩E ′ ∈F . Hence

E ′ =
(
E ∩E ′

)
∪
(
E ′ \E

)
∈F ■

Given a measure space (Ω,F ,µ) we can always complete the measure space by consid-
ering the outer measure described above in Proposition 8.4.2. Denoting this outer measure
by µ̄, the completion will be (Ω,S , µ̄) where S will be the sets measurable in the sense
of Caratheodory just described as in Proposition 8.4.2, the new measure µ̄ will coincide
with µ on F but will be a complete measure on the larger σ algebra S .

Proposition 8.5.6 Let (Ω,F ,µ) be a finite measure space, µ (Ω) < ∞. Then if E ∈
(Ω,S , µ̄) , the complete measure space obtained as the above using Caratheodory’s ap-
proach and µ̄ is the outer measure defined as in Proposition 8.4.2, then there exists F ∈F
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such that F ⊇ E and µ̄ (F) = µ (F) = µ̄ (E) . The same conclusion holds if (Ω,F ,µ) is a
σ finite measure space meaning that Ω = ∪∞

k=1Ωk where the Ωk ∈F and are disjoint with
µ (Ωk)< ∞.

Proof: µ̄ (E) ≡ inf{µ (F) : F ⊇ E,F ∈F} . Let Fn ∈ F , Fn ⊇ E and µ̄ (E) + 1
n >

µ (Fn) . By taking intersections, we can also assume that Fn ⊇ Fn+1. Let F ≡ ∩nFn. Then
using Proposition 8.4.2 we have µ (F) = µ̄ (F) = µ̄ (E) . In σ finite case, it was just
shown that there exists Fk ⊆ Ωk,Fk ∈ F such that µ̄ (Fk) = µ (Fk) = µ̄ (E ∩Ωk). Then
let F ≡ ∪kFk. µ̄ (E) = ∑

∞
k=1 µ̄ (E ∩Ωk) = ∑

∞
k=1 µ (Fk) = µ (F) = µ̄ (F) ■

As a corollary, we can say something about functions.

Corollary 8.5.7 Let (Ω,F ,µ) be σ finite and let (Ω,S , µ̄) be the completion just
discussed. Then if f ≥ 0 and S measurable, there exists h ≥ f such that h = f for µ̄ a.e.
and h is F measurable.

Proof: From Theorem 8.1.6 there is a sequence of S measurable simple nonnegative
functions sn (ω) = ∑

mn
k=1 cn

kXEn
k
(ω) which converges pointwise to f . From Proposition

8.5.6, sn (ω) = ŝn (ω) where ŝn (ω) ≡ ∑
mn
k=1 cn

kXÊn
k
(ω) with Ên

k ⊇ En
k , µ̄

(
Ên

k \En
k

)
= 0.

Then letting h(ω) ≡ limsupn→∞ ŝn (ω), it follows that h(ω) is F measurable, h(ω) =
f (ω) µ̄ a.e., and h(ω)≥ f (ω). ■

8.6 Measurable Sets Include Borel Sets?
If you have an outer measure, it determines a measure. This section gives a very convenient
criterion which allows you to conclude right away that the measure is a Borel measure.

Theorem 8.6.1 Let µ be an outer measure on the subsets of (X ,d), a metric space.
If µ(A∪B) = µ(A)+µ(B) whenever dist(A,B)> 0, then the σ algebra of measurable sets
S contains the Borel sets.

Proof: It suffices to show that closed sets are in S , the σ -algebra of measurable sets,
because then the open sets are also in S and consequently S contains the Borel sets. Let
K be closed and let S be a subset of Ω. Is µ(S)≥ µ(S∩K)+µ(S\K)? It suffices to assume
µ(S) < ∞. Let Kn ≡

{
x : dist(x,K)≤ 1

n

}
. By Lemma 3.12.1 on Page 83, x→ dist(x,K)

is continuous and so Kn is a closed set having K as a subset. That in KC
n is at a positive

distance from K. By the assumption of the theorem,

µ(S)≥ µ((S∩K)∪ (S\Kn)) = µ(S∩K)+µ(S\Kn) (8.11)

Now
µ(S\Kn)≤ µ(S\K)≤ µ(S\Kn)+µ((Kn \K)∩S). (8.12)

If limn→∞ µ((Kn \K)∩ S) = 0 then the theorem will be proved because this limit along
with 8.12 implies limn→∞ µ (S\Kn) = µ (S\K) and then taking a limit in 8.11, µ(S) ≥
µ(S∩K)+µ(S\K) as desired. Therefore, it suffices to establish this limit.

Since K is closed, a point, x /∈ K must be at a positive distance from K and so

Kn \K = ∪∞
k=nKk \Kk+1.

Therefore

µ(S∩ (Kn \K))≤
∞

∑
k=n

µ(S∩ (Kk \Kk+1)). (8.13)
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If
∞

∑
k=1

µ(S∩ (Kk \Kk+1))< ∞, (8.14)

then µ(S∩ (Kn \K))→ 0 because it is dominated by the tail of a convergent series so it
suffices to show 8.14.

M

∑
k=1

µ(S∩ (Kk \Kk+1)) =

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1)). (8.15)

By the construction, the distance between any pair of sets, S∩(Kk \Kk+1) for different even
values of k is positive and the distance between any pair of sets, S∩(Kk \Kk+1) for different
odd values of k is positive. Therefore,

∑
k even, k≤M

µ(S∩ (Kk \Kk+1))+ ∑
k odd, k≤M

µ(S∩ (Kk \Kk+1))≤

µ

( ⋃
k even, k≤M

(S∩ (Kk \Kk+1))

)
+µ

( ⋃
k odd, k≤M

(S∩ (Kk \Kk+1))

)
≤ µ (S)+µ (S) = 2µ (S)

and so for all M, ∑
M
k=1 µ(S∩ (Kk \Kk+1))≤ 2µ (S) showing 8.14. ■

8.7 Regular Measures
In using measures defined on a σ algebra of subsets of a metric space, the idea of regularity
is fundamental.

Definition 8.7.1 A measure µ defined on a σ algebra F of sets in a metric space
X which includes the Borel sets B (X) will be called inner regular on F if for all F ∈F ,

µ (F) = sup{µ (K) : K ⊆ F and K is closed} (8.16)

A measure, µ defined on F will be called outer regular on F if for all F ∈F ,

µ (F) = inf{µ (V ) : V ⊇ F and V is open} (8.17)

When a measure is both inner and outer regular, it is called regular. Actually, it is more
useful and likely more standard to refer to µ being inner regular as

µ (F) = sup{µ (K) : K ⊆ F and K is compact} (8.18)

Thus the word “closed” is replaced with “compact”. A complete measure defined on a σ

algebra F which includes the Borel sets which is finite on compact sets and also satisfies
8.17 and 8.18 for each F ∈F is called a Radon measure. A Gδ set, pronounced as G delta
is the countable intersection of open sets. An Fσ set, pronounced F sigma is the countable
union of closed sets.

In every case which has been of interest to me, the measure has been σ finite.
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Definition 8.7.2 If (X ,F ,µ) is a measure space, it is called σ finite if there are
Xn ∈F with ∪nXn = X and µ (Xn) < ∞. Note that by considering Yn = Xn \Xn−1,X0 ≡ /0
we could assume X = ∪nYn where the Yn are disjoint.

Then there is a useful general result.

Theorem 8.7.3 Let (X ,d) be a metric space and suppose µ is σ finite and outer
regular. Then µ is inner regular. If every closed set is the countable union of compact sets,
then in the definition of inner regular, one can replace “closed” with “compact”.

Proof: Whenever µ (F) ,µ (G) < ∞ for G ⊇ F,µ (G\F) = µ (G)− µ (F) . I will use
this simple observation without comment in the following. To show the measure space is
regular, the following picture might help or it might not. V is between the dotted lines.

V C∩K

V

U \F
F

Let F be a bounded measurable set and let µ (U \F) < ε where U is open and let
K ⊆ U, K closed and µ (U \K) < ε . I can get such a K because every open set is the
countable union of closed sets

U = ∪∞
k=1

{
x : dist

(
x,UC)≥ 1

k

}
≡ ∪∞

k=1Kk, ...Kk ⊆ Kk+1...

thus µ (U) < µ (Kk) for all k large enough since µ (U) = limk→∞ µ (Kk) by Lemma 8.2.4.
Then let V be open and µ(V \ (U \F)) < ε where V ⊇U \F = U ∩FC so VC ⊆UC ∪F .
This is possible because all sets are in F . Then VC ∩K ⊆

(
UC ∪F

)
∩K = F ∩K ⊆ F .

Now VC ∩K is compact and

µ
(
F \
(
K∩VC)) = µ

(
F ∩

(
KC ∪V

))
= µ (F ∩V )+µ

(
F ∩KC)

≤ µ (F ∩V )+µ (U \K)< µ (F ∩V )+ ε

However, ε > µ(V \ (U \F)) = µ

(
V ∩

(
U ∩FC

)C)
= µ

(
V ∩

(
UC ∪F

))
≥ µ (V ∩F) and

so µ
(
F \
(
K∩VC

))
≤ 2ε . That µ (F) = sup{µ (K) : K ⊆ F} follows from observing that

µ (F) = limn→∞ µ (F ∩B(0,n)) and then applying what was just shown to a suitable F ∩
B(0,n). As to the last claim, it follows from observing that for K a closed set, there is an
increasing sequence of compact sets {Kn} whose union is K and then using Lemma 8.2.4.
■

The following is a nice formulation of the above and also gives a useful claim about
uniqueness.

Theorem 8.7.4 Suppose (X ,F ,µ) ,F ⊇B (X) is a measure space for X a metric
space and µ is σ finite, X = ∪nXn with µ (Xn)< ∞ and the Xn disjoint Borel sets. Suppose
also that µ is outer regular. Then for each E ∈ F , there exists F,G an Fσ and Gδ set
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respectively such that F ⊆ E ⊆ G and µ (G\F) = 0. In particular, µ is inner and outer
regular on F . If

(
X ,F̂ , µ̂

)
has the same properties, outer regular, and σ finite, and µ = µ̂

on open sets, then if both µ, µ̂ are complete measures, it follows that µ = µ̂ and F = F̂ .

Proof: Since µ is outer regular and µ (Xn) < ∞, there exists an open set Vn ⊇ E ∩Xn
such that

µ (Vn \ (E ∩Xn)) = µ (Vn)−µ (E ∩Xn)<
ε

2n .

Then let V ≡ ∪nVn so that V ⊇ E. Then E = ∪nE ∩Xn and so

µ (V \E)≤ µ (∪n (Vn \ (E ∩Xn)))≤∑
n

µ (Vn \ (E ∩Xn))< ∑
n

ε

2n = ε

Similarly, there exists Un open such that µ
(
Un \

(
EC ∩Xn

))
< ε

2n ,Un ⊇ EC ∩Xn so if U ≡
∪nUn,µ

(
U \EC

)
= µ

(
E \UC

)
< ε. Now UC is closed and contained in E because U ⊇EC.

Hence, letting ε = 1
2n , there exist closed sets Cn, and open sets Vn such that Cn ⊆E ⊆Vn and

µ (Vn \Cn)<
1

2n−1 . Letting G≡∩nVn,F ≡∪nCn,F ⊆ E ⊆G and µ (G\F)≤ µ (Vn \Cn)<
1

2n−1 . Since n is arbitrary, µ (G\F) = 0.
Let the disjoint sets Xn work for µ̂ as well as for µ . One can simply take an enumeration

of Xn ∩ X̂m where the X̂m work for µ̂ . Let K consist of the open sets.This is clearly a
π system because finite intersections remain in K . Also µ = µ̂ on K by assumption.
Let G be those Borel sets F such that µ (F ∩Xn) = µ̂ (F ∩Xn) . Then G is clearly closed
with respect to complements and countable disjoint intersections so G = B (X) . Taking
unions, it follows that µ̂ = µ on the Borel sets. Now by the first part, there is G a Gδ

set and F an Fσ such that µ (G\F) = µ̂ (G\F) = 0 and G ⊇ E ⊇ F for E ∈ F . Then
by completeness of µ̂, it follows that E ∈ F̂ . Thus F ⊆ F̂ . Similarly F̂ ⊆F . Also,
µ (E) = µ (G) = µ̂ (G) = µ̂ (E) so µ = µ̂ . ■

8.8 Constructing Measures From Functionals
Here is a theorem which is the main result on measures and functionals defined on a space
of continuous functions. The typical situation is of a metric space in which closed balls are
compact like Rp.

Definition 8.8.1 Cc (X) will denote the complex values functions which have com-
pact support in some metric space X. This is clearly a linear space. Then a linear function
L : Cc (X)→ C is called “postitive” if whenever f ≥ 0, then L f ≥ 0.

The following theorem is called the Riesz representation theorem for positive linear
functionals. I will make the way in which it represents something more clear later on. For
now it will just produce lots of measures. Recall that K ≺ f ≺ V means that f is 1 on the
compact set K, has compact support in the open set V and takes values in [0,1]. Also f ≺V
means f has values in [0,1] and has compact support in the open set V .

Theorem 8.8.2 Let L : Cc (X) → C be a positive linear functional where X is a
metric space and X is a countable union of compact sets. Then there exists a complete
measure µ defined on a σ algebra F which contains the Borel sets B (X) which is finite
on compact sets and has the following properties. µ is regular. If E is measurable, there
are Fσ and Gδ sets F,G such that F ⊆ E ⊆ G and µ (G\F) = 0 so µ)F = µ (E) = µ (G).
Then µ and F are uniquely determined.
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Proof: See the notation and lemmas near Definition 3.12.3 having to do with partitions
of unity on a metric space for what is needed in this proof. For V open, let µ̄ (V ) ≡
sup{L f : f ≺V}. Then for an arbitrary set F, let µ̄ (F) ≡ inf{µ̄ (V ) : V ⊇ F} , µ̄ ( /0) ≡ 0.
In what follows, V will be an open set and K a compact set.

Claim 1: µ̄ is well defined.
Proof of Claim 1: Note there are two descriptions of µ̄ (V ) for V open. They need

to be the same. Let µ̄1 be the definition involving supremums of L f and let µ̄ be the
general definition. Let V ⊆U where V,U open. Then by definition, µ̄ (V )≤ µ̄1 (U) and so
µ̄ (V )≡ inf{µ̄1 (U) : U ⊇V} ≥ µ̄1 (V ) . However, V ⊆V and so µ̄ (V )≤ µ̄1 (V ) . ■

Claim 2: µ̄ is finite on compact sets. Also, if K ≺ f , it follows that µ̄ (K)≤ L( f )< ∞.
Proof of Claim 2: Let K ≺ f ≺ X . Let Vε ≡ {x : f (x)> 1− ε} , an open set since f is

continuous. Then let g≺Vε so it follows that f
1−ε
≥ g. Then L(g)≤ 1

1−ε
L( f )< ∞. Then

taking the sup over all such g, it follows that µ̄ (K)≤ µ̄ (Vε)≤ 1
1−ε

L f . Now let ε → 0 and
conclude that µ̄ (K)≤ L( f ). ■

Claim 3: µ̄ is subadditive: µ̄ (∪iEi)≤ ∑i µ̄ (Ei).
Proof of Claim 3: First consider the case of open sets. Let V = ∪iVi. Let l < µ̄ (V ) .

Then there exists f ≺V with L f > l. Then sup( f ) is contained in ∪n
i=1Vi. Now let supψ i ⊆

Vi and ∑
n
i=1 ψ i = 1 on sup( f ) . This is from Theorem 3.12.5. Then

l < L f =
n

∑
i=1

L(ψ i f )≤
n

∑
i=1

µ̄ (Vi)≤∑
i

µ̄ (Vi) .

Since l is arbitrary, it follows that µ̄ (V ) ≤ ∑i µ̄ (Vi) . Now consider the general case. Let
E = ∪iEi. If ∑i µ̄ (Ei) = ∞, there is nothing to show. Assume then that this sum is finite
and let Vi ⊇ Ei, µ̄ (Ei)+

ε

2i > µ̄ (V ). Then

µ̄ (E)≤ µ̄ (∪iVi)≤∑
i

µ̄ (Vi)≤∑
i

(
µ̄ (Ei)+

ε

2i

)
= ∑

i
µ̄ (Ei)+ ε

Since ε is arbitrary, this shows µ̄ is subadditive. ■
Claim 4: If dist(A,B) = δ > 0, then µ̄ (A∪B) = µ̄ (A)+ µ̄ (B).
Proof of Claim 4: If the right side is infinite, there is nothing to show so we can assume

that µ̄ (A) , µ̄ (B) are both finite. First suppose U,V are open and disjoint having finite outer
measure. Let µ̄ (U)≤ L f1 + ε where f1 ≺U and let f2 ≺V with µ̄ (V )≤ L( f2)+ ε . Then

µ̄ (U ∪V )≤ µ̄ (U)+ µ̄ (V )≤ L f1 +L f2 +2ε ≤ L( f1 + f2)+2ε ≤ µ̄ (U ∪V )+2ε

Since ε is arbitrary, this shows that µ̄ (U ∪V ) = µ̄ (U)+ µ̄ (V ). Now in case A,B are as
assumed, let U ≡ ∪x∈U B(x,δ/3) ,V ≡ ∪x∈V B(x,δ/3) . Then these are disjoint open sets
containing A and B respectively. Then there is O open, O ⊇ A∪B such that µ̄ (A∪B)+
ε > µ̄ (O) . Replacing U with U ⊆ O and V with V ∩O, we can assume µ̄ (A∪B)+ ε >
µ̄ (U ∪V ) . Then

µ̄ (A)+ µ̄ (B) ≤ µ̄ (U)+ µ̄ (V ) = µ̄ (U ∪V )

< ε + µ̄ (A∪B)≤ ε + µ̄ (A)+ µ̄ (B)

Since ε is arbitrary, this shows that µ̄ (A)+ µ̄ (B) = µ̄ (A∪B).
From Theorem 8.5.4 there is a complete measure µ defined on a σ algebra F which

equals µ̄ on F . From Claim 4 and Theorem 8.6.1, F contains the Borel sets B (X). From
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the definition, µ is outer regular and so it follows from Theorem 8.7.4 that µ is regular
because it is finite on compact sets and X is the union of countably many compact sets so
µ is σ finite. Thus µ (F)≤ µ (E)≤ µ (G) = µ (F)+µ (G\F) = µ (F).

The measure µ is uniquely determined. If µ,ν are two, then if K is compact, there
is a sequence of open sets Vn decreasing to K such that µ (K) = limn→∞ µ (Vn) ,ν (K) =
limn→∞ ν (Vn) . Now let K ≺ fn ≺Vn. By Claim 2, L fn→ µ (K) and L fn→ ν (K) so µ = ν

on all compact sets. Therefore, µ = ν on all Fσ sets. Now every open set V is the countable
union of a sequence of increasing compact sets from the assumptions on X so µ = ν on
every open set. It follows that the two σ algebras are the same and the measures are
equal. To see this, µ

(
F̂
)
≤ µ (E) ≤ µ

(
Ĝ
)
,ν
(
F̃
)
≤ ν (E) ≤ ν

(
G̃
)

where these G and F
are respectively Gδ and Fσ with µ

(
Ĝ\ F̂

)
= 0 similar with the other pair. So let G = G̃∩

Ĝ,F = F̃∪ F̂ and then µ (G\F) = 0,ν (G\F) = 0. Now if the two σ algebras are Fµ ,Fν

then if E ∈Fµ , then E differs from F by a subset of a set of ν measure zero. Therefore, by
completeness of ν it follows that E ∈Fν . Also µ (E) = µ (F) = ν (F) = ν (E) . The same
argument shows that Fν ⊆Fµ . ■

Definition 8.8.3 Let L f be given by Theorem 5.8.8. That is∫
Rp

f dx =
∫ b1

a1

· · ·
∫ bp

ap

f (x1,x2, ...,xp)dxp · · ·dx1

whenever f vanishes outside of ∏
p
i=1 (ai,bi). The resulting measure defined in Theorem

8.8.2, denoted as mp is Lebesgue measure.

From the above theorem mp is a Borel measure meaning that the Borel sets are measur-
able. Also it has the regularity properties. What does it do to boxes?

Theorem 8.8.4 Lebesgue mesure is translation invariant. This terminology means
that mp (E) = mp (E +z). Also mp

(
∏

p
i=1 (ai,bi)

)
= mp

(
∏

p
i=1 [ai,bi]

)
= ∏

p
i=1 (bi−ai) .

Proof: What is mp (R) where R = ∏
p
i=1 (ai,bi)? Let Rn = ∏

p
i=1

(
ai +

1
n ,bi− 1

n

)
and

let fn = 1 on Rn while vanishing off of R2n and piecewise linear in each variable. Then
from the definition, there is g ∈ Cc (R) such that mp (R) < Lg + ε where here g ≺ R.
However, since the distance from the support of g to the boundary of R is positive, it
follows that for all n large enough, g ≤ fn and so mp (R) < L fn + ε . Now letting n→
∞ and computing

∫ b1
a1
· · ·
∫ bp

ap
fn (x1,x2, ...,xp)dxp · · ·dx1, (You could use Problem 17 on

Page 140.) it follows that mp (R) < ∏
p
i=1 (bi−ai)+ ε. Since ε is arbitrary, it follows that

mp (R) ≤ ∏
p
i=1 (bi−ai) . In fact these will be equal because for each n,L fn ≤ mp (R) and

as just observed, L fn→∏
p
i=1 (bi−ai). In the case of a closed box, ∏

p
i=1 (ai +δ ,bi−δ )⊆

∏
p
i=1 [ai,bi]⊆∏

p
i=1 (ai−δ ,bi +δ ) and so for every δ > 0 and sufficiently small,

mp

(
p

∏
i=1

[ai,bi]

)
∈

[
p

∏
i=1

(bi−ai−2δ ) ,
p

∏
i=1

(bi−ai +2δ )

]

and so mp
(
∏

p
i=1 [ai,bi]

)
= mp

(
∏

p
i=1 (ai,bi)

)
= ∏

p
i=1 (bi−ai) .

Let K be all sets of the form ∏
p
i=1 (ai,bi) where −∞ ≤ ai < bi ≤ ∞. Clearly F is

closed with respect to finite intersections. Let G be the Borel sets F such that

mp (z+F ∩ (−m,m)p) = mp (F ∩ (−m,m)p) .
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Then G is closed with respect to countable disjoint unions and complements. From what
was just shown about rectangles, G ⊇K and so by Dynkin’s lemma, it follows that G =
B (Rp) . Since m is arbitrary, this proves the theorem in case E is Borel.

From regularity, if E is only Lebesgue measurable, there is F an Fσ set and G a Gδ set
such that F ⊆ E ⊆ G and mp (G\F) = 0. Then from what was just shown, it follows that

mp (E) = mp (F) = mp (z+F)≤ mp (z+E)

≤ mp (z+G) = mp (G) = mp (F)≤ mp (E)

By completeness of mp it follows that z+E is measurable because it lies between the Fσ

set z+F and the Gδ set z+G and

mp (z+G\ (z+F)) = mp (z+G\F) = mp (G\F) = 0 ■

Example 8.8.5 On R you could take an increasing function F and for the functional con-
sider L( f )≡

∫
f dF where this is the Riemann Stieltjes integral. This would give a measure

µF with all the properties of the above Theorem 8.8.2.

8.9 Exercises
1. Show carefully that if S is a set whose elements are σ algebras which are subsets of

P (Ω) , then ∩S is also a σ algebra. Now let G ⊆P (Ω) satisfy property P if G
is closed with respect to complements and countable disjoint unions as in Dynkin’s
lemma, and contains /0 and Ω. If H ⊆ G is any set whose elements are subsets of
P (Ω) which satisfies property P, then ∩H also satisfies property P. Thus there is a
smallest subset of G satisfying P. In other words, verify the details of the proof of
Dynkin’s lemma.

2. The Borel sets of a metric space (X ,d) are the sets in the smallest σ algebra which
contains the open sets. These sets are denoted as B (X). Thus B (X) = σ (open sets)
where σ (F ) simply means the smallest σ algebra which contains F . Show that in
Rn, B (Rn) = σ (P) where P consists of the half open rectangles which are of the
form ∏

n
i=1[ai,bi).

3. Recall that f : (Ω,F )→ X where X is a metric space is measurable means that
inverse images of open sets are in F . Show that if E is any set in B (X) , then
f−1 (E) ∈ F . Thus, inverse images of Borel sets are measurable. Next consider
f : (Ω,F ) → X being measurable and g : X → Y is Borel measurable, meaning
that g−1 (open) ∈ B (X). Explain why g ◦ f is measurable. Hint: You know that
(g◦ f )−1 (U) = f−1

(
g−1 (U)

)
. For your information, it does not work the other

way around. That is, measurable composed with Borel measurable is not necessarily
measurable. In fact examples exist which show that if g is measurable and f is
continuous, then g◦ f may fail to be measurable. An example is given later.

4. If you have Xi is a metric space, let X = ∏
n
i=1 Xi with the metric

d (x,y)≡max{di (xi,yi) , i = 1,2, · · · ,n}

Show that any set of the form ∏
n
i=1 Ei, Ei ∈ B (Xi) is a Borel set. That is, the

product of Borel sets is Borel. Hint: You might consider the continuous functions
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π i : ∏
n
j=1 X j → Xi which are the projection maps. Thus π i (x) ≡ xi. Then π

−1
i (Ei)

would have to be Borel measurable whenever Ei ∈B (Xi). Explain why. You know
π i is continuous. Why would π

−1
i (Borel) be a Borel set? Then you might argue that

∏
n
i=1 Ei = ∩n

i=1π
−1
i (Ei) .

5. You have two finite measures defined on B (X) µ,ν . Suppose these are equal on
every open set. Show that these must be equal on every Borel set. Hint: You should
use Dynkin’s lemma to show this very easily.

6. Show that (N,P (N) ,µ) is a measure space where µ (S) equals the number of el-
ements of S. You need to verify that if the sets Ei are disjoint, then µ (∪∞

i=1Ei) =

∑
∞
i=1 µ (Ei) .

7. Let Ω be an uncountable set and let F denote those subsets of Ω, F such that either
F or FC is countable. Show that this is a σ algebra. Next define the following
measure. µ (A) = 1 if A is uncountable and µ (A) = 0 if A is countable. Show that µ

is a measure. This is a perverted example.

8. Let µ (E) = 1 if 0 ∈ E and µ (E) = 0 if 0 /∈ E. Show this is a measure on P (R).

9. Give an example of a measure µ and a measure space and a decreasing sequence of
measurable sets {Ei} such that limn→∞ µ (En) ̸= µ (∩∞

i=1Ei).

10. Let K ⊆V where K is closed and V is open. Consider the following function.

f (x) =
dist
(
x,VC

)
dist(x,K)+dist(x,VC)

Explain why this function is continuous, equals 0 off V and equals 1 on K. It is in
the book earlier, but go through the details.

11. Let (Ω,F ) be a measurable space and let f : Ω→ X be a measurable function. Then
σ ( f ) denotes the smallest σ algebra such that f is measurable with respect to this σ

algebra. Show that σ ( f ) =
{

f−1 (E) : E ∈B (X)
}

.

12. Let (Ω,F ,µ) be a measure space. A sequence of functions { fn} is said to converge
in measure to a measurable function f if and only if for each

ε > 0, lim
n→∞

µ (ω : | fn (ω)− f (ω)|> ε) = 0.

Show that if this happens, then there exists a subsequence
{

fnk

}
and a set of measure

N such that if ω /∈N, then limk→∞ fnk (ω)= f (ω). Also show that if limn→∞ fn (ω)=
f (ω) , and µ (Ω)<∞, then fn converges in measure to f . Hint:For the subsequence,
let µ

(
ω :
∣∣ fnk (ω)− f (ω)

∣∣> ε
)
< 2−k and use Borel Cantelli lemma.

13. Let X ,Y be separable metric spaces. Then X ×Y can also be considered as a metric
space with the metric ρ ((x,y) ,(x̂, ŷ)) ≡ max(dX (x, x̂) ,dY (y, ŷ)) . Verify this. Then
show that if K consists of sets A×B where A,B are Borel sets in X and Y respec-
tively, then it follows that σ (K ) = B (X×Y ) , the Borel sets from X ×Y . Extend
to the Cartesian product ∏i Xi of finitely many separable metric spaces.
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14. Suppose you have (X ,F ,µ) where F ⊇B (X) and also µ (B(x0,r))< ∞ for all r >
0. Let S (x0,r)≡ {x ∈ X : d (x,x0) = r} . Show that {r > 0 : µ (S (x0,r))> 0} cannot
be uncountable. Explain why there exists a strictly increasing sequence rn→∞ such
that µ (x : d (x,x0) = rn) = 0. In other words, the skin of the ball has measure zero
except for possibly countably many values of the radius r.

15. Lebesgue measure was discussed. Recall that m((a,b)) = b−a and it is defined on
a σ algebra which contains the Borel sets, more generally on P (R). Also recall
that m is translation invariant. Let x ∼ y if and only if x− y ∈ Q. Show this is an
equivalence relation. Now let W be a set of positive measure which is contained in
(0,1). For x ∈W, let [x] denote those y ∈W such that x ∼ y. Thus the equivalence
classes partition W . Use axiom of choice to obtain a set S⊆W such that S consists of
exactly one element from each equivalence class. Let T denote the rational numbers
in [−1,1]. Consider T+ S ⊆ [−1,2]. Explain why T+ S ⊇W . For T ≡

{
r j
}
,

explain why the sets
{

r j +S
}

j are disjoint. Now suppose S is measurable. Then
show that you have a contradiction if m(S) = 0 since m(W ) > 0 and you also have
a contradiction if m(S) > 0 because T+ S consists of countably many disjoint sets.
Explain why S cannot be measurable. Thus there exists T ⊆ R such that m(T ) <
m(T ∩S)+m

(
T ∩SC

)
. Is there an open interval (a,b) such that if T = (a,b) , then

the above inequality holds?

16. Consider the following nested sequence of compact sets, {Pn}.Let P1 = [0,1], P2 =[
0, 1

3

]
∪
[ 2

3 ,1
]
, etc. To go from Pn to Pn+1, delete the open interval which is the

middle third of each closed interval in Pn. Let P = ∩∞
n=1Pn. By the finite intersection

property of compact sets, P ̸= /0. Show m(P) = 0. If you feel ambitious also show
there is a one to one onto mapping of [0,1] to P. The set P is called the Cantor
set. Thus, although P has measure zero, it has the same number of points in it as
[0,1] in the sense that there is a one to one and onto mapping from one to the other.
Hint: There are various ways of doing this last part but the most enlightenment is
obtained by exploiting the topological properties of the Cantor set rather than some
silly representation in terms of sums of powers of two and three. All you need to do
is use the Schroder Bernstein theorem and show there is an onto map from the Cantor
set to [0,1]. If you do this right and remember the theorems about characterizations
of compact metric spaces, Proposition 3.5.8 on Page 70, you may get a pretty good
idea why every compact metric space is the continuous image of the Cantor set.

17. Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0,1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a,b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
linear and equal to 1

2 ( fn(a)+ fn(b)) on the middle third of [a,b]. Sketch a few of
these and you will see the pattern. The process of modifying a nonconstant section
of the graph of this function is illustrated in the following picture.

Show { fn} converges uniformly on [0,1]. If f (x) = limn→∞ fn(x), show that f (0) =
0, f (1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is the Cantor set
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of Problem 16. This function is called the Cantor function.It is a very important
example to remember. Note it has derivative equal to zero a.e. and yet it succeeds
in climbing from 0 to 1. Explain why this interesting function cannot be recovered
by integrating its derivative. (It is not absolutely continuous, explained later.) Hint:
This isn’t too hard if you focus on getting a careful estimate on the difference between
two successive functions in the list considering only a typical small interval in which
the change takes place. The above picture should be helpful.

18. ↑ This problem gives a very interesting example found in the book by McShane
[33]. Let g(x) = x+ f (x) where f is the strange function of Problem 17. Let P be the
Cantor set of Problem 16. Let [0,1]\P=∪∞

j=1I j where I j is open and I j∩Ik = /0 if j ̸=
k. These intervals are the connected components of the complement of the Cantor set.
Show m(g(I j)) = m(I j) so m(g(∪∞

j=1I j)) = ∑
∞
j=1 m(g(I j)) = ∑

∞
j=1 m(I j) = 1. Thus

m(g(P)) = 1 because g([0,1]) = [0,2]. By Problem 15 there exists a set, A ⊆ g(P)
which is non measurable. Define φ(x) =XA(g(x)). Thus φ(x) = 0 unless x∈ P. Tell
why φ is measurable. (Recall m(P) = 0 and Lebesgue measure is complete.) Now
show that XA(y) = φ(g−1(y)) for y ∈ [0,2]. Tell why g is strictly increasing and
g−1 is continuous but φ ◦g−1 is not measurable. (This is an example of measurable
◦ continuous ̸= measurable.) Show there exist Lebesgue measurable sets which are
not Borel measurable. Hint: The function, φ is Lebesgue measurable. Now recall
that Borel ◦ measurable = measurable.

19. Show that every countable set of real numbers is of Lebesgue measure zero.

20. The Cantor set is obtained by starting with [0,1], delete the middle third, the open set
(1/3,2/3). Now do the same for the two remaining closed intervals. This results in
a nested sequence of compact sets. The intersection of all of these is the Cantor set.
Show that you can take out open intervals in the middle which are not necessarily
middle thirds, and end up with a set C which has Lebesgue measure equal to 1− ε .
Also show if you can that there exists a continuous and one to one map f : C→ J
where J is the usual Cantor set which also has measure 0.

21. Suppose you have a π system K of sets of Ω and suppose G ⊇K and that G is
closed with respect to complements and that whenever {Fk} is a decreasing sequence
of sets of G it follows that ∩kFk ∈ G . Show that then G contains σ (K ). This is an
alternative formulation of Dynkin’s lemma. It was shown after the Dynkin lemma
that closure with respect to countable intersections is equivalent.

22. Let (Ω,F ,µ) be a measure space and let s(ω) = ∑
n
i=0 ciXEi (ω) where the Ei are

distinct measurable sets but the ci might not be. Thus the ci are the finitely many
values of s. Say each ci ≥ 0 and c0 = 0. Define

∫
sdµ as ∑i ciµ (Ei). Show that this is

well defined and that if you have s(ω) = ∑
n
i=1 ciXEi (ω) , t (ω) = ∑

m
j=1 d jXFj (ω) ,

then for a,b nonnegative numbers, as(ω)+ bt (ω) can be written also in this form
and that

∫
(as+bt)dµ = a

∫
sdµ + b

∫
tdµ . Hint: s(ω) = ∑i ∑ j ciXEi∩Fj (ω) =

∑ j ∑i ciXEi∩Fj (ω) and (as+bt)(ω) = ∑ j ∑i (aci +bd j)XEi∩Fj (ω).

23. ↑Having defined the integral of nonnegative simple functions in the above problem,
letting f be nonnegative and measurable. Define∫

f dµ ≡ sup
{∫

sdµ : 0≤ s≤ f ,s simple
}
.
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Show that if fn is nonnegative and measurable and n→ fn (ω) is increasing, show
that for f (ω) = limn→∞ fn (ω) , it follows that

∫
f dµ = limn→∞

∫
fndµ . Hint: Show∫

fndµ is increasing to something α ≤ ∞. Explain why
∫

f dµ ≥ α. Now pick a
nonnegative simple function s ≤ f . For r ∈ (0,1) , [ fn > rs] ≡ En is increasing in n
and ∪nEn = Ω. Tell why

∫
fndµ ≥

∫
XEn fndµ ≥ r

∫
sdµ . Let n→ ∞ and show that

α ≥ r
∫

sdµ . Now explain why α ≥ r
∫

f dµ . Since r is arbitrary, α ≥
∫

f dµ ≥ α .

24. ↑Show that if f ,g are nonnegative and measurable and a,b≥ 0, then∫
(a f +bg)dµ = a

∫
f dµ +b

∫
gdµ

25. Let F be increasing on R. Consider the measure µF from Theorem 8.8.2 in which
the functional is the Riemann Stieltjes integral

∫
f dF. Show that

µF ((ai,bi)) = F (bi−)−F (ai+) ,

µF ([a,b)) = F (b−)−F (a−) ,
µF ((a,b]) = F (b+)−F (a+) ,

µF ([a,b]) = F (b+)−F (a−) .
Here F (b+) = limx→b+ F (x) that is, it is the limit from the right. Other notation is
similar. This will give the Lebesgue Stieltjes measures. These measures will NOT
be translation invariant. Why? However, they still have the regularity properties.



Chapter 9

The Lebesgue Integral
The presentation in terms of simple functions of the Lebesgue integral is presented in Prob-
lems starting with 22 on Page 199. I will present it a different way here. The general
Lebesgue integral requires a measure space, (Ω,F ,µ) and, to begin with, a nonnegative
measurable function. I will use Lemma 2.5.3 about interchanging two supremums fre-
quently. Also, I will use the observation that if {an} is an increasing sequence of points of
[0,∞] , then supn an = limn→∞ an which is obvious from the definition of sup.

9.1 Nonnegative Measurable Functions
9.1.1 Riemann Integrals for Decreasing Functions
First of all, the notation [g < f ] means {ω ∈Ω : g(ω)< f (ω)} with other variants of this
notation being similar. Also, the convention, 0 ·∞ = 0 will be used to simplify the presen-
tation whenever it is convenient to do so. The notation a∧b means the minimum of a and
b.

Definition 9.1.1 Let f : [a,b]→ [0,∞] be decreasing. Note that ∞ is a possible
value. Define ∫ b

a
f (λ )dλ ≡ lim

M→∞

∫ b

a
M∧ f (λ )dλ = sup

M

∫ b

a
M∧ f (λ )dλ

where a∧b means the minimum of a and b. Note that for f bounded,

sup
M

∫ b

a
M∧ f (λ )dλ =

∫ b

a
f (λ )dλ

where the integral on the right is the usual Riemann integral because eventually M > f .
For f a nonnegative decreasing function defined on [0,∞),∫

∞

0
f dλ ≡ lim

R→∞

∫ R

0
f dλ = sup

R>1

∫ R

0
f dλ = sup

R
sup
M>0

∫ R

0
f ∧Mdλ

Since decreasing bounded functions are Riemann integrable, the above definition is
well defined. For a discussion of this, see Calculus of One and Many Variables on the web
site or the single variable advanced calculus book. Now here is an obvious property.

Lemma 9.1.2 Let f be a decreasing nonnegative function defined on an interval [a,b] .
Then if [a,b] =∪m

k=1Ik where Ik ≡ [ak,bk] and the intervals Ik are non overlapping, it follows∫ b

a
f dλ =

m

∑
k=1

∫ bk

ak

f dλ .

Proof: This follows from the computation,∫ b

a
f dλ ≡ lim

M→∞

∫ b

a
f ∧Mdλ = lim

M→∞

m

∑
k=1

∫ bk

ak

f ∧Mdλ =
m

∑
k=1

∫ bk

ak

f dλ

Note both sides could equal +∞. ■
In all considerations below, assume h is fairly small, certainly much smaller than R.

Thus R−h > 0.

201
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Lemma 9.1.3 Let g be a decreasing nonnegative function defined on an interval [0,R] .
Then ∫ R

0
g∧Mdλ = sup

h>0

m(R,h)

∑
i=1

(g(ih)∧M)h

where m(h,R) ∈ N satisfies R−h < hm(h,R)≤ R.

Proof: Since g∧M is a decreasing bounded function the lower sums converge to the
integral as h→ 0. Thus

∫ R

0
g∧Mdλ = lim

h→0

(
m(R,h)

∑
i=1

(g(ih)∧M)h+(g(R)∧M)(R−hm(h,R))

)

Now the last term in the above is no more than Mh and so the above is

lim
h→0

(
m(R,h)

∑
i=1

(g(ih)∧M)h

)
= sup

h>0

(
m(R,h)

∑
i=1

(g(ih)∧M)h

)
.■

9.1.2 The Lebesgue Integral for Nonnegative Functions
Here is the definition of the Lebesgue integral of a function which is measurable and has
values in [0,∞].

Definition 9.1.4 Let (Ω,F , µ) be a measure space and suppose f : Ω→ [0,∞]
is measurable. Then define

∫
f dµ ≡

∫
∞

0 µ ([ f > λ ])dλ which makes sense because λ →
µ ([ f > λ ]) is nonnegative and decreasing.

Note that if f ≤ g, then
∫

f dµ ≤
∫

gdµ because µ ([ f > λ ])≤ µ ([g > λ ]) .
For convenience ∑

0
i=1 ai ≡ 0.

Lemma 9.1.5 In the above definition,
∫

f dµ = suph>0 ∑
∞
i=1 µ ([ f > hi])h

Proof: Let m(h,R) ∈ N satisfy R−h < hm(h,R) ≤ R. Then limR→∞ m(h,R) = ∞ and
so from Lemma 9.1.3,∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ = sup

M
sup

R

∫ R

0
µ ([ f > λ ])∧Mdλ

= sup
M

sup
R>0

sup
h>0

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

Hence, switching the order of the sups, this equals

sup
R>0

sup
h>0

sup
M

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h = sup
R>0

sup
h>0

lim
M→∞

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

= sup
h>0

sup
R

m(R,h)

∑
k=1

(µ ([ f > kh]))h = sup
h>0

∞

∑
k=1

(µ ([ f > kh]))h. ■



9.2. NONNEGATIVE SIMPLE FUNCTIONS 203

9.2 Nonnegative Simple Functions
To begin with, here is a useful lemma.

Lemma 9.2.1 If f (λ ) = 0 for all λ > a, where f is a decreasing nonnegative function,
then

∫
∞

0 f (λ )dλ =
∫ a

0 f (λ )dλ .

Proof: From the definition,∫
∞

0
f (λ )dλ = lim

R→∞

∫ R

0
f (λ )dλ = sup

R>1

∫ R

0
f (λ )dλ = sup

R>1
sup

M

∫ R

0
f (λ )∧Mdλ

= sup
M

sup
R>1

∫ R

0
f (λ )∧Mdλ = sup

M
sup
R>1

∫ a

0
f (λ )∧Mdλ

= sup
M

∫ a

0
f (λ )∧Mdλ ≡

∫ a

0
f (λ )dλ . ■

Now the Lebesgue integral for a nonnegative function has been defined, what does it
do to a nonnegative simple function? Recall a nonnegative simple function is one which
has finitely many nonnegative real values which it assumes on measurable sets. Thus a
simple function can be written in the form s(ω) = ∑

n
i=1 ciXEi (ω) where the ci are each

nonnegative, the distinct nonzero values of s.

Lemma 9.2.2 Let s(ω) = ∑
p
i=1 aiXEi (ω) be a nonnegative simple function where the

Ei are distinct but the ai might not be. Thus the values of s are the ai. Then∫
sdµ =

p

∑
i=1

aiµ (Ei) . (9.1)

Proof: Without loss of generality, assume 0≡ a0 < a1≤ a2≤ ·· · ≤ ap and that µ (Ei)<
∞, i > 0. Here is why. If µ (Ei) = ∞, then letting a ∈ (ai−1,ai) , by Lemma 9.2.1, the left
side is ∫ ap

0
µ ([s > λ ])dλ ≥

∫ ai

a0

µ ([s > λ ])dλ

≡ sup
M

∫ ai

0
µ ([s > λ ])∧Mdλ ≥ sup

M
Mµ (Ei)ai = ∞

and so both sides of 9.1 are equal to ∞. Thus it can be assumed for each i,µ (Ei)< ∞. Then
it follows from Lemma 9.2.1 and Lemma 9.1.2,∫

∞

0
µ ([s > λ ])dλ =

∫ ap

0
µ ([s > λ ])dλ =

p

∑
k=1

∫ ak

ak−1

µ ([s > λ ])dλ

=
p

∑
k=1

(ak−ak−1)
p

∑
i=k

µ (Ei) =
p

∑
i=1

µ (Ei)
i

∑
k=1

(ak−ak−1) =
p

∑
i=1

aiµ (Ei) ■

Note that this is the same result as in Problem 22 on Page 199 but here there is no question
about the definition of the integral of a simple function being well defined.

Lemma 9.2.3 If a,b≥ 0 and if s and t are nonnegative simple functions, then∫
as+btdµ = a

∫
sdµ +b

∫
tdµ .
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Proof: Let s(ω) = ∑
n
i=1 α iXAi(ω), t(ω) = ∑

m
i=1 β jXB j(ω) where α i are the distinct

values of s and the β j are the distinct values of t. Clearly as+ bt is a nonnegative simple
function because it has finitely many values on measurable sets. In fact, (as+ bt)(ω) =

∑
m
j=1 ∑

n
i=1(aα i + bβ j)XAi∩B j(ω) where the sets Ai ∩B j are disjoint and measurable. By

Lemma 9.2.2, ∫
as+btdµ =

m

∑
j=1

n

∑
i=1

(aα i +bβ j)µ(Ai∩B j)

=
n

∑
i=1

a
m

∑
j=1

α iµ(Ai∩B j)+b
m

∑
j=1

n

∑
i=1

β jµ(Ai∩B j)

= a
n

∑
i=1

α iµ(Ai)+b
m

∑
j=1

β jµ(B j) = a
∫

sdµ +b
∫

tdµ . ■

9.3 The Monotone Convergence Theorem
The following is called the monotone convergence theorem. This theorem and related
convergence theorems are the reason for using the Lebesgue integral. If limn→∞ fn (ω) =
f (ω) and fn is increasing in n, then clearly f is also measurable because

f−1 ((a,∞]) = ∪∞
k=1 f−1

k ((a,∞]) ∈F

For a different approach to this, see Problem 22 on Page 199.

Theorem 9.3.1 (Monotone Convergence theorem) Suppose that the function f has
all values in [0,∞] and suppose { fn} is a sequence of nonnegative measurable functions
having values in [0,∞] and satisfying

lim
n→∞

fn(ω) = f (ω) for each ω.

· · · fn(ω)≤ fn+1(ω) · · ·

Then f is measurable and
∫

f dµ = limn→∞

∫
fndµ.

Proof: By Lemma 9.1.5 limn→∞

∫
fndµ = supn

∫
fndµ

= sup
n

sup
h>0

∞

∑
k=1

µ ([ fn > kh])h = sup
h>0

sup
N

sup
n

N

∑
k=1

µ ([ fn > kh])h

= sup
h>0

sup
N

N

∑
k=1

µ ([ f > kh])h = sup
h>0

∞

∑
k=1

µ ([ f > kh])h =
∫

f dµ. ■

Note how it was important to have
∫

∞

0 [ f > λ ]dλ in the definition of the integral and
not [ f ≥ λ ]. You need to have [ fn > kh] ↑ [ f > kh] so µ ([ fn > kh])→ µ ([ f > kh]) . To
illustrate what goes wrong without the Lebesgue integral, consider the following example.

Example 9.3.2 Let {rn} denote the rational numbers in [0,1] and let

fn (t)≡
{

1 if t /∈ {r1, · · · ,rn}
0 otherwise
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Then fn (t) ↑ f (t) where f is the function which is one on the rationals and zero on the
irrationals. Each fn is Riemann integrable (why?) but f is not Riemann integrable because
it is everywhere discontinuous. Also, there is a gap between all upper sums and lower
sums. Therefore, you can’t write

∫
f dx = limn→∞

∫
fndx.

An observation which is typically true related to this type of example is this. If you
can choose your functions, you don’t need the Lebesgue integral. The Riemann Darboux
integral is just fine. It is when you can’t choose your functions and they come to you as
pointwise limits that you really need the superior Lebesgue integral or at least something
more general than the Riemann integral. The Riemann integral is entirely adequate for
evaluating the seemingly endless lists of boring problems found in calculus books. It is
shown later that the two integrals coincide when the Lebesgue integral is taken with respect
to Lebesgue measure and the function being integrated is continuous. It has been correctly
observed that we never compute a Lebesgue integral. We compute Riemann integrals and
sometimes take limits.

9.4 Other Definitions
To review and summarize the above, if f ≥ 0 is measurable,∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ (9.2)

another way to get the same thing for
∫

f dµ is to take an increasing sequence of non-
negative simple functions, {sn} with sn (ω)→ f (ω) and then by monotone convergence
theorem,

∫
f dµ = limn→∞

∫
sn where if sn (ω) = ∑

m
j=1 ciXEi (ω) ,

∫
sndµ = ∑

m
i=1 ciµ (Ei) .

Similarly this also shows that for such nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
.

Here is an equivalent definition of the integral of a nonnegative measurable function. The
fact it is well defined has been discussed above.

Definition 9.4.1 For s a nonnegative simple function,

s(ω) =
n

∑
k=1

ckXEk (ω) ,
∫

s =
n

∑
k=1

ckµ (Ek) .

For f a nonnegative measurable function,∫
f dµ = sup

{∫
s : 0≤ s≤ f , s simple

}
.

Proof: Let V be an open set and let V = ∪nKn where Kn ⊆ Kn+1 for all n. Let

gn (x)≡ 1− dist(x,Kn)

dist(x,Kn)+dist(x,VC)
, fn ≡max{gk : k ≤ n}

Then using the monotone convergence theorem, it follows that µ = ν on all open sets. The
conclusion follows from Theorem 8.7.4. ■
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9.5 Fatou’s Lemma
The next theorem, known as Fatou’s lemma is another important theorem which justifies
the use of the Lebesgue integral.

Theorem 9.5.1 (Fatou’s lemma) Let fn be a nonnegative measurable function. Let
g(ω) = liminfn→∞ fn(ω). Then g is measurable and

∫
gdµ ≤ liminfn→∞

∫
fndµ . In other

words,
∫
(liminfn→∞ fn)dµ ≤ liminfn→∞

∫
fndµ.

Proof: Let gn(ω) = inf{ fk(ω) : k ≥ n}. Then

g−1
n ([a,∞]) = ∩∞

k=n f−1
k ([a,∞]) =

(
∪∞

k=n f−1
k ([a,∞])C

)C ∈F .

Thus gn is measurable by Lemma 8.1.4. Also g(ω) = limn→∞ gn(ω) so g is measurable
because it is the pointwise limit of measurable functions. Now the functions gn form an
increasing sequence of nonnegative measurable functions so the monotone convergence
theorem applies. This yields∫

gdµ = lim
n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.

The last inequality holding because
∫

gndµ ≤
∫

fndµ. (Note that it is not known whether
limn→∞

∫
fndµ exists.) ■

9.6 The Integral’s Righteous Algebraic Desires
The monotone convergence theorem shows the integral wants to be linear. This is the
essential content of the next theorem.

Theorem 9.6.1 Let f ,g be nonnegative measurable functions and let a,b be non-
negative numbers. Then a f +bg is measurable and∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ. (9.3)

Proof: By Theorem 8.1.6 on Page 181 there exist increasing sequences of nonnegative
simple functions, sn→ f and tn→ g. Then a f +bg, being the pointwise limit of the simple
functions asn+btn, is measurable. Now by the monotone convergence theorem and Lemma
9.2.3, ∫

(a f +bg)dµ = lim
n→∞

∫
asn +btndµ = lim

n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a

∫
f dµ +b

∫
gdµ. ■

As long as you are allowing functions to take the value +∞, you cannot consider some-
thing like f +(−g) and so you can’t very well expect a satisfactory statement about the
integral being linear until you restrict yourself to functions which have values in a vector
space. To be linear, a function must be defined on a vector space. This is discussed next.
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9.7 The Lebesgue Integral, L1

The functions considered here have values in C, which is a vector space. A function f with
values in C is of the form f = Re f + i Im f where Re f and Im f are real valued functions.
In fact Re f = f+ f

2 , Im f = f− f
2i .

Definition 9.7.1 Let (Ω,S ,µ) be a measure space and suppose f : Ω→ C. Then
f is said to be measurable if both Re f and Im f are measurable real valued functions.

Of course there is another definition of measurability which says that inverse images of
open sets are measurable. This is equivalent to this new definition.

Lemma 9.7.2 Let f : Ω→ C. Then f is measurable if and only if Re f , Im f are both
real valued measurable functions. Also if f ,g are complex measurable functions and a,b
are complex scalars, then a f +bg is also measurable.

Proof: ⇒Suppose first that f is measurable. Recall that C is considered as R2 with
(x,y) being identified with x+ iy. Thus the open sets of C can be obtained with either of

the two equivlanent norms |z| ≡
√
(Rez)2 +(Imz)2 or ∥z∥

∞
= max(Rez, Imz). Therefore,

if f is measurable Re f−1 (a,b)∩ Im f−1 (c,d) = f−1 ((a,b)+ i(c,d)) ∈F . In particular,
you could let (c,d) = R and conclude that Re f is measurable because in this case, the
above reduces to the statement that Re f−1 (a,b) ∈F . Similarly Im f is measurable.
⇐ Next, if each of Re f and Im f are measurable, then

f−1 ((a,b)+ i(c,d)) = Re f−1 (a,b)∩ Im f−1 (c,d) ∈F

and so, since every open set is the countable union of sets of the form (a,b)+ i(c,d) , it
follows that f is measurable.

Now consider the last claim. Let h : C×C→ C be given by h(z,w) ≡ az+bw. Then
h is continuous. If f ,g are complex valued measurable functions, consider the complex
valued function, h◦ ( f ,g) : Ω→ C. Then

(h◦ ( f ,g))−1 (open) = ( f ,g)−1 (h−1 (open)
)
= ( f ,g)−1 (open)

Now letting U,V be open in C, ( f ,g)−1 (U×V ) = f−1 (U)∩ g−1 (V ) ∈ F . Since ev-
ery open set in C×C is the countable union of sets of the form U ×V, it follows that
( f ,g)−1 (open) is in F . Thus a f +bg is also complex measurable. ■

As is always the case for complex numbers, |z|2 = (Rez)2 +(Imz)2. Also, for g a real
valued function, one can consider its positive and negative parts defined respectively as

g+ (x)≡ g(x)+ |g(x)|
2

, g− (x) =
|g(x)|−g(x)

2
.

Thus |g| = g+ + g− and g = g+ − g− and both g+ and g− are measurable nonnegative
functions if g is measurable.

Then the following is the definition of what it means for a complex valued function f
to be in L1 (Ω).
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Definition 9.7.3 Let (Ω,F ,µ) be a measure space. Then a complex valued mea-
surable function f is in L1 (Ω) if

∫
| f |dµ < ∞. For a function in L1 (Ω) , the integral is

defined as follows.∫
f dµ ≡

∫
(Re f )+ dµ−

∫
(Re f )− dµ + i

[∫
(Im f )+ dµ−

∫
(Im f )− dµ

]
I will show that with this definition, the integral is linear and well defined. First note

that it is clearly well defined because all the above integrals are of nonnegative functions
and are each equal to a nonnegative real number because for h equal to any of the functions,
|h| ≤ | f | and

∫
| f |dµ < ∞.

Here is a lemma which will make it possible to show the integral is linear.

Lemma 9.7.4 Let g,h,g′,h′ be nonnegative measurable functions in L1 (Ω) and suppose
that g−h = g′−h′.Then

∫
gdµ−

∫
hdµ =

∫
g′dµ−

∫
h′dµ.

Proof: By assumption, g+ h′ = g′+ h. Then from the Lebesgue integral’s righteous
algebraic desires, Theorem 9.6.1,

∫
gdµ +

∫
h′dµ =

∫
g′dµ +

∫
hdµ which implies the

claimed result. ■

Lemma 9.7.5 Let Re
(
L1 (Ω)

)
denote the vector space of real valued functions in L1 (Ω)

where the field of scalars is the real numbers. Then
∫

dµ is linear on Re
(
L1 (Ω)

)
, the

scalars being real numbers.

Proof: First observe that from the definition of the positive and negative parts of a func-
tion, ( f +g)+−( f +g)−= f++g+−( f−+g−) because both sides equal f +g. Therefore
from Lemma 9.7.4 and the definition, it follows from Theorem 9.6.1 that∫

f +gdµ ≡
∫

( f +g)+− ( f +g)− dµ =
∫

f++g+dµ−
∫

f−+g−dµ

=
∫

f+dµ +
∫

g+dµ−
(∫

f−dµ +
∫

g−dµ

)
=
∫

f dµ +
∫

gdµ.

what about taking out scalars? First note that if a is real and nonnegative, then (a f )+ = a f+

and (a f )− = a f− while if a < 0, then (a f )+ = −a f− and (a f )− = −a f+. These claims
follow immediately from the above definitions of positive and negative parts of a function.
Thus if a < 0 and f ∈ L1 (Ω) , it follows from Theorem 9.6.1 that∫

a f dµ ≡
∫

(a f )+ dµ−
∫

(a f )− dµ =
∫

(−a) f−dµ−
∫

(−a) f+dµ

= −a
∫

f−dµ +a
∫

f+dµ = a
(∫

f+dµ−
∫

f−dµ

)
≡ a

∫
f dµ.

The case where a≥ 0 works out similarly but easier. ■
Now here is the main result.

Theorem 9.7.6 ∫
dµ is linear on L1 (Ω) and L1 (Ω) is a complex vector space. If

f ∈ L1 (Ω) , then Re f , Im f , and | f | are all in L1 (Ω) . Furthermore, for f ∈ L1 (Ω) ,∫
f dµ ≡

∫
(Re f )+ dµ−

∫
(Re f )− dµ + i

[∫
(Im f )+ dµ−

∫
(Im f )− dµ

]
≡

∫
Re f dµ + i

∫
Im f dµ
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and the triangle inequality holds, ∣∣∣∣∫ f dµ

∣∣∣∣≤ ∫ | f |dµ. (9.4)

Also, for every f ∈ L1 (Ω) it follows that for every ε > 0 there exists a simple function s
such that |s| ≤ | f | and

∫
| f − s|dµ < ε.

Proof: First consider the claim that the integral is linear. It was shown above that the
integral is linear on Re

(
L1 (Ω)

)
. Then letting a+ ib,c+ id be scalars and f ,g functions in

L1 (Ω) ,

(a+ ib) f +(c+ id)g = (a+ ib)(Re f + i Im f )+(c+ id)(Reg+ i Img)

= cRe(g)−b Im( f )−d Im(g)+aRe( f )+ i(bRe( f )+ c Im(g)+a Im( f )+d Re(g))

It follows from the definition that∫
(a+ ib) f +(c+ id)gdµ =

∫
(cRe(g)−b Im( f )−d Im(g)+aRe( f ))dµ

+i
∫

(bRe( f )+ c Im(g)+a Im( f )+d Re(g)) (9.5)

Also, from the definition,

(a+ ib)
∫

f dµ +(c+ id)
∫

gdµ = (a+ ib)
(∫

Re f dµ + i
∫

Im f dµ

)
+(c+ id)

(∫
Regdµ + i

∫
Imgdµ

)
which equals

= a
∫

Re f dµ−b
∫

Im f dµ + ib
∫

Re f dµ + ia
∫

Im f dµ

+c
∫

Regdµ−d
∫

Imgdµ + id
∫

Regdµ−d
∫

Imgdµ.

Using Lemma 9.7.5 and collecting terms, it follows that this reduces to 9.5. Thus the
integral is linear as claimed.

Consider the claim about approximation with a simple function. Letting h equal any
of

(Re f )+ ,(Re f )− ,(Im f )+ ,(Im f )− , (9.6)

It follows from the monotone convergence theorem and Theorem 8.1.6 on Page 181 there
exists a nonnegative simple function s ≤ h such that

∫
|h− s|dµ < ε

4 . Therefore, letting
s1,s2,s3,s4 be such simple functions, approximating respectively the functions listed in
9.6, and s≡ s1− s2 + i(s3− s4) ,∫

| f − s|dµ ≤
∫ ∣∣(Re f )+− s1

∣∣dµ +
∫ ∣∣(Re f )−− s2

∣∣dµ

+
∫ ∣∣(Im f )+− s3

∣∣dµ +
∫ ∣∣(Im f )−− s4

∣∣dµ < ε
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It is clear from the construction that |s| ≤ | f |.
What about 9.4? Let θ ∈ C be such that |θ | = 1 and θ

∫
f dµ = |

∫
f dµ| . Then from

what was shown above about the integral being linear,∣∣∣∣∫ f dµ

∣∣∣∣= θ

∫
f dµ =

∫
θ f dµ =

∫
Re(θ f )dµ ≤

∫
| f |dµ.

If f ,g ∈ L1 (Ω) , then it is known that for a,b scalars, it follows that a f +bg is measur-
able. See Lemma 9.7.2. Also

∫
|a f +bg|dµ ≤

∫
|a| | f |+ |b| |g|dµ < ∞. ■

The following corollary follows from this. The conditions of this corollary are some-
times taken as a definition of what it means for a function f to be in L1 (Ω).

Corollary 9.7.7 f ∈ L1(Ω) if and only if there exists a sequence of complex simple
functions, {sn} such that

sn (ω)→ f (ω) for all ω ∈Ω

limm,n→∞

∫
(|sn− sm|)dµ = 0 (9.7)

When f ∈ L1 (Ω) , ∫
f dµ ≡ lim

n→∞

∫
sn. (9.8)

Proof: From the above theorem, if f ∈ L1 there exists a sequence of simple functions
{sn} such that ∫

| f − sn|dµ < 1/n, sn (ω)→ f (ω) for all ω

Then
∫
|sn− sm|dµ ≤

∫
|sn− f |dµ +

∫
| f − sm|dµ ≤ 1

n +
1
m .

Next suppose the existence of the approximating sequence of simple functions. Then
f is measurable because its real and imaginary parts are the limit of measurable functions.
By Fatou’s lemma,

∫
| f |dµ ≤ liminfn→∞

∫
|sn|dµ < ∞ because |

∫
|sn|dµ−

∫
|sm|dµ| ≤∫

|sn− sm|dµ which is given to converge to 0. Thus {
∫
|sn|dµ} is a Cauchy sequence and

is therefore, bounded.
In case f ∈ L1 (Ω) , letting {sn} be the approximating sequence, Fatou’s lemma implies∣∣∣∣∫ f dµ−

∫
sndµ

∣∣∣∣≤ ∫ | f − sn|dµ ≤ lim inf
m→∞

∫
|sm− sn|dµ < ε

provided n is large enough. Hence 9.8 follows. ■
This is a good time to observe the following fundamental observation which follows

from a repeat of the above arguments.

Theorem 9.7.8 Suppose Λ( f ) ∈ [0,∞] for all nonnegative measurable functions
and suppose that for a,b≥ 0 and f ,g nonnegative measurable functions,

Λ(a f +bg) = aΛ( f )+bΛ(g) .

In other words, Λ wants to be linear. Then Λ has a unique linear extension to the set of
measurable functions { f measurable : Λ(| f |)< ∞} , this set being a vector space.
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9.8 The Dominated Convergence Theorem
One of the major theorems in this theory is the dominated convergence theorem. Before
presenting it, here is a technical lemma about limsup and liminf which is really pretty
obvious from the definition.

Lemma 9.8.1 Let {an} be a sequence in [−∞,∞] . Then limn→∞ an exists if and only if
liminfn→∞ an = limsupn→∞ an and in this case, the limit equals the common value of these
two numbers.

Proof: Suppose first limn→∞ an = a ∈ R. Letting ε > 0 be given, an ∈ (a− ε,a+ ε)
for all n large enough, say n ≥ N. Therefore, both inf{ak : k ≥ n} and sup{ak : k ≥ n} are
contained in [a− ε,a+ ε] whenever n ≥ N. It follows limsupn→∞ an and liminfn→∞ an are
both in [a− ε,a+ ε] , showing |liminfn→∞ an− limsupn→∞ an| < 2ε. Since ε is arbitrary,
the two must be equal and they both must equal a. Next suppose limn→∞ an =∞. Then if l ∈
R, there exists N such that for n≥ N, l ≤ an and therefore, for such n, l ≤ inf{ak : k ≥ n} ≤
sup{ak : k ≥ n} and this shows, since l is arbitrary that liminfn→∞ an = limsupn→∞ an = ∞.
The case for −∞ is similar.

Conversely, suppose liminfn→∞ an = limsupn→∞ an = a. Suppose first that a∈R. Then,
letting ε > 0 be given, there exists N such that if n≥N,sup{ak : k ≥ n}− inf{ak : k ≥ n}<
ε. Therefore, if k,m > N, and ak > am,

|ak−am|= ak−am ≤ sup{ak : k ≥ n}− inf{ak : k ≥ n}< ε

showing that {an} is a Cauchy sequence. Therefore, it converges to a ∈ R, and as in the
first part, the liminf and limsup both equal a. If liminfn→∞ an = limsupn→∞ an = ∞, then
given l ∈ R, there exists N such that for n ≥ N, infn>N an > l.Therefore, limn→∞ an = ∞.
The case for −∞ is similar. ■

Here is the dominated convergence theorem.

Theorem 9.8.2 (Dominated Convergence theorem) Let fn ∈L1(Ω) and suppose that
f (ω) = limn→∞ fn(ω), and there exists a measurable function g, with values in [0,∞],1 such
that | fn(ω)| ≤ g(ω) and

∫
g(ω)dµ < ∞.Then f ∈ L1 (Ω) and 0 = limn→∞

∫
| fn− f |dµ =

limn→∞ |
∫

f dµ−
∫

fndµ|.

Proof: f is measurable by Theorem 8.1.2. Since | f | ≤ g, it follows that

f ∈ L1(Ω) and | f − fn| ≤ 2g.

By Fatou’s lemma (Theorem 9.5.1),∫
2gdµ ≤ lim inf

n→∞

∫
2g−| f − fn|dµ =

∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ.

Subtracting
∫

2gdµ , 0≤− limsupn→∞

∫
| f − fn|dµ. Hence

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

∣∣∣∣∫ f dµ−
∫

fndµ

∣∣∣∣≥ 0.

This proves the theorem by Lemma 9.8.1 because the limsup and liminf are equal. ■

1Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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Corollary 9.8.3 Suppose fn ∈ L1 (Ω) and f (ω) = limn→∞ fn (ω) . Suppose also there
exist measurable functions, gn, g with values in [0,∞] such that limn→∞

∫
gndµ =

∫
gdµ ,

gn (ω)→ g(ω) µ a.e. and both
∫

gndµ and
∫

gdµ are finite. Also suppose | fn (ω)| ≤
gn (ω) . Then limn→∞

∫
| f − fn|dµ = 0.

Proof: It is just like the above. This time g+gn−| f − fn| ≥ 0 and so by Fatou’s lemma,∫
2gdµ− lim sup

n→∞

∫
| f − fn|dµ = lim

n→∞

∫
(gn +g)dµ− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
(gn +g)dµ− lim sup

n→∞

∫
| f − fn|dµ

= lim inf
n→∞

∫
((gn +g)−| f − fn|)dµ ≥

∫
2gdµ

and so − limsupn→∞

∫
| f − fn|dµ ≥ 0. Thus

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥
∣∣∣∣∫ f dµ−

∫
fndµ

∣∣∣∣≥ 0. ■

Definition 9.8.4 Let E be a measurable subset of Ω.
∫

E f dµ ≡
∫

f XEdµ.

If L1(E) is written, the σ algebra is defined as {E ∩A : A ∈ F} and the measure is
µ restricted to this smaller σ algebra. Clearly, if f ∈ L1(Ω), then f XE ∈ L1(E) and if
f ∈ L1(E), then letting f̃ be the 0 extension of f off of E, it follows f̃ ∈ L1(Ω).

Another very important observation applies to the case where Ω is also a metric space.
In this lemma, spt( f ) denotes the closure of the set on which f is nonzero.

Definition 9.8.5 Let K be a set and let V be an open set containing K. Then the
notation K ≺ f ≺ V means that f (x) = 1 for all x ∈ K and spt( f ) is a compact subset of
V . spt( f ) is defined as the closure of the set where f is not zero. It is called the “support”
of f . A function f ∈ Cc (Ω) for Ω a metric space if f is continuous on Ω and spt( f ) is
compact. This Cc (Ω) is called the continuous functions with compact support.

Now that the Lebesgue integral has been presented, it is time to show the way that the
measure of Theorem 8.8.2 represents the functional.

Proposition 9.8.6 Let L be a positive linear functional on Cc (X) for X a metric space
and let µ be the measure described by Theorem 8.8.2. Then for all f ∈ Cc (X) ,L( f ) =∫

X f dµ where this is the Lebesgue integral just described.

Proof: Let f ∈Cc(X), f real-valued, and suppose f (X)⊆ [a,b]. Choose t0 < a and let
t0 < t1 < · · · < tn = b, ti− ti−1 < ε . Let Ei = f−1((ti−1, ti])∩ spt( f ). Note that ∪n

i=1Ei is a
closed set equal to spt( f ). ∪n

i=1Ei = spt( f ). Since X = ∪n
i=1 f−1((ti−1, ti]). Let Vi ⊇ Ei,Vi is

open and let Vi satisfy

f (x)< ti + ε for all x ∈Vi, µ(Vi \Ei)< ε/n. (9.9)
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By Theorem 3.12.5, there exists hi ∈Cc(X) such that

hi ≺Vi,
n

∑
i=1

hi(x) = 1 on spt( f ).

Now note that for each i, f (x)hi(x)≤ hi(x)(ti + ε). Therefore,

L f = L(
n

∑
i=1

f hi)≤ L(
n

∑
i=1

hi(ti + ε)) =
n

∑
i=1

(ti + ε)L(hi)

=
n

∑
i=1

(|t0|+ ti + ε)L(hi)−|t0|L

(
n

∑
i=1

hi

)
.

Now note that |t0|+ ti + ε ≥ 0 and so from the definition of µ and Claim 2 of the proof of
Theorem 8.8.2, this is no larger than

n

∑
i=1

(|t0|+ ti + ε)µ(Vi)−|t0|µ(spt( f ))≤
n

∑
i=1

(|t0|+ ti + ε)(µ(Ei)+ ε/n)−|t0|µ(spt( f ))

≤ |t0|

µ(spt( f ))︷ ︸︸ ︷
n

∑
i=1

µ(Ei)+
ε

n
n |t0|+∑

i
tiµ (Ei)+∑

i
ti

ε

n
+∑

i
εµ (Ei)+

ε2

n
−|t0|µ(spt( f ))

≤ ε |t0|+ ε (|t0|+ |b|)+ εµ(spt( f ))+ ε
2 +∑

i
tiµ (Ei)

≤ ε |t0|+ ε (|t0|+ |b|)+2εµ(spt( f ))+ ε
2 +

n

∑
i=1

ti−1µ(Ei)

≤ ε (2 |t0|+ |b|+2µ(spt( f ))+ ε)+
∫

f dµ

Since ε > 0 is arbitrary, L f ≤
∫

f dµ for all f ∈Cc(X), f real. Hence equality holds because
L(− f ) ≤ −

∫
f dµ so L( f ) ≥

∫
f dµ . Thus L f =

∫
f dµ for all f ∈ Cc(X). Just apply the

result for real functions to the real and imaginary parts of f . ■

9.9 Some Important General Theory
9.9.1 Eggoroff’s Theorem
You might show that a sequence of measurable real or complex valued functions converges
on a measurable set. This is Proposition 8.1.7 above. Eggoroff’s theorem says that if the
set of points where a sequence of measurable functions converges is all but a set of measure
zero, then the sequence almost converges uniformly in a certain sense.

Theorem 9.9.1 (Egoroff) Let (Ω,F ,µ) be a finite measure space, µ (Ω) < ∞ and
let fn, f be complex valued functions such that Re fn, Im fn are all measurable and also
that limn→∞ fn(ω) = f (ω) for all ω /∈ E where µ(E) = 0. Then for every ε > 0, there exists
a set, F ⊇ E, µ(F)< ε, such that fn converges uniformly to f on FC.
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Proof: First suppose E = /0 so that convergence is pointwise everywhere. It follows
then that Re f and Im f are pointwise limits of measurable functions and are therefore
measurable. Let Ekm = {ω ∈Ω : | fn(ω)− f (ω)| ≥ 1/m for some n > k}. Note that

| fn (ω)− f (ω)|=
√

(Re fn (ω)−Re f (ω))2 +(Im fn (ω)− Im f (ω))2

and so,
[
| fn− f | ≥ 1

m

]
is measurable. Hence Ekm is measurable because

Ekm = ∪∞
n=k+1

[
| fn− f | ≥ 1

m

]
.

For fixed m,∩∞
k=1Ekm = /0 because fn converges to f . Therefore, if ω ∈ Ω there exists

k such that if n > k, | fn (ω)− f (ω)| < 1
m which means ω /∈ Ekm. Note also that Ekm ⊇

E(k+1)m. Since µ(E1m)< ∞, Theorem 8.2.4 on Page 183 implies

0 = µ(∩∞
k=1Ekm) = lim

k→∞
µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m) < ε2−m and let F = ∪∞
m=1Ek(m)m. Then µ(F) <

ε because µ (F)≤ ∑
∞
m=1 µ

(
Ek(m)m

)
< ∑

∞
m=1 ε2−m = ε.

Now let η > 0 be given and pick m0 such that m−1
0 < η . If ω ∈FC, then ω ∈

∞⋂
m=1

EC
k(m)m.

Hence ω ∈ EC
k(m0)m0

so | fn(ω)− f (ω)| < 1/m0 < η for all n > k(m0). This holds for all

ω ∈ FCand so fn converges uniformly to f on FC.
Now if E ̸= /0, consider {XEC fn}∞

n=1. Each XEC fn has real and imaginary parts mea-
surable and the sequence converges pointwise to XE f everywhere. Therefore, from the
first part, there exists a set of measure less than ε,F such that on FC,{XEC fn} converges
uniformly to XEC f . Therefore, on (E ∪F)C , { fn} converges uniformly to f . This proves
the theorem. ■

9.9.2 The Vitali Convergence Theorem
The Vitali convergence theorem is a convergence theorem which in the case of a finite
measure space is superior to the dominated convergence theorem.

Definition 9.9.2 Let (Ω,F ,µ) be a measure space and let S ⊆ L1(Ω). S is uni-
formly integrable if for every ε > 0 there exists δ > 0 such that for all f ∈S

|
∫

E
f dµ|< ε whenever µ(E)< δ .

Lemma 9.9.3 If S is uniformly integrable, then |S| ≡ {| f | : f ∈S} is uniformly inte-
grable. Also S is uniformly integrable if S is finite.

Proof: Let ε > 0 be given and suppose S is uniformly integrable. First suppose the
functions are real valued. Let δ be such that if µ (E)< δ , then |

∫
E f dµ|< ε

2 for all f ∈S.
Let µ (E)< δ . Then if f ∈S,∫

E
| f |dµ ≤

∫
E∩[ f≤0]

(− f )dµ +
∫

E∩[ f>0]
f dµ =

∣∣∣∣∫E∩[ f≤0]
f dµ

∣∣∣∣+ ∣∣∣∣∫E∩[ f>0]
f dµ

∣∣∣∣
<

ε

2
+

ε

2
= ε.
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In general, if S is a uniformly integrable set of complex valued functions, the inequalities,∣∣∣∣∫E
Re f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ , ∣∣∣∣∫E
Im f dµ

∣∣∣∣≤ ∣∣∣∣∫E
f dµ

∣∣∣∣ ,
imply ReS ≡ {Re f : f ∈S} and ImS ≡ {Im f : f ∈S} are also uniformly integrable.
Therefore, applying the above result for real valued functions to these sets of functions, it
follows |S| is uniformly integrable also.

For the last part, is suffices to verify a single function in L1 (Ω) is uniformly integrable.
To do so, note that from the dominated convergence theorem, limR→∞

∫
[| f |>R] | f |dµ = 0.

Let ε > 0 be given and choose R large enough that
∫
[| f |>R] | f |dµ < ε

2 . Now let µ (E)< ε

2R .
Then ∫

E
| f |dµ =

∫
E∩[| f |≤R]

| f |dµ +
∫

E∩[| f |>R]
| f |dµ

< Rµ (E)+
ε

2
<

ε

2
+

ε

2
= ε.

This proves the lemma. ■
The following gives a nice way to identify a uniformly integrable set of functions.

Lemma 9.9.4 Let S be a subset of L1 (Ω,µ) where µ (Ω) < ∞. Let t → h(t) be a
continuous function which satisfies limt→∞

h(t)
t = ∞. Then S is uniformly integrable and

bounded in L1 (Ω) if sup{
∫

Ω
h(| f |)dµ : f ∈S}= N < ∞.

Proof: First I show S is bounded in L1 (Ω; µ) which means there exists a constant M
such that for all f ∈S,

∫
Ω
| f |dµ ≤M. From the properties of h, there exists Rn such that

if t ≥ Rn, then h(t) ≥ nt. Therefore,
∫

Ω
| f |dµ =

∫
[| f |≥Rn]

| f |dµ +
∫
[| f |<Rn]

| f |dµ. Letting
n = 1, and f ∈S,∫

Ω

| f |dµ =
∫
[| f |≥R1]

| f |dµ +
∫
[| f |<R1]

| f |dµ

≤
∫
[| f |≥R1]

h(| f |)dµ +R1µ ([| f |< R1])≤ N +R1µ (Ω)≡M. (9.10)

Next let E be a measurable set. Then for every f ∈S, it follows from 9.10∫
E
| f |dµ =

∫
[| f |≥Rn]∩E

| f |dµ +
∫
[| f |<Rn]∩E

| f |dµ

≤ 1
n

∫
Ω

| f |dµ +Rnµ (E)≤ M
n
+Rnµ (E) (9.11)

Let n be large enough that M/n < ε/2 and then let µ (E) < ε/2Rn. Then 9.11 is less than
ε/2+Rn (ε/2Rn) = ε ■

Letting h(t)= t2, it follows that if all the functions in S are bounded, then the collection
of functions is uniformly integrable. Another way to discuss uniform integrability is the
following. This other way involving equi-integrability is used a lot in probability.

Definition 9.9.5 Let (Ω,F ,µ) be a measure space with µ (Ω) < ∞. A set S ⊆
L1 (Ω) is said to be equi-integrable if for every ε > 0 there exists λ > 0 sufficiently large,
such that

∫
[| f |>λ ] | f |dµ < ε for all f ∈S.
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Then the relation between this and uniform integrability is as follows.

Proposition 9.9.6 In the context of the above definition, S is equi-integrable if and
only if it is a bounded subset of L1 (Ω) which is also uniformly integrable.

Proof: ⇒ I need to show S is bounded and uniformly integrable. First consider
bounded. Choose λ to work for ε = 1. Then for all f ∈S,∫

| f |dµ =
∫
[| f |>λ ]

| f |dµ +
∫
[| f |≤λ ]

| f | ≤ 1+λ µ (Ω)

Thus it is bounded. Now let E be a measurable subset of Ω. Let λ go with ε/2 in the
definition of equi-integrable. Then for all f ∈S,∫

E
| f |dµ ≤

∫
[| f |>λ ]

| f |dµ +
∫

E∩[| f |≤λ ]
| f |dµ ≤ ε

2
+λ µ (E)

Then let µ (E) be small enough that λ µ (E)< ε/2 and this shows uniform integrability.
⇐ I need to verify equi-integrable from bounded and uniformly integrable. Let δ be

such that if µ (E) < δ , then
∫

E | f |dµ < ε for all f ∈ S. If not, then there exists fn ∈ S
with [| fn|> n]> δ . Thus

∫
| fn|dµ ≥

∫
[| fn|>n] | fn|dµ ≥ nµ ([| fn|> n])> nδ and so S is not

bounded after all. ■
The following theorem is Vitali’s convergence theorem.

Theorem 9.9.7 Let { fn} be a uniformly integrable set of complex valued functions,
µ(Ω)< ∞, and fn(x)→ f (x) a.e. where f is a measurable complex valued function. Then
f ∈ L1 (Ω) and limn→∞

∫
Ω
| fn− f |dµ = 0.

Proof: First it will be shown that f ∈ L1 (Ω). By uniform integrability, there exists
δ > 0 such that if µ (E) < δ , then

∫
E | fn|dµ < 1 for all n. By Egoroff’s theorem, there

exists a set E of measure less than δ such that on EC, { fn} converges uniformly. There-
fore, for p large enough, and n > p,

∫
EC

∣∣ fp− fn
∣∣dµ < 1 which implies

∫
EC | fn|dµ <

1+
∫

Ω

∣∣ fp
∣∣dµ.Then since there are only finitely many functions, fn with n≤ p, there exists

a constant, M1 such that for all n,
∫

EC | fn|dµ < M1. But also,∫
Ω

| fm|dµ =
∫

EC
| fm|dµ +

∫
E
| fm| ≤M1 +1≡M.

Therefore, by Fatou’s lemma,
∫

Ω
| f |dµ ≤ liminfn→∞

∫
| fn|dµ ≤ M, showing that f ∈ L1

as hoped.
Now S∪{ f} is uniformly integrable so there exists δ 1 > 0 such that if µ (E) < δ 1,

then
∫

E |g|dµ < ε/3 for all g ∈ S∪{ f}.
By Egoroff’s theorem, there exists a set, F with µ (F) < δ 1 such that fn converges

uniformly to f on FC. Therefore, there exists m such that if n>m, then
∫

FC | f − fn|dµ < ε

3 .
It follows that for n > m,∫

Ω

| f − fn|dµ ≤
∫

FC
| f − fn|dµ +

∫
F
| f |dµ +

∫
F
| fn|dµ <

ε

3
+

ε

3
+

ε

3
= ε,

which verifies the claim of the theorem. ■
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9.10 The Distribution Function
For (Ω,F ,µ) a measure space, the integral of a nonnegative measurable function was de-
fined earlier as

∫
f dµ ≡

∫
∞

0 µ ([ f > t])dt. This idea will be developed more in this section.

Definition 9.10.1 Let f ≥ 0 and suppose f is measurable. The distribution function
is the function defined by t→ µ ([t < f ]) .

Lemma 9.10.2 If { fn} is an increasing sequence of functions converging pointwise to
f then µ ([ f > t]) = limn→∞ µ ([ fn > t]) .

Proof: The sets, [ fn > t] are increasing and their union is [ f > t] because if f (ω) > t,
then for all n large enough, fn (ω)> t also. Therefore, the desired conclusion follows from
properties of measures, the one which says that if En ↑ E, then µ (En) ↑ µ (E). ■

Note how it was important to have strict inequality in the definition.

Lemma 9.10.3 Suppose s ≥ 0 is a simple function, s(ω) ≡ ∑
n
k=1 akXEk (ω) where the

ak are the distinct nonzero values of s,0 < a1 < a2 < · · · < an on the measurable sets Ek.
Suppose φ is a C1 function defined on [0,∞) which has the properties that φ (0) = 0, and
also that φ

′ (t)> 0 for all t. Then∫
∞

0
φ
′ (t)µ ([s > t])dm(t) =

∫
φ (s)dµ (s) .

Proof: First note that if µ (Ek) = ∞ for any k then both sides equal ∞ and so without
loss of generality, assume µ (Ek)< ∞ for all k. Letting a0 ≡ 0, the left side equals

n

∑
k=1

∫ ak

ak−1

φ
′ (t)µ ([s > t])dm(t) =

n

∑
k=1

∫ ak

ak−1

φ
′ (t)

n

∑
i=k

µ (Ei)dm

=
n

∑
k=1

n

∑
i=k

µ (Ei)
∫ ak

ak−1

φ
′ (t)dm =

n

∑
k=1

n

∑
i=k

µ (Ei)(φ (ak)−φ (ak−1))

=
n

∑
i=1

µ (Ei)
i

∑
k=1

(φ (ak)−φ (ak−1)) =
n

∑
i=1

µ (Ei)φ (ai) =
∫

φ (s)dµ. ■

With this lemma the next theorem which is the main result follows easily.

Theorem 9.10.4 Let f ≥ 0 be measurable and let φ be a C1 function defined on
[0,∞) which satisfies φ

′ (t)> 0 for all t > 0 and φ (0) = 0. Then∫
φ ( f )dµ =

∫
∞

0
φ
′ (t)µ ([ f > t])dm.

Proof: By Theorem 8.1.6 on Page 181 there exists an increasing sequence of nonnega-
tive simple functions, {sn} which converges pointwise to f . By the monotone convergence
theorem and Lemma 9.10.2,∫

φ ( f )dµ = lim
n→∞

∫
φ (sn)dµ = lim

n→∞

∫
∞

0
φ
′ (t)µ ([sn > t])dm

=
∫

∞

0
φ
′ (t)µ ([ f > t])dm ■
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9.11 Radon Nikodym Theorem
Let µ,ν be two finite measures on the measurable space (Ω,F ) and let α ≥ 0. Let λ ≡
ν−αµ . Then it is clear that if {Ei}∞

i=1 are disjoint sets of F , then λ (∪iEi) = ∑
∞
i=1 λ (Ei)

and that the series converges. The next proposition is fairly obvious.

Proposition 9.11.1 Let (Ω,F ,λ ) be a measure space and let λ : F → [0,∞) be a
measure. Then λ is a finite measure.

Proof: Since λ (Ω)< ∞ this is a finite measure. ■

Definition 9.11.2 Let (Ω,F ) be a measurable space and let λ : F →R satisfy: If
{Ei}∞

i=1 are disjoint sets of F , then λ (∪iEi) = ∑
∞
i=1 λ (Ei) and the series converges. Such

a real valued function is called a signed measure. In this context, a set E ∈F is called
positive if whenever F is a measurable subset of E, it follows λ (F) ≥ 0. A negative set is
defined similarly. Note that this requires λ (Ω) ∈ R.

Lemma 9.11.3 The countable union of disjoint positive sets is positive.

Proof: Let Ei be positive and consider E ≡ ∪∞
i=1Ei. If A ⊆ E with A measurable, then

A∩Ei ⊆ Ei and so λ (A∩Ei)≥ 0. Hence λ (A) = ∑i λ (A∩Ei)≥ 0. ■

Lemma 9.11.4 Let λ be a signed measure on (Ω,F ). If E ∈F with 0 < λ (E), then E
has a measurable subset which is positive.

Proof: If every measurable subset F of E has λ (F) ≥ 0, then E is positive and we
are done. Otherwise there exists measurable F ⊆ E with λ (F)< 0. Let the elements of F
consist of sets of disjoint sets of measurable subsets of E each of which has measure less
than 0. Partially order F by set inclusion. By the Hausdorff maximal theorem, Theorem
2.8.4, there is a maximal chain C . Then ∪C is a set consisting of disjoint measurable sets
F ∈F such that λ (F)< 0. Since each set in ∪C has measure strictly less than 0, it follows
that ∪C is a countable set, {Fi}∞

i=1 . Otherwise, there would exist an infinite subset of ∪C
with each set having measure less than − 1

n for some n ∈ N so λ would not be real valued.
Letting F = ∪iFi, then E \F has no measurable subsets S for which λ (S) < 0 since, if it
did, C would not have been maximal. Thus E \F is positive. ■

A major result is the following, called a Hahn decomposition.

Theorem 9.11.5 Let λ be a signed measure on a measurable space (Ω,F ) . Then
there are disjoint measurable sets P,N such that P is a positive set, N is a negative set, and
P∪N = Ω.

Proof: If Ω is either positive or negative, there is nothing to show, so suppose Ω is
neither positive nor negative. F will consist of collections of disjoint measurable sets F
such that λ (F)> 0. Thus each element of F is necessarily countable. Partially order F by
set inclusion and use the Hausdorff maximal theorem to get C a maximal chain. Then, as
in the above lemma, ∪C is countable, say {Pi}∞

i=1 because λ (F)> 0 for each F ∈ ∪C and
λ has values in R. The sets in ∪C are disjoint because if A,B are two of them, then they
are both in a single element of C . Letting P ≡ ∪iPi, and N = PC, it follows from Lemma
9.11.3 that P is positive. It is also the case that N must be negative because otherwise, C
would not be maximal. ■
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Clearly a Hahn decomposition is not unique. For example, you could have obtained
a different Hahn decomposition if you had considered disjoint negative sets F for which
λ (F)< 0 in the above argument. I will only use the case where ν≪ µ which is to say that
ν is absolutely continuous with respect to µ which is defined next.

Definition 9.11.6 Let µ,ν be finite measures on (Ω,F ). Then ν ≪ µ means that
whenever µ (E) = 0, it follows that ν (E) = 0.

Let k ∈ N,
{

αk
n
}∞

n=0 be equally spaced points αk
n = 2−kn. Then αk

2n = 2−k (2n) =
2−(k−1)n≡ αk−1

n and α
k+1
2n ≡ 2−(k+1)2n = αk

n. Similarly Nk+1
2n = Nk

n because these depend
on the αk

n. Also let
(
Pk

n ,N
k
n
)

be a Hahn decomposition for the signed measure ν −αk
nµ

where ν ,µ are two finite measures. Now from the definition, Nk
n+1 \Nk

n = Nk
n+1∩Pk

n . Also,
Nn ⊆ Nn+1 for each n and we can take N0 = /0 because ν (N0) ≤ 0 Then

{
Nk

n+1 \Nk
n
}∞

n=0
covers all of Ω except for a set of ν measure 0.

Lemma 9.11.7 Let S≡Ω\
(
∪nNk

n
)
= Ω\

(
∪nNl

n
)

for any l. Then µ (S) = 0.

Proof: S = ∩nPk
n so for all n,ν (S)−αk

nµ (S) ≥ 0. But letting n→ ∞, it must be that
µ (S) = 0. ■

By the assumption that ν ≪ µ, we can neglect S because this also implies ν (S) = 0.
Thus, asside from a set of µ and ν measure zero, Ω = ∪nNk

n .
As just noted, if E ⊆ Nk

n+1 \Nk
n , then

ν (E)−α
k
nµ (E)≥ 0≥ ν (E)−α

k
n+1µ (E) , so α

k
n+1µ (E)≥ ν (E)≥ α

k
nµ (E) (9.12)

Nk
n

Nk
n+1

αk
n+1µ(E)≥ ν(E)≥ αk

nµ(E)

Then define f k (ω)≡ ∑
∞
n=0 αk

nX∆k
n
(ω) where ∆k

m ≡ Nk
m+1 \Nk

m. Thus,

f k =
∞

∑
n=0

α
k+1
2n X(Nk+1

2n+2\N
k+1
2n ) =

∞

∑
n=0

α
k+1
2n X

∆
k+1
2n+1

+
∞

∑
n=0

α
k+1
2n X

∆
k+1
2n

≤
∞

∑
n=0

α
k+1
2n+1X∆

k+1
2n+1

+
∞

∑
n=0

α
k+1
2n X

∆
k+1
2n

= f k+1 (9.13)

Thus k → f k (ω) is increasing. Let f (ω) ≡ limk→∞ f k (ω). Then using 9.12, if E is a
measurable set,∫

XE f kdµ ≤
∞

∑
n=0

α
k
n+1µ

(
E ∩∆

k
n

)
≤

∞

∑
n=0

α
k
nµ

(
E ∩∆

k
n

)
+

∞

∑
n=0

2−k
µ

(
E ∩∆

k
n

)

≤
∞

∑
n=0

ν

(
E ∩∆

k
n

)
+2−k

µ (E) = ν (E)+2−k
µ (E)≤

∫
XE f kdµ +2−k

µ (E) (9.14)

From the monotone convergence theorem it follows ν (E) =
∫

XE f dµ .
This proves the following major theorem called the Radon Nikodym theorem.
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Theorem 9.11.8 Let ν and µ be finite measures defined on a measurable space
(Ω,F ) where ν ≪ µ . Then there exists a unique up to a set of measure zero nonnegative
measurable function ω → f (ω) such that ν (E) =

∫
E f dµ.

Proof: If you had f̂ which also works, then consider the set En where f̂ (ω)> f (ω)+
1/n. Then 0 =

∫
En

(
f̂ (ω)− f (ω)

)
dµ ≥ 1

n µ (En) . Thus µ (En) = 0 and so also[
f̂ − f > 0

]
= ∪nEn

is a set of measure 0. Similarly
[

f − f̂ > 0
]

is a set of measure zero and so f = f̂ for a.e.
ω . ■

Sometimes people write f = dλ

dµ
and dλ

dµ
is called the Radon Nikodym derivative.

Corollary 9.11.9 In the above situation, let λ be a signed measure and let λ ≪ µ

meaning that if µ (E) = 0⇒ λ (E) = 0. Here assume that µ is a finite measure. Then there
exists a unique up to a set of measure zero h ∈ L1 such that λ (E) =

∫
E hdµ .

Proof: Let P∪N be a Hahn decomposition of λ . Let

λ+ (E)≡ λ (E ∩P) , λ− (E)≡−λ (E ∩N) .

Then both λ+ and λ− are absolutely continuous measures and so there are nonnegative h+
and h− with λ− (E) =

∫
E h−dµ and a similar equation for λ+. Then 0 ≤ −λ (Ω∩N) ≤

λ− (Ω) < ∞, similar for λ+ so both of these measures are necessarily finite. Hence
both h− and h+ are in L1 so h ≡ h+− h− is also in L1 and λ (E) = λ+ (E)− λ− (E) =∫

E (h+−h−)dµ . ■

Definition 9.11.10 A measure space (Ω,F ,µ) is σ finite if there are countably
many measurable sets {Ωn} such that µ is finite on measurable subsets of Ωn.

There is a routine corollary of the above theorem.

Corollary 9.11.11 Suppose µ,ν are both σ finite measures defined on (Ω,F ) with
ν ≪ µ . Then a similar conclusion to the above theorem can be obtained. ν (E) =

∫
E f dµ

for f a nonnegative measurable function. If ν (Ω) < ∞, then f ∈ L1 (Ω). This f is unique
up to a set of µ measure zero.

Proof: Since both µ,ν are σ finite, there are
{

Ω̃k
}∞

k=1 such that ν
(
Ω̃k
)
,µ
(
Ω̃k
)

are

finite. Let Ω0 = /0 and Ωk ≡ Ω̃k \
(
∪k−1

j=0Ω̃ j

)
so that µ,ν are finite on Ωk and the Ωk are dis-

joint. Let Fk be the measurable subsets of Ωk, equivalently the intersections with Ωk with
sets of F . Now let νk (E) ≡ ν (E ∩Ωk) , similar for µk. By Theorem 9.11.8, there exists
fk as described there, unique up to sets of µ measure 0. Thus νk (E) =

∫
E∩Ωk

fkdµk.Now
let f (ω)≡ fk (ω) for ω ∈Ωk. Thus ν (E ∩Ωk) =

∫
E∩Ωk

f dµ . Summing over all k,ν (E) =∫
E f dµ. ■

9.12 Iterated Integrals
This is about what can be said for the σ algebra of product measurable sets. First it is
necessary to define what this means.
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Definition 9.12.1 A measure space (Ω,F ,µ) is called σ finite if there are mea-
surable subsets Ωn such that µ (Ωn)< ∞ and Ω = ∪∞

n=1Ωn.

Next is a σ algebra which comes from two σ algebras.

Definition 9.12.2 Let (X ,E ) ,(Y,F ) be measurable spaces. That is, a set with a
σ algebra of subsets. Then E ×F will be the smallest σ algebra which contains the
measurable rectangles, sets of the form E×F where E ∈ E , F ∈F . The sets in this new
σ algebra are called product measurable sets.

Definition 9.12.3 Given two finite measure spaces, (X ,E ,µ) and (Y,F ,ν) ,one
can define a new measure µ×ν defined on E ×F by specifying what it does to measurable
rectangles as follows:

(µ×ν)(A×B) = µ (A)ν (B)

whenever A ∈ E and B ∈F .

We also have the following important proposition which holds in every context inde-
pendent of any measure.

Proposition 9.12.4 Let E ⊆ E ×F be product measurable E ×F where E is a σ

algebra of sets of X and F is a σ algebra of sets of Y . then if Ex ≡ {y ∈ Y : (x,y) ∈ E} and
Ey ≡ {x ∈ X : (x,y) ∈ E} , then Ex ∈ E and Ey ∈F .

Proof: It is obvious that if K is the measurable rectangles, then the conclusion of the
proposition holds. If G consists of the sets of E ×F for which the proposition holds,
then it is clearly closed with respect to countable disjoint unions and complements. This is
obvious in the case of a countable disjoint union since

(
∪iE i

)
x = ∪iE i

x, similar for y. As
to complement, if E ∈ G , then Ex ∈F and so

(
EC
)

x = (Ex)
C ∈F . It is similar for y. By

Lemma 8.3.2, Dynkin’s lemma, G ⊇ E ×F . However G was defined as a subset of E ×F
so these are equal. ■

Let (X ,E ,µ) and (Y,F ,ν) be two finite measure spaces. Define K to be the set of
measurable rectangles, A×B, A ∈ E and B ∈F . Let

G ≡
{

E ⊆ X×Y :
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ

}
(9.15)

where in the above, part of the requirement is for all integrals to make sense.
Then K ⊆ G . This is obvious.
Next I want to show that if E ∈ G then EC ∈ G . Observe XEC = 1−XE and so∫

Y

∫
X

XEC dµdν =
∫

Y

∫
X
(1−XE)dµdν =

∫
X

∫
Y
(1−XE)dνdµ

=
∫

X

∫
Y

XEC dνdµ

which shows that if E ∈ G , then EC ∈ G .
Next is to show G is closed under countable unions of disjoint sets of G . Let {Ai}

be a sequence of disjoint sets from G . Then, using the monotone convergence theorem as
needed, ∫

Y

∫
X

X∪∞
i=1Aidµdν =

∫
Y

∫
X

∞

∑
i=1

XAidµdν =
∫

Y

∞

∑
i=1

∫
X

XAidµdν
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=
∞

∑
i=1

∫
Y

∫
X

XAidµdν =
∞

∑
i=1

∫
X

∫
Y

XAidνdµ

=
∫

X

∞

∑
i=1

∫
Y

XAidνdµ =
∫

X

∫
Y

∞

∑
i=1

XAidνdµ =
∫

X

∫
Y

X∪∞
i=1Aidνdµ, (9.16)

Thus G is closed with respect to countable disjoint unions.
From Lemma 8.3.2, G ⊇ σ (K ) , the smallest σ algebra containing K . Also the com-

putation in 9.16 implies that on σ (K ) one can define a measure, denoted by µ × ν and
that for every E ∈ σ (K ) ,

(µ×ν)(E) =
∫

Y

∫
X

XEdµdν =
∫

X

∫
Y

XEdνdµ. (9.17)

with each iterated integral making sense.
Next is product measure. First is the case of finite measures. Then this will extend to σ

finite measures. The following theorem is Fubini’s theorem.

Theorem 9.12.5 Let f : X ×Y → [0,∞] be measurable with respect to the σ alge-
bra, σ (K ) ≡ E ×F just defined and let µ ×ν be the product measure of 9.17 where µ

and ν are finite measures on (X ,E ) and (Y,F ) respectively. Then∫
X×Y

f d (µ×ν) =
∫

Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ.

Proof: Let {sn} be an increasing sequence of σ (K ) ≡ E ×F measurable simple
functions which converges pointwise to f . The above equation holds for sn in place of f
from what was shown above. The final result follows from passing to the limit and using
the monotone convergence theorem. ■

Of course one can generalize right away to measures which are only σ finite. This is
also called Fubini’s theorem.

Definition 9.12.6 Let (X ,E ,µ) ,(Y,F ,ν) both be σ finite. Thus there exist disjoint
measurable Xn with ∪∞

n=1Xn and disjoint measurable Yn with ∪∞
n=1Yn = Y such that µ,ν

restricted to Xn,Yn respectively are finite measures. Let En be intersections of sets of E with
Xn and Fn similarly defined. Then letting K consist of all measurable rectangles A×B
for A ∈ E ,B ∈F , and letting E ×F ≡ σ (K ) define the product measure of E contained
in this σ algebra as (µ×ν)(E)≡ ∑n ∑m (µn×νm)(E ∩ (Xn×Ym)) .

Lemma 9.12.7 The above definition yields a well defined measure on E ×F .

Proof: This follows from the standard theorems about sums of nonnegative numbers.
See Theorem 2.5.4. For example if you have two other disjoint sequences Xk,Yl on which
the measures are finite, then

(µ×ν)(E) = ∑
n

∑
m

∑
k

∑
l
(µn×νm)(E ∩ (Xn∩Xk×Ym∩Yl))

= ∑
k

∑
l

∑
n

∑
m
(µk×ν l)(E ∩ (Xn∩Xk×Ym∩Yl))

and so the definition with respect to the two different increasing sequences gives the same
thing. Thus the definition is well defined. (µ×ν) is a measure because if the Ei are disjoint
E ×F measurable sets and E = ∪iEi,

(µ×ν)(E)≡∑
n

∑
m
(µn×νm)(∪iEi∩ (Xn×Ym)) = ∑

n
∑
m

∑
i
(µn×νm)(Ei∩ (Xn×Ym))
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= ∑
i

∑
n

∑
m
(µn×νm)(Ei∩ (Xn×Ym))≡∑

i
(µ×ν)(Ei) ■

Theorem 9.12.8 Let f : X ×Y → [0,∞] be measurable with respect to the σ alge-
bra, σ (K ) just defined as the smallest σ algebra containing the measurable rectangles,
and let µ×ν be the product measure of 9.17 where µ and ν are σ finite measures on (X ,E )
and (Y,F ) respectively. (9.12.1) Then∫

X×Y
f d (µ×ν) =

∫
Y

∫
X

f dµdν =
∫

X

∫
Y

f dνdµ. (9.18)

Proof: Letting E ∈ E ×F ,∫
X×Y

XEd (µ×ν)≡ (µ×ν)(E)≡∑
n

∑
m
(µn×νm)(E ∩ (Xn×Ym))

= ∑
n

∑
m

∫
Yn

∫
Xn

XEdµndνn =
∫

Y

∫
X

XEdµdν

the last coming from a use of the monotone convergence theorem applied to sums. It
follows that 9.18 holds for simple functions and then from monotone convergence theorem
and Theorem 8.1.6, it holds for nonnegative E ×F measurable functions. ■

It is also useful to note that all the above holds for ∏
p
i=1 Xi in place of X ×Y and µ i a

measure on Ei a σ algebra of sets of Xi. You would simply modify the definition of G in
9.15 including all permutations for the iterated integrals and for K you would use sets of
the form ∏

p
i=1 Ai where Ai is measurable. Everything goes through exactly as above.

Thus the following is mostly obtained.

Theorem 9.12.9 Let {(Xi,Ei,µ i)}
p
i=1 be σ finite measure spaces and ∏

p
i=1 Ei de-

notes the smallest σ algebra which contains the measurable boxes of the form ∏
p
i=1 Ai

where Ai ∈ Ei. Then there exists a measure λ defined on a σ algebra ∏
p
i=1 Ei such that

if f : ∏
p
i=1 Xi → [0,∞] is ∏

p
i=1 Ei measurable, (i1, · · · , ip) is any permutation of (1, · · · , p) ,

then ∫
f dλ =

∫
Xip

· · ·
∫

Xi1

f dµ i1 · · ·dµ ip
(9.19)

The conclusion 9.19 is called Fubini’s theorem. More generally

Theorem 9.12.10 Suppose, in the situation of Theorem 9.12.9 f ∈ L1 with respect
to the measure λ . Then 9.19 continues to hold.

Proof: It suffices to prove this for f having real values because if this is shown the
general case is obtained by taking real and imaginary parts. Since f ∈ L1

(
∏

p
i=1 Xi

)
,∫

| f |dλ < ∞ and so both 1
2 (| f |+ f ) and 1

2 (| f |− f ) are in L1
(
∏

p
i=1 Xi

)
and are each non-

negative. Hence from Theorem 9.12.9,∫
f dλ =

∫ [1
2
(| f |+ f )− 1

2
(| f |− f )

]
dλ =

∫ 1
2
(| f |+ f )dλ −

∫ 1
2
(| f |− f )dλ

=
∫
· · ·
∫ 1

2
(| f |+ f )dµ i1 · · ·dµ ip

−
∫
· · ·
∫ 1

2
(| f |− f )dµ i1 · · ·dµ ip

=
∫
· · ·
∫ 1

2
(| f |+ f )− 1

2
(| f |− f )dµ i1 · · ·dµ ip

=
∫
· · ·
∫

f dµ i1 · · ·dµ ip
■

The following corollary is a convenient way to verify the hypotheses of the above theorem.
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Corollary 9.12.11 Suppose f is measurable with respect to ∏
p
i=1 Ei and suppose for

some permutation, (i1, · · · , ip) ,
∫
· · ·
∫
| f |dµ i1 · · ·dµ ip

< ∞. Then f ∈ L1
(
∏

p
i=1 Xi

)
.

Proof: By Theorem 9.12.9,
∫
Rp | f |dλ =

∫
· · ·
∫
| f (x)|dµ i1 · · ·dµ ip

< ∞ and so f is in
L1 (Rp). ■

You can of course consider the completion of a product measure by using the outer
measure approach described earlier. This could be used to get p dimensional Lebesgue
measure.

9.13 The Brouwer Fixed Point Theorem
I found this proof of the Brouwer fixed point theorem in Evans [16] and Dunford and
Schwartz [14]. The main idea which makes proofs like this work is Lemma 6.11.2 which
is stated next for convenience.

Lemma 9.13.1 Let g : U →Rp be C2 where U is an open subset of Rp. Then it follows
that ∑

p
j=1 cof(Dg)i j, j = 0,where here (Dg)i j ≡ gi, j ≡ ∂gi

∂x j
. Also, cof(Dg)i j =

∂ det(Dg)
∂gi, j

.

Definition 9.13.2 Let h be a function defined on an open set, U ⊆ Rp. Then h ∈
Ck
(
U
)

if there exists a function g defined on an open set, W containng U such that g = h

on U and g is Ck (W ) .

Lemma 9.13.3 There does not exist h ∈ C2
(

B(0,R)
)

with h : B(0,R)→ ∂B(0,R)

which has the property that h(x) =x for all x∈ ∂B(0,R)≡{x : |x|= R} Such a function
is called a retract.

Proof: First note that if h is such a retract, then for all x ∈ B(0,R), det(Dh(x)) = 0.
This is because if det(Dh(x)) ̸= 0 for some such x, then by the inverse function theorem,
h(B(x,δ )) is an open set for small enough δ but this would require that this open set is
a subset of ∂B(0,R) which is impossible because no open ball is contained in ∂B(0,R).
Here and below, let BR denote B(0,R).

Now suppose such an h exists. Let λ ∈ [0,1] and let pλ (x)≡ x+λ (h(x)−x) . This
function, pλ is a homotopy of the identity map and the retract h. Define the function I (λ )
by I (λ )≡

∫
B(0,R) det(Dpλ (x))dx. Then using the dominated convergence theorem,

I′ (λ ) =
∫

B(0,R)
∑
i. j

∂ det(Dpλ (x))

∂ pλ i, j

∂ pλ i j (x)

∂λ
dx

=
∫

B(0,R)
∑

i
∑

j

∂ det(Dpλ (x))

∂ pλ i, j
(hi (x)− xi), j dx

=
∫

B(0,R)
∑

i
∑

j
cof(Dpλ (x))i j (hi (x)− xi), j dx

Now by assumption, hi (x) = xi on ∂B(0,R) and so one can integrate by parts, in the
iterated integrals used to compute

∫
B(0,R) and write

I′ (λ ) =−∑
i

∫
B(0,R)

∑
j

cof(Dpλ (x))i j, j (hi (x)− xi)dx = 0.
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Therefore, I (λ ) equals a constant. However, I (0) = mp (B(0,R)) ̸= 0 and as explained
above, I (1) = 0. ■

The following is the Brouwer fixed point theorem for C2 maps.

Lemma 9.13.4 If h∈C2
(

B(0,R)
)

and h : B(0,R)→B(0,R), then h has a fixed point

x such that h(x) = x.

Proof: Suppose the lemma is not true. Then for all x, |x−h(x)| ̸= 0. Then define
g (x) = h(x)+ x−h(x)

|x−h(x)| t (x) where t (x) is nonnegative and is chosen such that g (x) ∈
∂B(0,R) .

This mapping is illustrated in the following picture.

h(x)x

g(x)

If x→ t (x) is C2 near B(0,R), it will follow g is a C2 retract onto ∂B(0,R) contrary
to Lemma 9.13.3. Thus t (x) is the nonnegative solution t to∣∣∣∣h(x)+

x−h(x)

|x−h(x)|
t (x)

∣∣∣∣2 = |h(x)|2 +2
(
h(x) ,

x−h(x)

|x−h(x)|

)
t + t2 = R2 (9.20)

then by the quadratic formula,

t (x) =−
(
h(x) ,

x−h(x)

|x−h(x)|

)
+

√(
h(x) ,

x−h(x)

|x−h(x)|

)2

+
(

R2−|h(x)|2
)

Is x→ t (x) a function in C2? If what is under the radical is positive, then this is so because
s→
√

s is smooth for s > 0. In fact, this is the case here. The inside of the radical is
positive if R > |h(x)|. If |h(x)| = R, it is still positive because in this case, the angle
between h(x) and x−h(x) cannot be π/2 because of the shape of the ball. This shows
that x→ t (x) is the composition of C2 functions and is therefore C2. Thus this g (x) is a
C2 retract and by the above lemma, there isn’t one. ■

Now it is easy to prove the Brouwer fixed point theorem. The following theorem is the
Brouwer fixed point theorem for a ball.

Theorem 9.13.5 Let BR be the above closed ball and let f : BR→BR be continuous.
Then there exists x ∈ BR such that f (x) = x.

Proof: Let f k (x)≡
f(x)

1+k−1 . Thus

∥f k−f∥ = max
x∈BR

{∣∣∣∣ f (x)

1+(1/k)
−f (x)

∣∣∣∣}= max
x∈BR

{∣∣∣∣f (x)−f (x)(1+(1/k))
1+(1/k)

∣∣∣∣}
= max

x∈BR

{∣∣∣∣f (x)(1/k)
1+(1/k)

∣∣∣∣}≤ R
1+ k
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Letting ∥h∥ ≡max{|h(x)| : x ∈ BR} , It follows from the Weierstrass approximation the-
orem, there exists a function whose components are polynomials gk such that ∥gk−f k∥<

R
k+1 . Then if x ∈ BR, it follows

|gk (x)| ≤ |gk (x)−f k (x)|+ |f k (x)|<
R

1+ k
+

kR
1+ k

= R

and so gk maps BR to BR. By Lemma 9.13.4 each of these gk has a fixed point xk such that
gk (xk) =xk. The sequence of points, {xk} is contained in the compact set, BR and so there
exists a convergent subsequence still denoted by {xk} which converges to a point x ∈ BR.
Then from uniform convergence of gk to f , f (x) = limk→∞f (xk) = limk→∞gk (xk) =
limk→∞xk = x. ■

The ball does not have to be centered at 0. If f : B(a,R)→ B(a,R) is continuous,
then y→ f (y+a)−a maps B(0,R) to B(0,R) has a fixed point y = f (y+a)−a so
f (y+a) = y+a.

Corollary 9.13.6 A continuous function mapping a closed ball having center at a to
itself has a fixed point.

Definition 9.13.7 A set A is a retract of a set B if A⊆ B, and there is a continuous
map h : B→ A such that h(x) = x for all x ∈ A and h is onto. B has the fixed point
property means that whenever g is continuous and g : B→ B, it follows that g has a fixed
point.

Proposition 9.13.8 Let A be a retract of B and suppose B has the fixed point property.
Then so does A.

Proof: Suppose f : A→ A. Let h be the retract of B onto A. Then f ◦h : B→ B is
continuous. Thus, it has a fixed point x ∈ B so f (h(x)) = x. However, h(x) ∈ A and
f : A→ A so in fact, x ∈ A. Now h(x) = x and so f (x) = x. ■

Although we won’t use this, every convex compact subset K of Rp is a retract of all of
Rp obtained by using the projection map. See Problems beginning with 8 on Page 137. In
particular, K is a retract of a large closed ball containing K, which ball has the fixed point
property. Therefore, K also has the fixed point property. This shows the following which is
a convenient formulation of the Brouwer fixed point theorem. However, Proposition 9.13.8
is more general. You can likely imagine sets which are retracts which might not be convex.

Theorem 9.13.9 Every convex closed and bounded subset of Rp has the fixed point
property.

As an application of the Brouwer fixed point theorem is the following lemma. It says
roughly that if a continuous function does not move points near p very far, then the image
of a ball centered at p contains a slightly smaller open ball.

Lemma 9.13.10 Let f be continuous and map B(p,r)⊆Rn to Rn. Suppose that for all

x ∈ B(p,r), |f (x)−x|< εr. Then it follows that f
(

B(p,r)
)
⊇ B(p,(1− ε)r)

Proof: This is from the Brouwer fixed point theorem. Consider for y ∈ B(p,(1− ε)r) ,

h(x)≡ x−f (x)+y
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Then h is continuous and for x ∈ B(p,r),

|h(x)−p|= |x−f (x)+y−p|< εr+ |y−p|< εr+(1− ε)r = r

Hence h : B(p,r)→ B(p,r) and so it has a fixed point x by Corollary 9.13.6. Thus

x−f (x)+y = x

so f (x) = y. ■

9.14 Invariance of Domain
As an application of the inverse function theorem is a simple proof of the important invari-
ance of domain theorem which says that continuous and one to one functions defined on an
open set in Rn with values in Rn take open sets to open sets. You know that this is true for
functions of one variable because a one to one continuous function must be either strictly
increasing or strictly decreasing. However, the n dimensional version isn’t at all obvious
but is just as important if you want to consider manifolds with boundary for example. The
need for this theorem occurs in many other places as well in addition to being extremely
interesting for its own sake. The inverse function theorem gives conditions under which a
differentiable function maps open sets to open sets.

The notation ∥f∥K means supx∈K |f (x)|. If you have a continuous function h defined
on a compact set K, then the Stone Weierstrass theorem implies you can uniformly ap-
proximate it with a polynomial g. That is ∥h−g∥K is small. The following lemma says
that you can also have g (z) = h(z) and Dg (z)−1 exists so that near z, the function g
will map open sets to open sets as claimed by the inverse function theorem. First is a little
observation about approximating.

Lemma 9.14.1 Suppose det(A) = 0. Then for all sufficiently small nonzero ε,

det(A+ εI) ̸= 0

Proof: First suppose A is a p× p matrix. Suppose also that det(A) = 0. Thus, the
constant term of det(λ I−A) is 0. Consider εI+A≡ Aε for small real ε . The characteristic
polynomial of Aε is

det(λ I−Aε) = det((λ − ε) I−A)

This is of the form

(λ − ε)p +ap−1 (λ − ε)p−1 + · · ·+(λ − ε)m am

where the a j are the coefficients in the characteristic equation for A and m is the largest such
that am ̸= 0. The constant term of this characteristic polynomial for Aε must be nonzero for
all ε small enough because it is of the form

(−1)m
ε

mam +(higher order terms in ε)

which shows that εI +A is invertible for all ε small enough but nonzero. ■

Lemma 9.14.2 Let K be a compact set in Rn and let h : K→ Rn be continuous, z ∈ K
is fixed. Let δ > 0. Then there exists a polynomial g (each component a polynomial) such
that

∥g−h∥K < δ , g (z) = h(z) , Dg (z)−1 exists
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Proof: By the Weierstrass approximation theorem, Corollary 5.7.8, or Theorem 5.9.5,
there exists a polynomial ĝ such that ∥ĝ−h∥K < δ

3 . Then define for y ∈K g (y)≡ ĝ (y)+
h(z)− ĝ (z) Then g (z) = ĝ (z)+h(z)− ĝ (z) = h(z). Also

|g (y)−h(y)| ≤ |(ĝ (y)+h(z)− ĝ (z))−h(y)|

≤ |ĝ (y)−h(y)|+ |h(z)− ĝ (z)|< 2δ

3

and so since y was arbitrary, ∥g−h∥K ≤ 2δ

3 < δ . If Dg (z)−1 exists, then this is what is
wanted. If not, use Lemma 9.14.1 and note that for all η small enough, you could replace
g with y→ g (y)+η (y−z) and it will still be the case that ∥g−h∥K < δ along with
g (z) = h(z) but now Dg (z)−1 exists. Simply use the modified g. ■

The main result is essentially the following lemma which combines the conclusions of
the above.

Lemma 9.14.3 Let f : B(p,r)→Rn where the ball is also inRn. Let f be one to one, f

continuous. Then there exists δ > 0 such that f
(

B(p,r)
)
⊇ B(f (p) ,δ ) . In other words,

f (p) is an interior point of f
(

B(p,r)
)

.

Proof: Since f
(

B(p,r)
)

is compact, it follows that f−1 : f
(

B(p,r)
)
→ B(p,r) is

continuous. By Lemma 9.14.2, there exists a polynomial g : f
(

B(p,r)
)
→ Rn such that∥∥g−f−1∥∥

f(B(p,r)) < εr, ε < 1, Dg (f (p))−1

exists, and g (f (p)) = f−1 (f (p)) = p

From the first inequality in the above,

|g (f (x))−x|=
∣∣g (f (x))−f−1 (f (x))

∣∣≤ ∥∥g−f−1∥∥
f(B(p,r)) < εr

By Lemma 9.13.10,

g ◦f
(

B(p,r)
)
⊇ B(p,(1− ε)r) = B(g (f (p)) ,(1− ε)r)

Since Dg (f (p))−1 exists, it follows from the inverse function theorem that g−1 also exists
and that g,g−1 are open maps on small open sets containing f (p) and p respectively. Thus
there exists η < (1− ε)r such that g−1 is an open map on B(p,η)⊆ B(p,(1− ε)r). Thus

g ◦f
(

B(p,r)
)
⊇ B(p,(1− ε)r)⊇ B(p,η)

So do g−1‘ to both ends. Then you have g−1 (p) = f (p) is in the open set g−1 (B(p,η)) .
Thus

f
(

B(p,r)
)
⊇ g−1 (B(p,η))⊇ B

(
g−1 (p) ,δ

)
= B(f (p) ,δ ) ■

p
q ◦f

(
B(p,r)

)B(p,(1− ε)r))

p= q(f(p))
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With this lemma, the invariance of domain theorem comes right away. This remarkable
theorem states that if f : U → Rn for U an open set in Rn and if f is one to one and
continuous, then f (U) is also an open set in Rn.

Theorem 9.14.4 Let U be an open set in Rn and let f : U → Rn be one to one and
continuous. Then f (U) is also an open subset in Rn.

Proof: It suffices to show that if p ∈U then f (p) is an interior point of f (U). Let
B(p,r)⊆U. By Lemma 9.14.3, f (U)⊇ f

(
B(p,r)

)
⊇ B(f (p) ,δ ) so f (p) is indeed an

interior point of f (U). ■
The inverse mapping theorem assumed quite a bit about the mapping. In particular it

assumed that the mapping had a continuous derivative. The following version of the inverse
function theorem seems very interesting because it only needs an invertible derivative at a
point.

Corollary 9.14.5 Let U be an open set inRp and let f : U→Rp be one to one and con-
tinuous. Then, f−1 is also continuous on the open set f (U). If f is differentiable at x1 ∈U
and if Df (x1)

−1 exists for x1 ∈U, then it follows that Df−1 (f (x1)) = Df (x1)
−1.

Proof: |·| will be a norm on Rp, whichever is desired. If you like, let it be the Euclidean
norm. ∥·∥ will be the operator norm. The first part of the conclusion of this corollary is
from invariance of domain.

From the assumption that Df (x1) and Df (x1)
−1 exists,

y−f (x1) = f
(
f−1 (y)

)
−f (x1) = Df (x1)

(
f−1 (y)−x1

)
+o

(
f−1 (y)−x1

)
Since Df (x1)

−1 exists, Df (x1)
−1 (y−f (x1)) = f−1 (y)−x1 + o

(
f−1 (y)−x1

)
by

continuity, if |y−f (x1)| is small enough, then
∣∣f−1 (y)−x1

∣∣ is small enough that in the
above,

∣∣o(f−1 (y)−x1
)∣∣< 1

2

∣∣f−1 (y)−x1
∣∣. Hence, if |y−f (x1)| is sufficiently small,

then from the triangle inequality of the form |p−q| ≥ ||p|− |q|| ,∥∥∥Df (x1)
−1
∥∥∥ |(y−f (x1))| ≥

∣∣∣Df (x1)
−1 (y−f (x1))

∣∣∣
≥
∣∣f−1 (y)−x1

∣∣− 1
2

∣∣f−1 (y)−x1
∣∣= 1

2

∣∣f−1 (y)−x1
∣∣

|y−f (x1)| ≥
∥∥∥Df (x1)

−1
∥∥∥−1 1

2

∣∣f−1 (y)−x1
∣∣

It follows that for |y−f (x1)| small enough,∣∣∣∣∣o
(
f−1 (y)−x1

)
y−f (x1)

∣∣∣∣∣≤
∣∣∣∣∣o
(
f−1 (y)−x1

)
f−1 (y)−x1

∣∣∣∣∣ 2∥∥∥Df (x1)
−1
∥∥∥−1

Then, using continuity of the inverse function again, it follows that if |y−f (x1)| is pos-
sibly still smaller, then f−1 (y)−x1 is sufficiently small that the right side of the above
inequality is no larger than ε . Since ε is arbitrary, it follows

o
(
f−1 (y)−x1

)
= o(y−f (x1))
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Now from differentiability of f at x1,

y−f (x1) = f
(
f−1 (y)

)
−f (x1) = Df (x1)

(
f−1 (y)−x1

)
+o

(
f−1 (y)−x1

)
= Df (x1)

(
f−1 (y)−x1

)
+o(y−f (x1))

= Df (x1)
(
f−1 (y)−f−1 (f (x1))

)
+o(y−f (x1))

Therefore, solving for f−1 (y)−f−1 (f (x1)) ,

f−1 (y)−f−1 (f (x1)) = Df (x1)
−1 (y−f (x1))+o(y−f (x1))

From the definition of the derivative, this shows that Df−1 (f (x1)) = Df (x1)
−1 . ■

9.15 Jensen’s Inequality
When you have φ : R→ R is convex, then secant lines lie above the graph of φ . Say
x < w < z so w = λ z+(1−λ )x for some λ ∈ (0,1). Then refering to the following picture,

φ (w)−φ (x)
w− x

≤ λφ (z)+(1−λ )φ (x)−φ (x)
(λ z+(1−λ )x)− x

=
λ (φ (z)−φ (x))

λ (z− x)
=

φ (z)−φ (x)
z− x

For y < w < x so w = λy+(1−λ )x. Since w− x < 0,

φ (w)−φ (x)
w− x

≥ λφ (y)+(1−λ )φ (x)−φ (x)
λ (y− x)

=
φ (y)−φ (x)

y− x

Since x is arbitrary, this has shown that slopes of secant lines of the graph of φ over intervals
increase as the intervals move to the right.

y x z

Lemma 9.15.1 If φ : R → R is convex, then φ is continuous. Also, if φ is convex,
µ(Ω) = 1, and f ,φ ( f ) : Ω→ R are in L1(Ω), then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ .

Proof: Let λ ≡ limw→x+
φ(w)−φ(x)

w−x . Those slopes of secant lines are decreasing and so
this limit exists. Then in the picture, for w ∈ (x,z) ,φ (x)+ λ (w− x) ≤ φ (w) ≤ φ (x)+(

φ(z)−φ(x)
z−x

)
(w− x) and so φ is continuous from the right. A similar argument shows φ is

continuous from the left. In particular, letting µ ≡ limw→x−
φ(x)−φ(w)

x−w ≤ λ because each
of these slopes is smaller than the slopes whose inf gives λ . Then this shows that for
w ∈ (y,x) , φ(w)−φ(x)

w−x ≤ λ so φ (w)−φ (x)≥ λ (w− x) and so φ (w)≥ φ (x)+λ (w− x) and

for these ω, φ(x)−φ(w)
x−w ≥ φ(x)−φ(y)

x−y so φ (w) ≤ φ (x) +
(

φ(x)−φ(y)
x−y

)
(w− x) so one obtains

continuity from the left. This has also shown that for w not equal to x,φ (w) ≥ φ (x) +
λ (w− x) or in other words, φ (x)≤ φ (w)+λ (x−w) .Letting x =

∫
Ω

f dµ, and using the λ

whose existence was just established, for each ω,

φ

(∫
Ω

f dµ

)
≤ φ ( f (ω))+λ

(∫
Ω

f dµ− f (ω)

)
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Do
∫

Ω
dµ to both sides and use µ (Ω) = 1. Thus

φ

(∫
Ω

f dµ

)
≤
∫

Ω

φ ( f )dµ +λ

(∫
Ω

f dµ−
∫

Ω

f dµ

)
=
∫

Ω

φ ( f )dµ.

There are no difficulties with measurability because φ is continuous. ■

Corollary 9.15.2 In the situation of Lemma 9.15.1 where µ(Ω) = 1, suppose f has
values in [0,∞) and is measurable. Also suppose φ is convex and increasing on [0,∞).
Then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ .

Proof: Let fn (ω) = f (ω) if f (ω) ≤ n and let fn (ω) = n if f (ω) ≥ n. Then both
fn,φ ( fn) are in L1 (Ω) . Therefore, the above holds and φ(

∫
Ω

fndu) ≤
∫

Ω
φ( fn)dµ. Let

n→ ∞ and use the monotone convergence theorem. ■

9.16 Faddeyev’s Lemma
This next lemma is due to Faddeyev. I found it in [35].

Lemma 9.16.1 Let f ,g be nonnegative measurable nonnegative functions on a measure
space (Ω,µ). Then

∫
f gdµ =

∫
∞

0
∫
[g>t] f dµdt =

∫
∞

0
∫

∞

0 µ ([ f > s]∩ [g > t])dsdt.

Proof: First suppose g = aXE where E is measurable, a > 0. Now [g > t] = /0 if
t ≥ a and it equals XE if t < a. Thus the right side equals

∫ a
0
∫

E f dµdt =
∫ a

0
∫

XE f dµ =∫
aXE f dµ which equals the left side. Thus the first equation is true if g = aXE . Similar

reasoning shows that when you have g a nonnegative simple function, g = ∑
n
i=1 aiXEi

where we can arrange to have {ai} increasing, the first equation still holds. Now by the
monotone convergence theorem, this yields the desired result for the first equation.

To get the second equal sign, note that∫
∞

0

∫
[g>t]

f dµdt =
∫

∞

0

∫
X[g>t] f dµdt =

∫
∞

0

∫
∞

0
µ
([

X[g>t] f > s
])

dsdt

=
∫

∞

0

∫
∞

0
µ ([ f > s]∩ [g > t])dsdt ■

9.17 Exercises
1. Let Ω = N={1,2, · · ·}. Let F = P(N), the set of all subsets of N, and let µ(S) =

number of elements in S. Thus µ({1}) = 1 = µ({2}), µ({1,2}) = 2, etc. In this
case, all functions are measurable. For a nonnegative function, f defined on N, show∫
N f dµ = ∑

∞
k=1 f (k) . What do the monotone convergence and dominated conver-

gence theorems say about this example?

2. For the measure space of Problem 1, give an example of a sequence of nonnegative
measurable functions { fn} converging pointwise to a function f , such that inequality
is obtained in Fatou’s lemma.

3. If (Ω,F ,µ) is a measure space and f ≥ 0 is measurable, show that if g(ω) = f (ω)
a.e. ω and g≥ 0, then

∫
gdµ =

∫
f dµ. Show that if f ,g ∈ L1 (Ω) and g(ω) = f (ω)

a.e. then
∫

gdµ =
∫

f dµ .
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4. Let { fn} , f be measurable functions with values in C. { fn} converges in measure if
limn→∞ µ(x ∈Ω : | f (x)− fn(x)| ≥ ε) = 0 for each fixed ε > 0. Prove the theorem of
F. Riesz. If fn converges to f in measure, then there exists a subsequence { fnk}which
converges to f a.e. In case µ is a probability measure, this is called convergence in
probability. It does not imply pointwise convergence but does imply that there is a
subsequence which converges pointwise off a set of measure zero. Hint: Choose n1
such that µ(x : | f (x)− fn1(x)| ≥ 1) < 1/2. Choose n2 > n1 such that µ(x : | f (x)−
fn2(x)| ≥ 1/2) < 1/22 n3 > n2 such that µ(x : | f (x)− fn3(x)| ≥ 1/3) < 1/23, etc.
Now consider what it means for fnk(x) to fail to converge to f (x). Use the Borel
Cantelli Lemma 8.2.5 on Page 184.

5. (X ,F ,µ) is said to be a regular measure space if F ⊇B (X) and for every F ∈F ,

µ (F) = sup{µ (K) : K compact, K ⊆ F}
µ (F) = inf{µ (V ) : V open, V ⊇ F}

Let (X ,F ,µ) be a regular measure space. For example, it could beRp with Lebesgue
measure, shown later. Why do we care about a measure space being regular? This
problem will show why. Suppose that closures of balls are compact as in the case of
Rp.

(a) Let µ (E)<∞. By regularity, there exists K ⊆E ⊆V where K is compact and V
is open such that µ (V \K)< ε . Show there exists W open such that K ⊆ W̄ ⊆V
and W̄ is compact. Now show there exists a function h such that h has values in
[0,1] ,h(x) = 1 for x ∈ K, and h(x) equals 0 off W . Hint: You might consider
Problem 10 on Page 197.

(b) Show that
∫
|XE −h|dµ < ε

(c) Next suppose s = ∑
n
i=1 ciXEi is a nonnegative simple function where each

µ (Ei) < ∞. Show there exists a continuous nonnegative function h which
equals zero off some compact set such that

∫
|s−h|dµ < ε

(d) Now suppose f ≥ 0 and f ∈ L1 (Ω) . Show that there exists h ≥ 0 which is
continuous and equals zero off a compact set such that

∫
| f −h|dµ < ε

(e) If f ∈ L1 (Ω) with complex values, show the conclusion in the above part of
this problem is the same.

6. Let (Ω,F ,µ) be a measure space and suppose f ,g : Ω→ (−∞,∞] are measurable.
Prove the sets {ω : f (ω) < g(ω)} and {ω : f (ω) = g(ω)} are measurable. Hint:
The easy way to do this is to write

{ω : f (ω)< g(ω)}= ∪r∈Q [ f < r]∩ [g > r] .

Note that l (x,y) = x− y is not continuous on (−∞,∞] so the obvious idea doesn’t
work. Here [g > r] signifies {ω : g(ω)> r}.

7. Let { fn} be a sequence of real or complex valued measurable functions. Let

S = {ω : { fn(ω)} converges}.

Show S is measurable. Hint: You might try to exhibit the set where fn converges
in terms of countable unions and intersections using the definition of a Cauchy se-
quence.
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8. Suppose un(t) is a differentiable function for t ∈ (a,b) and suppose that for t ∈ (a,b),
|un(t)|, |u′n(t)|< Kn where ∑

∞
n=1 Kn < ∞. Show(∑∞

n=1 un (t))
′ = ∑

∞
n=1 u′n(t).

Hint: This is an exercise in the use of the dominated convergence theorem and the
mean value theorem.

9. Suppose { fn} is a sequence of nonnegative measurable functions defined on a mea-
sure space, (Ω,S ,µ). Show that

∫
∑

∞
k=1 fkdµ = ∑

∞
k=1

∫
fkdµ . Hint: Use the mon-

otone convergence theorem along with the fact the integral is linear.

10. Explain why for each t > 0,x→ e−tx is a function in L1 (R) and
∫

∞

0 e−txdx = 1
t . Thus∫ R

0

sin(t)
t

dt =
∫ R

0

∫
∞

0
sin(t)e−txdxdt

Now explain why you can change the order of integration in the above iterated in-
tegral. Then compute what you get. Next pass to a limit as R → ∞ and show∫

∞

0
sin(t)

t dt = 1
2 π. This is a very important integral. Note that the thing on the left

is an improper integral. sin(t)/t is not Lebesgue integrable because it is not ab-
solutely integrable. That is

∫
∞

0

∣∣ sin t
t

∣∣dm = ∞. It is important to understand that the
Lebesgue theory of integration only applies to nonnegative functions and those which
are absolutely integrable.

11. Let the rational numbers in [0,1] be {rk}∞

k=1 and define

fn (t) =
{

1 if t ∈ {r1, · · · ,rn}
0 if t /∈ {r1, · · · ,rn}

Show that limn→∞ fn (t) = f (t) where f is one on the rational numbers and 0 on the
irrational numbers. Explain why each fn is Riemann integrable but f is not. How-
ever, each fn is actually a simple function and its Lebesgue and Riemann integral is
equal to 0. Apply the monotone convergence theorem to conclude that f is Lebesgue
integrable and in fact,

∫
f dm = 0.

12. Show limn→∞
n
2n ∑

n
k=1

2k

k = 2. This problem was shown to me by Shane Tang, a for-
mer student. It is a nice exercise in dominated convergence theorem if you massage
it a little. Hint:

n
2n

n

∑
k=1

2k

k
=

n

∑
k=1

2k−n n
k
=

n−1

∑
l=0

2−l n
n− l

=
n−1

∑
l=0

2−l
(

1+
l

n− l

)
≤

n−1

∑
l

2−l (1+ l)

13. Give an example of a sequence of functions { fn} , fn ≥ 0 and a function f ≥ 0 such
that f (x) = liminfn→∞ fn (x) but

∫
f dm < liminfn→∞

∫
fndm so you get strict in-

equality in Fatou’s lemma.

14. Let f be a nonnegative Riemann integrable function defined on [a,b] . Thus there is
a unique number between all the upper sums and lower sums. First explain why,
if ai ≥ 0,

∫
∑

n
i=1 aiX[ti,ti−1) (t)dm = ∑i ai (ti− ti−1) . Explain why there exists an in-

creasing sequence of Borel measurable functions {gn} converging to a Borel mea-
surable function g, and a decreasing sequence of functions {hn} which are also Borel
measurable converging to a Borel measurable function h such that gn ≤ f ≤ hn,∫

gndm equals a lower sum,
∫

hndm equals an upper sum
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and
∫
(h−g)dm = 0. Explain why {x : f (x) ̸= g(x)} is a set of measure zero. Then

explain why f is measurable and
∫ b

a f (x)dx =
∫

f dm so that the Riemann integral
gives the same answer as the Lebesgue integral. Here m is one dimensional Lebesgue
measure discussed earlier. Now you know how to compute a Lebesgue integral for
reasonable functions. In case of a multiple integral, you would use the iterated inte-
grals to do it.

15. Let λ ,µ be finite measures. We say λ ≪ µ if whenever µ (E) = 0 it follows that
λ (E) = 0. Show that if λ ≪ µ, then for every ε > 0 there exists δ > 0 such that if
µ (E)< δ , then λ (E)< ε .

16. If λ is a signed measure with values in R so that when {Ei} are disjoint, ∑i λ (Ei)
converges, show that the infinite series converges absolutely also.

17. Suppose ν≪ µ where these are finite measures so there exists h≥ 0 and measurable
such that ν (E) =

∫
E hdµ by the Radon Nikodym theorem. Show that if f is mea-

surable and non-negative, then
∫

f dν =
∫

f hdµ . Hint: It holds if f is χE and so it
holds for a simple function. Now consider a sequence of simple functions increasing
to f and use the monotone convergence theorem.

18. Use Jensen’s inequality in Corollary 9.15.2 to show that if f is nonnegative and
measurable, then for p > 1 show that whenever µ is a finite measure, then if f p ∈
L1 (Ω) it follows that f ∈ L1 (Ω). Give an example to show that this is not necessarily
true if µ (Ω) = ∞. Hint: For the second part, you might consider Ω = N, the σ

algebra the set of all subsets, and µ (S) equal to the number of elements in S. Maybe
f (n) = 1/n.



Chapter 10

Regular Measures
10.1 Measures and Regularity

Regular measures have already been discussed. In this section are a few general results
which are surprising. The new information involves the possibility that closed balls may
not be compact.

Definition 10.1.1 A Polish space is a complete separable metric space. For a Pol-
ish space E or more generally a metric space or even a general topological space, B (E)
denotes the Borel sets of E. This is defined to be the smallest σ algebra which contains the
open sets. Thus it contains all open sets and closed sets and compact sets and many others.

For example, R is a Polish space as is any separable Banach space. Amazing things
can be said about finite measures on the Borel sets of a Polish space. First the case of a
finite measure on a metric space will be considered.

It is best to not attempt to describe a generic Borel set. Always work with the definition
that it is the smallest σ algebra containing the open sets. Attempts to give an explicit
description of a “typical” Borel set tend to lead nowhere because there are so many things
which can be done.You can take countable unions and complements and then countable
intersections of what you get and then another countable union followed by complements
and on and on. You just can’t get a good useable description in this way. However, it is easy

to see that something like
(
∩∞

i=1∪∞
j=i E j

)C
is a Borel set if the E j are. This is useful. This

said, you can look at Hewitt and Stromberg [23] in their discussion of why there are more
Lebesgue measurable sets than Borel measurable sets to see the kind of technicalities which
result by describing Borel sets. This is an extremely significant result based on describing
Borel sets, so it can be done.

For finite measures, defined on the Borel sets B (X) of a metric space X , the first
definition of regularity is automatic. These are always outer and inner regular provided
inner regularity refers to closed sets. Note that if A⊇ B then A\B = BC \AC.

Lemma 10.1.2 Let µ be a finite measure defined on a σ algebra F ⊇B (X) where X
is a metric space. Then the following hold.

1. µ is regular on B (X) meaning 8.16, 8.17 whenever F ∈B (X) .

2. µ is outer regular satisfying 8.17 on sets of F if and only if it is inner regular
satisfying 8.16 on sets of F .

3. If µ is either inner or outer regular on sets of F then if E is any set of F , there exist
F an Fσ set and G a Gδ set such that F ⊆ E ⊆ G and µ (G\F) = 0.

Proof: 1.) First note every open set is the countable union of closed sets and every
closed set is the countable intersection of open sets. Here is why. Let V be an open set and
let

Kk ≡
{

x ∈V : dist
(
x,VC)≥ 1/k

}
.

Then clearly the union of the Kk equals V. Thus

µ (V ) = sup{µ (K) : K ⊆V and K is closed} .

235
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If U is open and contains V, then µ (U)≥ µ (V ) and so

µ (V )≤ inf{µ (U) : U ⊇V, U open} ≤ µ (V ) since V ⊆V.

Thus µ is inner and outer regular on open sets. In what follows, K will be closed and V
will be open.

Let K be the open sets. This is a π system since it is closed with respect to finite
intersections. Let

G ≡ {E ∈B (X) : µ is inner and outer regular on E} so G ⊇K .

For E ∈ G , let V ⊇ E ⊇ K such that µ (V \K) = µ (V \E)+µ (E \K)< ε . Thus KC ⊇ EC

and so µ
(
KC \EC

)
= µ (E \K)< ε. Thus µ is outer regular on EC because

µ
(
KC)= µ

(
EC)+µ

(
KC \EC)< µ

(
EC)+ ε, KC ⊇ EC

Also, EC ⊇ VC and µ
(
EC \VC

)
= µ (V \E) < ε so µ is inner regular on EC and so G is

closed for complements. If the sets of G {Ei} are disjoint, let Ki⊆Ei⊆Vi with µ (Vi \Ki)<
ε2−i. Then for E ≡ ∪iEi,and choosing m sufficiently large,

µ (E) = ∑
i

µ (Ei)≤
m

∑
i=1

µ (Ei)+ ε ≤
m

∑
i=1

µ (Ki)+2ε = µ (∪m
i=1Ki)+2ε

and so µ is inner regular on E ≡ ∪iEi. It remains to show that µ is outer regular on E.
Letting V ≡ ∪iVi,

µ (V \E)≤ µ (∪i (Vi \Ei))≤∑
i

ε2−i = ε.

Hence µ is outer regular on E since µ (V ) = µ (E)+µ (V \E)≤ µ (E)+ ε and V ⊇ E.
By Dynkin’s lemma, G = σ (K )≡B (X).
2.) Suppose that µ is outer regular on sets of F ⊇B (X). Letting E ∈F , by outer

regularity, there exists an open set V ⊇ EC such that µ (V )−µ
(
EC
)
< ε . Since µ is finite,

ε > µ (V )− µ
(
EC
)
= µ

(
V \EC

)
= µ

(
E \VC

)
= µ (E)− µ

(
VC
)

and VC is a closed set
contained in E. Therefore, if 8.17 holds, then so does 8.16. The converse is proved in the
same way. There is K ⊆ EC with ε > µ

(
EC \K

)
= µ

(
KC \E

)
showing outer regularity

from inner regularity.
3.) The last claim is obtained by letting G = ∩nVn where Vn is open, contains E,

Vn ⊇Vn+1, and µ (Vn)< µ (E)+ 1
n and Kn, increasing closed sets contained in E such that

µ (E) < µ (Kn)+
1
n . Then let F ≡ ∪Fn and G ≡ ∩nVn. Then F ⊆ E ⊆ G and µ (G\F) ≤

µ (Vn \Kn)< 2/n. ■
Next is a lemma which allows the replacement of closed with compact in the definition

of inner regular.

Lemma 10.1.3 Let µ be a finite measure on a σ algebra containing B (X) , the Borel
sets of X , a separable complete metric space, Polish space. Then if C is a closed set,

µ (C) = sup{µ (K) : K ⊆C and K is compact.}

It follows that for a finite measure on B (X) where X is a Polish space, µ is inner regular
in the sense that for all F ∈B (X),µ (F) = sup{µ (K) : K ⊆ F and K is compact}
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Proof: Let {ak} be a countable dense subset of C. Thus ∪∞
k=1B

(
ak,

1
n

)
⊇C. Therefore,

there exists mn such that

µ

(
C \∪mn

k=1B
(

ak,
1
n

))
≡ µ (C \Cn)<

ε

2n , ∪
mn
k=1 B

(
ak,

1
n

)
≡Cn.

Now let K = C∩ (∩∞
n=1Cn) . Then K is a subset of Cn for each n and so for each ε > 0

there exists an ε net for K since Cn has a 1/n net, namely a1, · · · ,amn . Since K is closed,
it is complete and so it is also compact since it is complete and totally bounded, Theorem
3.5.8. Now µ (C \K)≤ µ (∪∞

n=1 (C \Cn))< ∑
∞
n=1

ε

2n = ε. Thus µ (C) can be approximated
by µ (K) for K a compact subset of C. The last claim follows from Lemma 10.1.2. ■

The next theorem is the main result. It says that if the measure is outer regular and µ is
σ finite then there is an approximation for E ∈F in terms of Fσ and Gδ sets in which the
Fσ set is a countable union of compact sets. Also µ is inner and outer regular on F .

Next is a very interesting result on approximations in the context of a regular measure
on a metric space in which the closed balls are compact, like Rp.

Proposition 10.1.4 Suppose (X ,d) is a metric space in which the closed balls are com-
pact and X is a countable union of closed balls. Also suppose (X ,F ,µ) is a complete
measure space, F contains the Borel sets, and that µ is regular and finite on measurable
subsets of finite balls. Then

1. For each E ∈ F , there is an Fσ set F and a Gδ set G such that F ⊆ E ⊆ G and
µ (G\F) = 0.

2. Also if f ≥ 0 is F measurable, then there exists g≤ f such that g is Borel measurable
and g = f a.e.

and h≥ f such that h is Borel measurable and h = f a.e.

3. If E ∈ F is a bounded set contained in a ball B(x0,r) = V , then there exists a
sequence of continuous functions in Cc (V ) {hn} having values in [0,1] and a set
of measure zero N such that for x /∈ N,hn (x)→XE (x) . Also

∫
|hn−XE |dµ → 0.

Letting Ñ be a Gδ set of measure zero containing N,hnXÑC →XF where F ⊆ E and
µ (E \F) = 0.

4. If f ∈ L1 (X ,F ,µ) , there exists g ∈Cc (X) , such that
∫

X | f −g|dµ < ε. There also
exists a sequence of functions in Cc (X) {gn} which converges pointwise to f .

Proof: 1. follows from Theorem 8.7.4.
2. If f is measurable and nonnegative, from Theorem 8.1.6 there is an increasing se-

quence of simple functions sn such that limn→∞ sn (x) = f (x) . Say sn (x)≡∑
mn
k=1 cn

kXEn
k
(x) .

Let mp
(
En

k \Fn
k

)
= 0 where Fn

k is an Fσ set. Replace En
k with Fn

k and let s̃n be the result-
ing simple function. Let g(x) ≡ limn→∞ s̃n (x) . Then g is Borel measurable and g ≤ f
and g = f except for a set of measure zero, the union of the sets where sn is not equal to
s̃n. As to the other claim, let hn (x) ≡ ∑

∞
k=1 XAkn (x)

k
2n where Akn is a Gδ set containing

f−1
(
( k−1

2n , k
2n ]
)

for which µ
(
Akn \ f−1

(
( k−1

2n , k
2n ]
))
≡ µ (Dkn) = 0. If N = ∪k,n Dkn, then

N is a set of measure zero. On NC, hn (x)→ f (x) . Let h(x) = liminfn→∞ hn (x). Note
that XAkn (x)

k
2n ≥X f−1(( k−1

2n , k
2n ]) (x)

k
2n and so hn (x)≥ h(x) and liminfn→∞ hn (x) is Borel

measurable because each hn is.
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3. Let Kn ⊆ E ⊆ Vn with Kn compact and Vn open such that Vn ⊆ B(x0,r) and also
that µ (Vn \Kn)< 2−(n+1). Then from Lemma 3.12.4, there is hn with Kn ≺ hn ≺Vn. Then∫
|hn−XE |dµ < 2−n and so

µ

(
|hn−XE |>

(
2
3

)n)
<

((
3
2

)n ∫
[|hn−XE |>( 2

3 )
n
]
|hn−XE |dµ

)
≤
(

3
4

)n

By Lemma 8.2.5 there is a set of measure zero N such that if x /∈N, it is in only finitely many
of the sets

[
|hn−XE |>

( 2
3

)n
]
. Thus on NC, eventually, for all k large enough, |hk−XE | ≤( 2

3

)k
so hk (x)→XE (x) off N. The assertion about convergence of the integrals follows

from the dominated convergence theorem and the fact that each hn is nonnegative, bounded
by 1, (Kn ≺ hn ≺ Vn) and is 0 off some ball. In the last claim, it only remains to verify
that hnXÑC converges to an indicator function because each hnXÑC is Borel measurable.
(Ñ ⊇N and Ñ is a Borel set and µ

(
Ñ \N

)
= 0) Thus its limit will also be Borel measurable.

However, hnXÑC converges to 1 on E ∩ ÑC,0 on EC ∩ ÑC and 0 on Ñ. Thus E ∩ ÑC = F
and hnXÑC (x)→XF where F ⊆ E and µ (E \F)≤ µ

(
Ñ
)
= 0.

4. It suffices to assume f ≥ 0 because you can consider the positive and negative parts
of the real and imaginary parts of f and reduce to this case. Let fn (x)≡XB(x0,n) (x) f (x) .
Then by the dominated convergence theorem, if n is large enough,

∫
| f − fn|dµ < ε. There

is a nonnegative simple function s ≤ fn such that
∫
| fn− s|dµ < ε. This follows from

picking k large enough in an increasing sequence of simple functions {sk} converging to fn
and the dominated convergence theorem. Say s(x) = ∑

m
k=1 ckXEk (x) . Then let Kk ⊆ Ek ⊆

Vk where Kk,Vk are compact and open respectively and ∑
m
k=1 ckµ (Vk \Kk)< ε . By Lemma

3.12.4, there exists hk with Kk ≺ hk ≺Vk. Then∫ ∣∣∣∣∣ m

∑
k=1

ckXEk (x)−
m

∑
k=1

ckhk (x)

∣∣∣∣∣dµ ≤ ∑
k

ck

∫ ∣∣XEk (x)−hk (x)
∣∣dx

< 2∑
k

ckµ (Vk \Kk)< 2ε

Let g≡ ∑
m
k=1 ckhk (x) . Thus

∫
|s−g|dµ ≤ 2ε. Then∫

| f −g|dµ ≤
∫
| f − fn|dµ +

∫
| fn− s|dµ +

∫
|s−g|dµ < 4ε

Since ε is arbitrary, this proves the first part of 4. For the second part, let gn ∈Cc (X) such
that

∫
| f −gn|dµ < 2−n. Let An ≡

{
x : | f −gn|>

( 2
3

)n
}
. Then

µ (An)≤
(

3
2

)n ∫
An

| f −gn|dµ ≤
(

3
4

)n

.

Thus, if N is all x in infinitely many An, then by the Borel Cantelli lemma, µ (N) = 0 and
if x /∈ N, then x is in only finitely many An and so for all n large enough, | f (x)−gn (x)| ≤( 2

3

)n
. ■

10.2 Fundamental Theorem of Calculus
In this section the Vitali covering theorem, Proposition 4.5.3 will be used to give a gener-
alization of the fundamental theorem of calculus. Let f be in L1 (Rp) where the measure is
Lebesgue measure as discussed above.
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Let M f : Rp→ [0,∞] by

M f (x)≡ sup
r≤1

1
mp (B(x,r))

∫
B(x,r)

| f |dmp if x /∈ Z.

We denote as ∥ f∥1 the integral
∫

Ω
| f |dmp.

The special points described in the following theorem are called Lebesgue points. Also
mp will denote the outer measure determined by Lebesgue measure. See Proposition 8.4.2.
mp (E)≡ inf

{
mp (F) : F is measurable and F ⊇ E

}
.

Theorem 10.2.1 Let mp be p dimensional Lebesgue measure measure and let f ∈
L1 (Rp,mp).(

∫
Ω
| f |dmp < ∞). Then for mp a.e.x,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y) = 0

Proof: First consider the following claim which is called a weak type estimate.
Claim 1: The following inequality holds for Np the constant of the Vitali covering

theorem, Proposition 4.5.3.

mp ([M f > ε])≤ 5p
ε
−1 ∥ f∥1

Proof: For each x ∈ [M f > ε] there exists a ball Bx = B(x,rx) with 0 < rx ≤ 1 and

mp (Bx)
−1
∫

B(x,rx)
| f |dmp > ε. (10.1)

Let F be this collection of balls. By the Vitali covering theorem, there is a collection of
disjoint balls G such that if each ball in G is enlarged making the center the same but the
radius 5 times as large, then the corresponding collection of enlarged balls covers [M f > ε] .
By separability, G is countable, say {Bi}∞

i=1 and the enlarged balls will be denoted as B̂i.
Then from 10.1,

mp ([M f > ε])≤∑
i

mp
(
B̂i
)
≤ 5p

∑
i

mp (Bi)≤
5p

ε
∑

i

∫
Bi

| f |dmp ≤ 5p
ε
−1 ∥ f∥1

This proves claim 1.
Claim 2: If g ∈Cc (Rp), then

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dmp (y) = 0

Proof: Since g is continuous at x, whenever r is small enough,

1
mp (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dmp (y)≤
1

mp (B(x,r))

∫
B(x,r)

ε dmp (y) = ε.

This proves the claim.
Now let g ∈Cc (Rp). Then from the above observations about continuous functions in

Claim 2,

mp

([
x : limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)> ε

])
(10.2)
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≤ mp

([
x : limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)−g(y)|dmp (y)>
ε

2

])
+mp

([
x : limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

|g(y)−g(x)|dmp (y)>
ε

2

])
+mp

([
x : |g(x)− f (x)|> ε

2

])
.

≤ mp

([
M ( f −g)>

ε

2

])
+mp

([
| f −g|> ε

2

])
(10.3)

Now
∥ f −g∥1 ≥

∫
[| f−g|> ε

2 ]
| f −g|dmp ≥

ε

2
mp

([
| f −g|> ε

2

])
and so using Claim 1 and 10.3, 10.2 is dominated by

(
2
ε
+ 5p

ε

)∫
| f −g|dmp. But by Propo-

sition 10.1.4, g can be chosen to make the above as small as desired. Hence 10.2 is 0.

mp

([
limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)> 0
])

≤
∞

∑
k=1

mp

([
limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)>
1
k

])
= 0

By completeness of mp this implies[
limsup

r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)> 0
]

is a set of mp measure zero. ■
The following corollary is the main result referred to as the Lebesgue Differentiation

theorem.

Definition 10.2.2 f ∈ L1
loc (Rp,mp) means f XB is in L1 (Rn,mp) whenever B is a

ball.

Corollary 10.2.3 If f ∈ L1
loc (Rp,mp), then for a.e.x,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y) = 0 . (10.4)

In particular, for a.e.x,

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

f (y)dmp (y) = f (x)

Proof: If f is replaced by f XB(0,k) then the conclusion 10.4 holds for all x /∈ Fk where
Fk is a set of mp measure 0. Letting k = 1,2, · · · , and F ≡ ∪∞

k=1Fk, it follows that F is a
set of measure zero and for any x /∈ F , and k ∈ {1,2, · · ·}, 10.4 holds if f is replaced by
f XB(0,k). Picking any such x, and letting k > |x|+1, this shows

lim
r→0

1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y)
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= lim
r→0

1
mp (B(x,r))

∫
B(x,r)

∣∣ f XB(0,k) (y)− f XB(0,k) (x)
∣∣dmp (y) = 0.

The last claim holds because∣∣∣∣ f (x)− 1
mp (B(x,r))

∫
B(x,r)

f (y)dmp (y)
∣∣∣∣

≤ 1
mp (B(x,r))

∫
B(x,r)

| f (y)− f (x)|dmp (y) ■

Definition 10.2.4 Let E be a measurable set. Then x ∈ E is called a point of
density if

lim
r→0

mp (B(x,r)∩E)
mp (B(x,r))

= 1

Proposition 10.2.5 Let E be a measurable set. Then mp a.e. x∈E is a point of density.

Proof: This follows from letting f (x) = XE (x) in Corollary 10.2.3. ■

10.3 Change of Variables, Linear Maps
This is about changing the variables for linear maps where Fp denotes the Lebesgue mea-
surable sets.

Theorem 10.3.1 In case h : Rp → Rp is Lipschitz, satisfying the Lipschitz condi-
tion ∥h(x)−h(y)∥ ≤ K ∥x−y∥ , then if T is a set for which mp(T ) = 0, it follows that
mp (h(T )) = 0. Also if E ∈Fp, then h(E) ∈Fp.

Proof: By the Lipschitz condition, ∥h(x+v)−h(x)∥ ≤ K ∥v∥ and you can simply
let T ⊆V where mp (V )< ε/(K p5p) . Then there is a countable disjoint sequence of balls
{Bi} such that

{
B̂i
}

covers T and each ball Bi is contained in V each having radius no more
than 1. Then the Lipschitz condition implies h

(
B̂i
)
⊆ B(h(xi) ,5K) and so

m̄p (h(T ))≤
∞

∑
i=1

mp
(
h
(
B̂i
))
≤ 5pK p

∞

∑
i=1

mp (Bi)≤ K p5pmp (V )< ε

Since ε is arbitrary, this shows that h(T ) is measurable and mp (h(T )) = 0.
Now let E ∈Fp, mp (E)< ∞. Then by of the measure and Theorem 8.7.4, there exists

F which is the countable union of compact sets such that E = F ∪N where N is a set of
measure zero. Then from the first part, h(E \F) ⊆ h(N) and this set on the right has
measure zero and so by completeness of the measure, h(E \F) ∈ Fp and so h(E) =
h(E \F)∪h(F) ∈ Fp because F = ∪kKk, each Kk compact. Hence h(F) = ∪kh(Kk)
which is the countable union of compact sets, a Borel set, due to the continuity of h. For
arbitrary E, h(E) = ∪∞

k=1h(E ∩B(0,k)) ∈Fp. ■
Of course an example of a Lipschitz map is a linear map. ∥Ax−Ay∥= ∥A(x−y)∥ ≤

∥A∥∥x−y∥ . Therefore, if A is linear and E is Lebesgue measurable, then A(E) is also
Lebesgue measurable. This is convenient.

Lemma 10.3.2 Every open set U in Rp is a countable disjoint union of half open boxes
of the form Q≡∏

p
i=1[ai,ai +2−k) where ai = l2−k for l some integer.
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Proof: It is clear that there exists Qk a countable disjoint collection of these half open
boxes each of sides of length 2−k whose union is all of Rp. Let B1 be those sets of Q1
which are contained in U, if any. Having chosen Bk−1, let Bk consist of those sets of Qk
which are contained in U such that none of these are contained in Bk−1. Then ∪∞

k=1Bk is
a countable collection of disjoint boxes of the right sort whose union is U . This is because
if R is a box of Qk and R̂ is a box of Qk−1, then either R ⊆ R̂ or R∩ R̂ = /0. If p ∈U then
it is ultimately contained in some Bk for k as small as possible because p is at a positive
distance from UC. ■

Corollary 10.3.3 If D is a diagonal matrix having nonnegative eigenvalues, and U is
an open set, it follows that mp (DU) = det(D)mp (U) .

Proof: The multiplication by D just scales each side of the boxes whose disjoint union
is U , multiplying the side in the ith direction by the ith diagonal element. Thus if R is
one of the boxes, mp (DR) = det(D)mp (R) . The desired result follows from adding these
together. ■

I will write dx or dy instead of dmp (x) or dmp (y) to save on notation.

Theorem 10.3.4 Let E ∈Fp and let A be a p× p matrix. Then A(E) is Lebesgue
measurable and mp (A(E)) = |det(A)|mp (E). Also, if E is any Lebesgue measurable set,
then

∫
XA(E) (y)dy =

∫
XE (x) |det(A)|dx.

Proof: First note that if C (x,r)≡ {y ∈ Rp : |y−x|= r} , then mp (C (x,r)) = 0. This
follows from translation invariance and Corollary 10.3.3 applied to diagonal D having di-
agonal entries r (1+ ε) and one with diagonal entries r (1− ε) to obtain that for arbitrary
ε > 0,

mp (C (0,r)) ≤ mp (B(0,(1+ ε)r)\B(0,(1− ε)r))

= mp (B(0,r)) [((1+ ε)r)p− ((1− ε)r)p]

Here |·| is the Euclidean norm so all orthogonal transormations acting on a ball centered
at 0 leave the ball unchanged. Now let U be an open set, then by Theorem 4.5.6, there are
disjoint open balls {Bi}∞

i=1 such that U = (∪iBi)∪N where mn (N) = 0.
From the right polar decomposition, Theorem 1.5.5 and the fact that one can diagonal-

ize a symmetric matrix S, A = RS = RQ∗DQ where R and Q are orthogonal matrices and
D is a diagonal matrix with all nonnegative diagonal entries. Thus, if B is an open ball
centered at 0,

mp (A(B)) = mp (RQ∗DQ(B)) = mp (RQ∗D(B))

= |det(R)| |det(Q∗)|det(D)mp (B) = |det(A)|mp (B)

By continuity of translation, the same holds if B has a center at some other point than
0. It follows that mp (A(U)) = ∑i mp (ABi) = ∑i |det(A)|mp (Bi) = |det(A)|mp (U) . Now
let K be the open sets and S be those Borel sets E such that mp (A(E ∩B(0,n))) =
|det(A)|mp (E ∩B(0,n)) . It is routine to verify that S is closed with respect to countable
disjoint unions and complements. Therefore, S= σ (K ) and so this holds for all Borel E.
Letting n→ ∞, it follows that for all E Borel, mp (A(E)) = |det(A)|mp (E).

If E is only Lebesgue measurable, then by regularity and Proposition 10.1.4, there exists
G and F, Gδ and Fσ sets respectively such that F ⊆ E ⊆G and mp (G) = mp (E) = mp (F).
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Then AF ⊆ AE ⊆ AG and and for m̄p the outer measure determined by mp,

|det(A)|mp (F) = mp (AF)≤ mp (AE)≤ mp (AG)

= det(A)mp (G) = |det(A)|mp (E) = |det(A)|mp (F)

Thus all inequalities are equal signs. ■

Theorem 10.3.5 Let f ≥ 0 and suppose it is Lebesgue measurable. Then if A is a
p× p matrix, ∫

XA(Rp) (y) f (y)dmp (y) =
∫

f (Ax) |det(A)|dmp (x) . (10.5)

Proof: From Theorem 10.3.4, the equation is true if det(A) = 0. It follows that it
suffices to consider only the case where A−1 exists. First suppose f (y) = XE (y) where E
is a Lebesgue measurable set. In this case, A(Rn) = Rn. Then from Theorem 10.3.4∫

XA(Rp) (y) f (y)dy =
∫

XE (y)dy = mp (E) = |det(A)|mp
(
A−1E

)
=
∫
Rn
|det(A)|XA−1E (x)dx =

∫
Rn
|det(A)|XE (Ax)dx =

∫
f (Ax) |det(A)|dx

It follows from this that 10.5 holds whenever f is a nonnegative simple function. Fi-
nally, the general result follows from approximating the Lebesgue measurable function
with nonnegative simple functions using Theorem 8.1.6 and then applying the monotone
convergence theorem. ■

This is now a very good change of variables formula for a linear transformation. Next
this is extended to differentiable functions.

10.4 Differentiable Functions and Measurability
To begin with, certain kinds of functions map measurable sets to measurable sets. It was
shown earlier, Theorem 10.3.1, that Lipschitz functions do this. So do differentiable func-
tions.

In this part of the argument it is convenient to take all balls with respect to the norm
on Rp given by ∥x∥ = max{|xk| : k = 1,2, · · · , p} . Thus from the definition of this norm,
B(x,r) is the open box, ∏

p
k=1 (xk− r,xk + r) and so mp (B(x,r)) = (2r)p = 2prp. Also for

a linear transformation A ∈L (Rp,Rp) , I will continue to use ∥A∥ ≡ sup∥x∥≤1 ∥Ax∥ .

Lemma 10.4.1 Let T ⊆U, where U is open, h is continuous, and let h be differentiable
at each x ∈ T and suppose that mp (T ) = 0, then mp (h(T )) = 0.

Proof: For k ∈ N, let Tk ≡ {x ∈ T : ∥Dh(x)∥< k} and let ε > 0 be given. Since
Tk is a subset of a set of measure zero, it is measurable, but we don’t need to pay much
attention to this fact. Now by outer regularity, there exists an open set V , containing Tk
which is contained in U such that mp (V ) < ε . Let x ∈ Tk. Then by differentiability,
h(x+v) = h(x)+Dh(x)v+o(v) and so there exist arbitrarily small rx < 1 such that
B(x,5rx)⊆V and whenever ∥v∥ ≤ 5rx,∥o(v)∥< 1

5 ∥v∥ . Thus, from the Vitali covering
theorem, Theorem 4.5.3,

h(B(x,5rx)) ⊆ Dh(x)(B(0,5rx))+h(x)+B(0,rx)⊆ B(0,k5rx)+

+B(0,rx)+h(x) ⊆ B(h(x) ,(5k+1)rx)⊆ B(h(x) ,6krx)
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From the Vitali covering theorem, there exists a countable disjoint sequence of these
balls, {B(xi,ri)}∞

i=1 such that {B(xi,5ri)}∞

i=1 =
{

B̂i

}∞

i=1
covers Tk. Then letting mp denote

the outer measure determined by mp,

mp (h(Tk))≤ mp

(
h
(
∪∞

i=1B̂i

))
≤

∞

∑
i=1

mp

(
h
(

B̂i

))

≤
∞

∑
i=1

mp (B(h(xi) ,6krxi)) =
∞

∑
i=1

mp (B(xi,6krxi))

= (6k)p
∞

∑
i=1

mp (B(xi,rxi))≤ (6k)p mp (V )≤ (6k)p
ε.

Since ε > 0 is arbitrary, this shows mp (h(Tk)) = mp (h(Tk)) = 0. Now mp (h(T )) =
limk→∞ mp (h(Tk)) = 0. ■

Lemma 10.4.2 Let h be continuous on U and let h be differentiable on T ⊆U. If S is
a Lebesgue measurable subset of T , then h(S) is Lebesgue measurable.

Proof: By Theorem 8.8.2 there exists F which is a countable union of compact sets
F = ∪∞

k=1Kk such that F ⊆ S, mp (S\F) = 0. Then h(F) = ∪kh(Kk) ∈B (Rp) because
the continuous image of a compact set is compact. Also, h(S\F) is a set of measure zero
by Lemma 10.4.1 and so h(S) = h(F)∪h(S\F) ∈Fp because it is the union of two sets
which are in Fp. ■

In particular, this proves the following theorem from a different point of view to that
done before, using x→ Ax being differentiable rather than x→ Ax being Lipschitz. Later
on, is a theorem which says that Lipschitz implies differentiable a.e. However, it is also
good to note that if h has a derivative on an open set U , it does not follow that h is Lipschitz.

I will also use the following fundamental assertion, Sard’s lemma.

Lemma 10.4.3 (Sard) Let U be an open set in Rp. Let h : U → Rp be continuous and
let h be differentiable on A⊆U. Let Z ≡ {x ∈ A : detDh(x) = 0} . Then mp (h(Z)) = 0.

Proof: Suppose first that A is bounded. Let ε > 0 be given. Also let V ⊇ Z with V ⊆U
open, and mp (Z)+ ε > mp (V ) . Now let x ∈ Z. Then since h is differentiable at x, there
exists δx > 0 such that if r < δx, then B(x,r)⊆V and also,

h(B(x,r))⊆ h(x)+Dh(x)(B(0,r))+B(0,rη) , η < 1.

Regard Dh(x) as an n× n matrix, the matrix of the linear transformation Dh(x) with
respect to the usual coordinates. Since x∈ Z, it follows that there exists an invertible matrix
M such that MDh(x) is in row reduced echelon form with a row of zeros on the bottom.
Therefore, using Theorem 10.3.4 about taking out the determinant of a transformation,

mp (h(B(x,r))) =
∣∣det

(
M−1)∣∣mp (M (h(B(x,r))))

≤
∣∣det

(
M−1)∣∣mp (M (Dh(x))(B(0,r))+MB(0,rη))

≤
∣∣det

(
M−1)∣∣α p−1 ∥M (Dh(x))∥p−1 (2r+2ηr)p−1 ∥M∥2rη

≤ C
(
∥M∥ ,

∣∣det
(
M−1)∣∣ ,∥Dh(x)∥

)
4p−1rp2η
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Here αn is the volume of the unit ball in Rn. This is because M (Dh(x))(B(0,r)) +
MB(0,rη) in the third line up is contained in a cylinder, the base in Rp−1 which has
radius ∥M (Dh(x))∥(2r+2ηr) and height ∥M∥2rη . Thus its measure is no more than∫
Rp−1

∫ ∥Mrη∥
−∥Mrη∥ dxpdmp−1.Then letting δx be still smaller if necessary, corresponding to suf-

ficiently small η ,
mp (h(B(x,r)))≤ εmp (B(x,r)) .

The balls of this form constitute a Vitali cover of Z. Hence, by the covering theorem Corol-
lary 4.5.6, there exists {Bi}∞

i=1 ,Bi = Bi (xi,ri) , a collection of disjoint balls, each of which
is contained in V, such that mp (h(Bi)) ≤ εmp (Bi) and mp (Z \∪iBi) = 0. Hence from
Lemma 10.4.1,

mp (h(Z)\∪ih(Bi))≤ mp (h(Z \∪iBi)) = 0

Therefore,

mp (h(Z))≤∑
i

mp (h(Bi))≤ ε ∑
i

mp (Bi)≤ ε (mp (V ))≤ ε (mp (Z)+ ε) .

Since ε is arbitrary, this shows mp (h(Z)) = 0. What if A is not bounded? Then consider
Zn = Z∩B(0,n)⊆ A∩B(0,n) . From what was just shown, h(Zn) has measure 0 and so it
follows that h(Z) also does, being the countable union of sets of measure zero. ■

10.5 Change of Variables, Nonlinear Maps
This preparation leads to a good change of variables formula. First is a lemma which is
likely familiar by now.

Lemma 10.5.1 Let h : Ω→ Rp where (Ω,F ) is a measurable space and suppose h is
continuous. Then h−1 (B) ∈F whenenver B is a Borel set.

Proof: Measurability applied to components of h shows that h−1 (U) ∈F whenever
U is an open set. If G is consists of the subsets G of Rp for which h−1 (G) ∈F , then G is
a σ algebra and G contains the open sets. ■

Definition 10.5.2 Let h : U → h(U) be continuous, U open, and let H ⊆ U be
measurable and h is one to one and differentiable on H. Define λ (F)≡ mp (h(F ∩H)) .

Lemma 10.5.3 λ is a well defined measure on measurable subsets of U and λ ≪ mp.

Proof: Since the Ei are disjoint and h is one to one. λ (∪iEi) ≡ mp (h(∪iEi∩H)) =

∑i mp (h(Ei∩H)) = ∑i λ (Ei). If mp (E) = 0, then λ (E)≡mp (h(E ∩H)) = 0 because of
Lemma 10.4.1. ■

Since λ ≪ mp, it follows from the Radon Nikodym theorem of Corollary 9.11.11 that
there exists g ∈ L1

loc (U) such that for F a measurable subset of U,

λ (F) = mp (h(F ∩H)) =
∫

F
gdmp (10.6)

where g = 0 off H. To see that this corollary applies, note that both λ and mp are finite on
compact sets and that every open set is a countable union of compact sets.
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Now let F be a Borel set so that h−1 (F)∩H is measurable and plays the role of F in
the above. Then

λ
(
h−1 (F)

)
≡ mp

(
h
(
h−1 (F)∩H

))
=
∫

U
Xh−1(F)∩H (x)g(x)dmp (x) =

∫
H

XF (h(x))g(x)dmp (x)

Thus also for s a Borel measurable nonnegative simple function,∫
h(H)

s(y)dmp (y) =
∫

H
s(h(x))(x)g(x)dmp (x)

Using a sequence of nonnegative simple functions to approximate a nonnegative Borel
measurable f , we obtain from the monotone convergence theorem that∫

h(H)
f (y)dmp (y) =

∫
H

f (h(x))(x)g(x)dmp (x)

If f is only Lebesgue measurable, then there are nonnegative Borel measurable functions
k, l such that k (y)≤ f (y)≤ l (y) with equality holding off a set of mp measure zero. Then
k (h(x))g(x) ≤ f (h(x))g(x) ≤ l (h(x))g(x) and the two on the ends are Lebesgue
measurable which forces the function in the center to also be Lebesgue measurable by
completeness of Lebesgue measure because∫

H
l (h(x))g(x)− k (h(x))g(x)dmp =

∫
h(H)

l (y)dmp−
∫
h(H)

k (y)dmp

=
∫
h(H)

f (y)dmp−
∫
h(H)

f (y)dmp = 0

Thus l (h(x))g(x)− k (h(x))g(x) = 0 a.e. Then for f nonnegative and Lebesgue mea-
surable, ∫

H
f (h(x))g(x)dmp =

∫
h(H)

f (y)dmp.

This shows the following lemma.

Lemma 10.5.4 Let h : U→h(U) be continuous, U open, and let H ⊆U be measurable
and h is one to one and differentiable on H. Then there exists nonnegative measurable
g ∈ L1

loc such that whenever f is nonnegative and Lebesgue measurable,∫
h(H)

f (y)dmp =
∫

H
f (h(x))g(x)dmp

where all necessary measurability is obtained.

It remains to identify g.

Lemma 10.5.5 For a.e. x, satisfying |detDh(x)|> 0, and r small enough,

Dh(x)B(0,(1− ε)r) ⊆ h(B(x,r))⊆ h
(

B(x,r)
)
⊆ Dh(x)B(0,(1+ ε)r),

mp (h(B(x,r)))
mp (B(x,r))

∈ [|detDh(x)|(1− ε)p , |detDh(x)|(1+ ε)p]

lim
r→0

mp (h(B(x,r)))
mp (B(x,r))

= |detDh(x)|
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Proof: For r small enough,

h(B(x,r)) ⊆ h(x)+Dh(x)B(0,r)+Dh(x)Dh(x)−1 B(0,εr)

⊆ h(x)+Dh(x)B(0,r)+Dh(x)B(0,εr)

⊆ h(x)+Dh(x)(B(0,(1+ ε)r))

and so mp (h(B(x,r)))≤ |det(Dh(x))|mp (B(0,(1+ ε)r)) . Also,

h(x+v) = h(x)+Dh(x)v+Dh(x)Dh(x)−1o(v)

and so
∥∥∥Dh(x)−1 (h(x+v)−h(x))−v

∥∥∥ = ∥∥∥Dh(x)−1o(v)
∥∥∥ = ∥o(v)∥ . Thus if r is

chosen sufficiently small, it follows that for v ∈ B(0,r)∥∥∥Dh(x)−1 (h(x+v)−h(x))−v
∥∥∥< εr

and so, from Lemma 9.13.10, B(0,(1− ε)r)⊆ Dh(x)−1
(
h
(
x+B(0,r)

)
−h(x)

)
.

h
(

B(x,r)
)
= h

(
x+B(0,r)

)
−h(x)⊇ Dh(x)B(0,(1− ε)r)

Therefore, since mp (B(x,r)) = mp

(
B(x,r)

)
,

|det(Dh(x))|mp (B(0,(1− ε)r)) = |det(Dh(x))|(1− ε)p rp
α p ≤ mp (h(B(x,r)))

so for r small enough,

mp (h(B(x,r)))
mp (B(0,(1+ ε)r))

≤ |det(Dh(x))| ≤
mp (h(B(x,r)))

mp (B(0,(1− ε)r))

The claim follows from this since ε > 0 is arbitrary. ■

Lemma 10.5.6 For a.e. x with |detDh(x)|> 0, limr→0
mp(h(B(x,r)∩H))

mp(h(B(x,r)))
= g(x)
|detDh(x)| .

Proof: Using the result of Lemma 10.5.5, for a.e. x satisfying |detDh(x)| > 0, if r
small enough, then

mp (h(B(x,r))) ∈ [|detDh(x)|mp (B(x,r))(1− ε)p , |detDh(x)|mp (B(x,r))(1+ ε)p]

Therefore, for Qr ≡
mp(h(B(x,r)∩H))

mp(h(B(x,r)))
≥ 1
|detDh(x)|mp(B(x,r))(1+ε)p

∫
B(x,r) gdmp so

1
mp (B(0,r))(1+ ε)p

∫
B(x,r)

g
|detDh(x)|

dmp ≤ Qr

≤ 1
mp (B(0,r))(1− ε)p

∫
B(x,r)

g
|detDh(x)|

dmp

and so for Lebesgue points of g, a.e. x with |detDh(x)| ̸= 0,

1
(1+ ε)p ≤

g(x)
|detDh(x)|

≤ 1
(1− ε)p

Then for such x, 1
(1+ε)p

g
|detDh(x)| ≤ liminfr→0 Qr ≤ limsupr→0 Qr,≤ 1

(1−ε)p
g

|detDh(x)| so,

since ε is arbitrary, limr→0 Qr =
g(x)

|detDh(x)| . ■
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Lemma 10.5.7 For a.e. x ∈ H,g(x) = |detDh(x)|.

Proof: First consider x such that |det(Dh(x))| ̸= 0. Then by Lemmas 10.5.5 and 10.5.6

lim
r→0

mp (h(B(x,r)∩H))

mp (B(x,r))
= lim

r→0

mp (h(B(x,r)∩H))

mp (h(B(x,r)))
mp (h(B(x,r)))

mp (B(x,r))

=
g(x)

|detDh(x)|
|detDh(x)|= g(x)

for a.e. x where |det(Dh(x))| ̸= 0.
If |detDh(x)|= 0 then for r small enough,

1
mp (B(x,r))

∫
B(x,r)

gdmp =
mp (h(B(x,r)∩H))

mp (B(x,r))

≤
mp (h(x)+Dh(x)B(0,r)+B(0,εr))

mp (B(x,r))
=

mp (Dh(x)B(0,r)+B(0,εr))
mp (B(x,r))

Now Dh(x)B(0,r) + B(0,εr) has finite diameter and lies in a p− 1 dimensional sub-
set. Therefore, from Theorem 10.3.4 on linear mappings, there is an orthogonal matrix Q
preserving all distances such that

|detQ|mp (Dh(x)B(0,r)+B(0,εr)) = mp (QDh(x)B(0,r)+B(0,εr))

where QDh(x)B(0,r) lies in a ball in Rp−1 of some radius r̂ = ∥Dh(x)∥r,. Thus the set
on the right side is contained in a cylinder of radius r̂+ εr and height 2rε so its measure is
no more than α p−1 (r̂+ rε)p−1 2εr for α p−1 = mp−1 (B(0,1)) . Thus,

1
mp (B(x,r))

∫
B(x,r)

gdmp ≤
(∥Dh(x)∥+1)p

α p−1 (r+ rε)p−1 2εr
α prp

= 2(∥Dh(x)∥+1)p α p−1

α p
(1+ ε)p−1

ε

Since ε is arbitrary, for every Lebesgue point where |detDh(x)| = 0, it follows g = 0 =
|detDh(x)| . ■

Here is the change of variables formula which follows from Lemma 10.5.4 now that g
has been identified.

Theorem 10.5.8 Let U be an open set and let h : U→h(U) be continuous and one
to one and differentiable on the measurable H ⊆U. Then if f ≥ 0 is Lebesgue measurable,∫

h(H)
f (y)dmp =

∫
H

f (h(x)) |det(Dh(x))|dmp

10.6 Mappings Which are Not One to One
Now suppose h : U → V = h(U) and h is only C1, not necessarily one to one. Note that
I am using C1, not just differentiable. This makes it convenient to use the inverse function
theorem. You can get more generality if you work harder. See my book “Real and Abstract
Analysis” for example. For

U+ ≡ {x ∈U : |detDh(x)|> 0}
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and Z the set where |detDh(x)| = 0, Lemma 10.4.3 implies mp(h(Z)) = 0. For x ∈U+,
the inverse function theorem implies there exists an open set Bx ⊆U+, such that h is one
to one on Bx.

Let {Bi} be a countable subset of {Bx}x∈U+ such that U+ = ∪∞
i=1Bi. Let E1 = B1. If

E1, · · · ,Ek have been chosen, Ek+1 = Bk+1 \∪k
i=1Ei. Thus

∪∞
i=1Ei =U+, h is one to one on Ei, Ei∩E j = /0,

and each Ei is a Borel set contained in the open set Bi. Now define

n(y)≡
∞

∑
i=1

Xh(Ei)(y)+Xh(Z)(y).

The sets h(Ei) ,h(Z) are measurable by Proposition 10.4.1. Thus n(·) is measurable.

Lemma 10.6.1 Let F ⊆ h(U) be measurable. Then∫
h(U)

n(y)XF(y)dmp =
∫

U
XF(h(x))|detDh(x)|dmp.

Proof: Using Lemma 10.4.3 and the Monotone Convergence Theorem

∫
h(U)

n(y)XF(y)dmp =
∫
h(U)

 ∞

∑
i=1

Xh(Ei)(y)+

mp(h(Z))=0︷ ︸︸ ︷
Xh(Z)(y)

XF(y)dmp

=
∞

∑
i=1

∫
h(U)

Xh(Ei)(y)XF(y)dmp

=
∞

∑
i=1

∫
h(Bi)

Xh(Ei)(y)XF(y)dmp =
∞

∑
i=1

∫
Bi

XEi(x)XF(h(x))|detDh(x)|dmp

=
∞

∑
i=1

∫
U

XEi(x)XF(h(x))|detDh(x)|dmp

=
∫

U

∞

∑
i=1

XEi(x)XF(h(x))|detDh(x)|dmp

=
∫

U+

XF(h(x))|detDh(x)|dmp =
∫

U
XF(h(x))|detDh(x)|dmp. ■

Definition 10.6.2 For y ∈ h(U), define a function, #, according to the formula

#(y)≡ number of elements in h−1(y).

Observe that
#(y) = n(y) a.e. (10.7)

because n(y) = #(y) if y /∈h(Z), a set of measure 0. Therefore, # is a measurable function
because of completeness of Lebesgue measure.
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Theorem 10.6.3 Let g≥ 0, g measurable, and let h be C1(U). Then∫
h(U)

#(y)g(y)dmp =
∫

U
g(h(x))|detDh(x)|dmp. (10.8)

In fact, you can have E some Borel measurable subset of U and conclude that∫
h(E)

#(y)g(y)dmp =
∫

E
g(h(x))|detDh(x)|dmp

Proof: From 10.7 and Lemma 10.6.1, 10.8 holds for all g, a nonnegative simple func-
tion. Approximating an arbitrary measurable nonnegative function g, with an increasing
pointwise convergent sequence of simple functions and using the monotone convergence
theorem, yields 10.8 for an arbitrary nonnegative measurable function g. To get the last
claim, simply replace g with gXh(E) in the first formula. ■

10.7 Mollifiers and Density of Smooth Functions
Definition 10.7.1 Let U be an open subset of Rn. C∞

c (U) is the vector space of all
infinitely differentiable functions which equal zero for all x outside of some compact set
contained in U. Similarly, Cm

c (U) is the vector space of all functions which are m times
continuously differentiable and whose support is a compact subset of U.

Example 10.7.2 Let U = B(z,2r)

ψ (x) =

 exp
[(
|x−z|2− r2

)−1
]

if |x−z|< r,

0 if |x−z| ≥ r.

Then a little work shows ψ ∈C∞
c (U). The following also is easily obtained.

Lemma 10.7.3 Let U be any open set. Then C∞
c (U) ̸= /0.

Proof: Pick z ∈U and let r be small enough that B(z,2r)⊆U . Then let

ψ ∈C∞
c (B(z,2r))⊆C∞

c (U)

be the function of the above example.

Definition 10.7.4 Let U = {x∈Rn : |x|< 1}. A sequence {ψm}⊆C∞
c (U) is called

a mollifier 1 if ψm(x)≥ 0, ψm(x) = 0, if |x| ≤ 1
m ,and

∫
ψm(x) = 1. Sometimes it may be

written as {ψε} where ψε satisfies the above conditions except ψε (x) = 0 if |x| ≥ ε . In
other words, ε takes the place of 1/m and in everything that follows ε → 0 instead of
m→ ∞.

As before,
∫

f (x,y)dµ(y) will mean x is fixed and the function y→ f (x,y) is being
integrated. To make the notation more familiar, dx is written instead of dmn(x).

1This is sometimes called an approximate identity if the differentiability is not included.
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Example 10.7.5 Let ψ ∈ C∞
c (B(0,1)) with ψ(x) ≥ 0 and

∫
ψdm = 1. Let ψm(x) =

cmψ(mx) where cm is chosen in such a way that
∫

ψmdm = 1. By the change of variables
theorem cm = mn. Also ψm is zero off B(0,1/m).

Definition 10.7.6 A function f , is said to be in L1
loc(Rn,µ) if f is µ measurable and

if | f |XK ∈ L1(Rn,µ) for every compact set K.Here µ is a regular, complete measure onRn.
Usually µ =mn, Lebesgue measure. When this is so, write L1

loc(Rn), etc. If f ∈ L1
loc(Rn,µ),

and g ∈Cc(Rn), f ∗g(x)≡
∫

f (y)g(x−y)dµ .

The following lemma will be useful in what follows. It says that one of these very
un-regular functions in L1

loc (Rn,µ) is smoothed out by convolving with a mollifier.

Lemma 10.7.7 Let f ∈ L1
loc(Rn,µ), and g ∈ C∞

c (Rn). Then f ∗ g is an infinitely dif-
ferentiable function. Here µ is a Radon measure on Rn. In case f is continuous with
compact support spt( f ) , and if ψm is a mollifier as described above, then spt( f ∗ψm) ⊆
spt( f )+B(0,1/m) . Also ∥ f − f ∗ψm∥→ 0.

Proof: Consider the difference quotient for calculating a partial derivative of f ∗g.

f ∗g(x+ te j)− f ∗g(x)
t

=
∫

f (y)
g(x+ te j−y)−g(x−y)

t
dµ (y) .

Using the fact that g ∈ C∞
c (Rn), the quotient g(x+te j−y)−g(x−y)

t is uniformly bounded.
To see this easily, use Theorem 6.5.2 on Page 149 to get the existence of a constant, M
depending on max{||Dg(x)|| : x ∈ Rn} such that

∣∣g(x+ te j−y)−g(x−y)
∣∣ ≤M |t| for

any choice of x and y. Therefore, there exists a dominating function for the integrand of
the above integral which is of the form C | f (y)|XK where K is a compact set depending
on the support of g. It follows the limit of the difference quotient above passes inside the
integral as t → 0 and ∂

∂x j
( f ∗g)(x) =

∫
f (y) ∂

∂x j
g(x−y)dµ (y) . Now letting ∂

∂x j
g play

the role of g in the above argument, partial derivatives of all orders exist. A similar use of
the dominated convergence theorem shows all these partial derivatives are also continuous.

For the last claim, it is clear that spt( f ∗ψm)⊆ spt( f )+B(0,1/m) since off spt( f )+
B(0,1/m) the integral for f ∗ψm will be 0. To verify the last claim, let ε > 0 be given. By
uniform continuity of f , | f (x)− f (x−y)|< ε whenever |y| is sufficiently small. There-
fore,

| f (x)− f ∗ψm (x)| =

∣∣∣∣∫ ( f (x)− f (x−y))ψm (y)dµ (y)
∣∣∣∣

≤
∫

B(0,1/m)
| f (x)− f (x−y)|ψm (y)dµ (y)< ε

∫
ψmdµ = ε

whenever m is large enough. ■
Another thing should probably be mentioned. If you have had a course in complex

analysis, you may be wondering whether these infinitely differentiable functions having
compact support have anything to do with analytic functions which also have infinitely
many derivatives. The answer is no! Recall that if an analytic function has a limit point in
the set of zeros then it is identically equal to zero. Thus these functions in C∞

c (Rn) are not
analytic. This is a strictly real analysis phenomenon and has absolutely nothing to do with
the theory of functions of a complex variable.
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10.8 Smooth Partitions of Unity
Partitions of unity were discussed earlier. Here the idea of a smooth partition of unity is
considered. The earlier general result on metric space is Theorem 3.12.5 on Page 84. Recall
the following notation.

Notation 10.8.1 I will write φ ≺V to symbolize φ ∈Cc (V ) , φ has values in [0,1] , and φ

has compact support in V . I will write K ≺ φ ≺V for K compact and V open to symbolize
φ is 1 on K and φ has values in [0,1] with compact support contained in V .

Definition 10.8.2 A collection of sets H is called locally finite if for every x, there
exists r > 0 such that B(x,r) has nonempty intersection with only finitely many sets of H .
Of course every finite collection of sets is locally finite. This is the case of most interest in
this book but the more general notion is interesting.

The thing about locally finite collection of sets is that the closure of their union equals
the union of their closures. This is clearly true of a finite collection.

Lemma 10.8.3 Let H be a locally finite collection of sets of a normed vector space V .
Then

∪H = ∪
{

H : H ∈H
}
.

Proof: It is obvious⊇ holds in the above claim. It remains to go the other way. Suppose
then that p is a limit point of ∪H and p /∈ ∪H . There exists r > 0 such that B(p,r) has
nonempty intersection with only finitely many sets of H say these are H1, · · · ,Hm. Then I
claim p must be a limit point of one of these. If this is not so, there would exist r′ such that
0 < r′ < r with B(p,r′) having empty intersection with each of these Hi. But then p would
fail to be a limit point of ∪H . Therefore, p is contained in the right side. It is clear ∪H
is contained in the right side and so This proves the lemma. ■

A good example to consider is the rational numbers each being a set in R. This is not a
locally finite collection of sets and you note that Q= R ̸= ∪{x : x ∈Q} . By contrast, Z is
a locally finite collection of sets, the sets consisting of individual integers. The closure of
Z is equal to Z because Z has no limit points so it contains them all.

Lemma 10.8.4 Let K be a closed set in Rp and let {Vi}∞

i=1 be a locally finite sequence
of bounded open sets whose union contains K. Then there exist functions, ψ i ∈C∞

c (Vi) such
that for all x ∈ K,1 = ∑

∞
i=1 ψ i (x) and the function f (x) given by f (x) = ∑

∞
i=1 ψ i (x) is

in C∞ (Rp) .

Proof: Let K1 = K \∪∞
i=2Vi. Thus K1 is compact because it is a closed subset of a

bounded set and K1 ⊆V1. Let W1 be an open set having compact closure which satisfies

K1 ⊆W1 ⊆W 1 ⊆V1

Thus W1,V2, · · · covers K and W 1 ⊆ V1. Suppose W1, · · · ,Wr have been defined such that
Wi ⊆Vi for each i, and W1, · · · ,Wr,Vr+1, · · · covers K. Then let

Kr+1 ≡ K \ (
(
∪∞

i=r+2Vi
)
∪
(
∪r

j=1Wj
)
).

It follows Kr+1 is compact because Kr+1 ⊆Vr+1. Let Wr+1 satisfy

Kr+1 ⊆Wr+1 ⊆W r+1 ⊆Vr+1, W r+1 is compact
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Continuing this way defines a sequence of open sets {Wi}∞

i=1 having compact closures with
the property

Wi ⊆Vi, K ⊆ ∪∞
i=1Wi.

Note {Wi}∞

i=1 is locally finite because the original sequence, {Vi}∞

i=1 was locally finite. Now
let Ui be open sets which satisfy

W i ⊆Ui ⊆U i ⊆Vi, U i is compact.

Similarly, {Ui}∞

i=1 is locally finite.

Wi Ui Vi

Now the local finiteness implies ∪∞
i=1Wi = ∪∞

i=1Wi . Define φ i and γ, continuous having
compact support such that

U i ≺ φ i ≺Vi, ∪∞
i=1W i ≺ γ ≺ ∪∞

i=1Ui.

by convolving each of these with a mollifier, we can use Lemma 10.7.7 to preserve the
above and also have each of these functions infinitely differentiable. Now define

ψ i(x) =

{
γ(x)φ i(x)/∑

∞
j=1 φ j(x) if ∑

∞
j=1 φ j(x) ̸= 0,

0 if ∑
∞
j=1 φ j(x) = 0.

All of these infinite sums are really finite sums because of the local finiteness of the {Vi}.
Thus for y near a given x, all φ j (y) are zero. Therefore, all continuity and differentiability
of the individual φ j is retained by the “infinite” sum.

If x is such that ∑
∞
j=1 φ j(x) = 0, then x /∈ ∪∞

i=1Ui because φ i equals one on Ui. Conse-
quently γ (y) = 0 for all y near x thanks to the fact that ∪∞

i=1Ui is closed and so ψ i(y) = 0
for all y near x. Hence ψ i is infinitely differentiable at such x. If ∑

∞
j=1 φ j(x) ̸= 0, this

situation persists near x because each φ j is continuous and so ψ i is infinitely differentiable
at such points also. Therefore ψ i is infinitely differentiable. If x ∈ K, then γ (x) = 1 and
so ∑

∞
j=1 ψ j(x) = 1. Clearly 0≤ ψ i (x)≤ 1 and spt(ψ j)⊆Vj. ■

The functions, {ψ i} are called a C∞ partition of unity. The following is very useful.

Corollary 10.8.5 In the context of Lemma 10.8.4, if H is a compact subset of Vi for
some Vi there exists a partition of unity such that ψ i (x) = 1 for all x ∈ H in addition to the
conclusion of Lemma 10.8.4.

Proof: Keep Vi the same but replace all the Vj with Ṽj ≡ Vj \H. Now in the proof
above, applied to this modified collection of open sets, if j ̸= i,φ j (x) = 0 whenever x ∈H.
Therefore, ψ i (x) = 1 on H. ■

If K is compact, we can always reduce to a finite cover and so we obtain the following:

Theorem 10.8.6 Let K be a compact set in Rn and let {Ui}∞

i=1 be an open cover of
K. Then there exist functions, ψk ∈C∞

c (Ui) such that ψ i ≺Ui and for all x ∈ K, it follows
that ∑

∞
i=1 ψ i (x) = 1. If K1 is a compact subset of U1 there exist such functions such that

also ψ1 (x) = 1 for all x ∈ K1.
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10.9 Spherical Coordinates in p Dimensions
Sometimes there is a need to deal with spherical coordinates in more than three dimen-
sions. In this section, this concept is defined and formulas are derived for these coordinate
systems. Recall polar coordinates are of the form

y1 = ρ cosθ

y2 = ρ sinθ

where ρ > 0 and θ ∈ R. Thus these transformation equations are not one to one but they
are one to one on (0,∞)× [0,2π). Here I am writing ρ in place of r to emphasize a pattern
which is about to emerge. I will consider polar coordinates as spherical coordinates in
two dimensions. I will also simply refer to such coordinate systems as polar coordinates
regardless of the dimension. This is also the reason I am writing y1 and y2 instead of the
more usual x and y. Now consider what happens when you go to three dimensions. The
situation is depicted in the following picture.

φ 1
ρ

•(y1,y2,y3)

R2

R

From this picture, you see that y3 = ρ cosφ 1. Also the distance between (y1,y2) and
(0,0) is ρ sin(φ 1) . Therefore, using polar coordinates to write (y1,y2) in terms of θ and
this distance,

y1 = ρ sinφ 1 cosθ ,
y2 = ρ sinφ 1 sinθ ,
y3 = ρ cosφ 1.

where φ 1 ∈R and the transformations are one to one if φ 1 is restricted to be in [0,π] . What
was done is to replace ρ with ρ sinφ 1 and then to add in y3 = ρ cosφ 1. Having done this,
there is no reason to stop with three dimensions. Consider the following picture:

φ 2
ρ

•(y1,y2,y3,y4)

R3

R

From this picture, you see that y4 = ρ cosφ 2. Also the distance from (y1,y2,y3) to
(0,0,0) is ρ sin(φ 2) . Therefore, using polar coordinates to write (y1,y2,y3) in terms of
θ ,φ 1, and this distance,

y1 = ρ sinφ 2 sinφ 1 cosθ ,
y2 = ρ sinφ 2 sinφ 1 sinθ ,
y3 = ρ sinφ 2 cosφ 1,
y4 = ρ cosφ 2

where φ 2 ∈ R and the transformations will be one to one if φ 2,φ 1 ∈ (0,π), θ ∈ (0,2π),
ρ ∈ (0,∞) .

Continuing this way, given spherical coordinates in Rp, to get the spherical coordinates
in Rp+1, you let yp+1 = ρ cosφ p−1 and then replace every occurance of ρ with ρ sinφ p−1
to obtain y1, · · · ,yp in terms of φ 1,φ 2, · · · ,φ p−1,θ , and ρ.
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It is always the case that ρ measures the distance from the point in Rp to the origin in
Rp, 0. Each φ i ∈ R and the transformations will be one to one if each φ i ∈ (0,π) , and

θ ∈ (0,2π) . Denote by hp

(
ρ, φ⃗ ,θ

)
the above transformation.

It can be shown using math induction and geometric reasoning that these coordinates
map ∏

p−2
i=1 (0,π)× (0,2π)× (0,∞) one to one onto an open subset of Rp which is ev-

erything except for the set of measure zero Ψp (N) where N results from having some
φ i equal to 0 or π or for ρ = 0 or for θ equal to either 2π or 0. Each of these are sets
of Lebesgue measure zero and so their union is also a set of measure zero. You can see
that hp

(
∏

p−2
i=1 (0,π)× (0,2π)× (0,∞)

)
omits the union of the coordinate axes except for

maybe one of them. This is not important to the integral because it is just a set of measure
zero.

Theorem 10.9.1 Let y =hp

(⃗
φ ,θ ,ρ

)
be the spherical coordinate transformations

in Rp. Then letting A = ∏
p−2
i=1 (0,π)× (0,2π) , it follows h maps A× (0,∞) one to one onto

all of Rp except a set of measure zero given by hp (N) where N is the set of measure zero(
Ā× [0,∞)

)
\ (A× (0,∞))

Also
∣∣∣detDhp

(⃗
φ ,θ ,ρ

)∣∣∣ will always be of the form∣∣∣detDhp

(⃗
φ ,θ ,ρ

)∣∣∣= ρ
p−1

Φ

(⃗
φ ,θ

)
. (10.9)

where Φ is a continuous function of φ⃗ and θ .2 Then if f is nonnegative and Lebesgue
measurable,∫

Rp
f (y)dmp =

∫
hp(A)

f (y)dmp =
∫

A
f
(
hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp (10.10)

Furthermore whenever f is Borel measurable and nonnegative, one can apply Fubini’s
theorem and write∫

Rp
f (y)dy =

∫
∞

0
ρ

p−1
∫

A
f
(
h
(⃗

φ ,θ ,ρ
))

Φ

(⃗
φ ,θ

)
dφ⃗dθdρ (10.11)

where here dφ⃗dθ denotes dmp−1 on A. The same formulas hold if f ∈ L1 (Rp) .

Proof: Formula 10.9 is obvious from the definition of the spherical coordinates because
in the matrix of the derivative, there will be a ρ in p− 1 columns. The first claim is also
clear from the definition and math induction or from the geometry of the above description.
It remains to verify 10.10 and 10.11. It is clear hp maps Ā× [0,∞) onto Rp. Since hp is
differentiable, it maps sets of measure zero to sets of measure zero. Then

Rp = hp (N∪A× (0,∞)) = hp (N)∪hp (A× (0,∞)) ,

the union of a set of measure zero with hp (A× (0,∞)) . Therefore, from the change of
variables formula,∫

Rp
f (y)dmp =

∫
hp(A×(0,∞))

f (y)dmp

=
∫

A×(0,∞)
f
(
hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

2Actually it is only a function of the first but this is not important in what follows.
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which proves 10.10. This formula continues to hold if f is in L1 (Rp) by consideration of
positive and negative parts of real and imaginary parts.

Finally, if f ≥ 0 or in L1 (Rn) and is Borel measurable, the Borel sets denoted as B (Rp)
then one can write the following. From the definition of mp∫

A×(0,∞)
f
(
hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp

=
∫
(0,∞)

∫
A

f
(
hp

(⃗
φ ,θ ,ρ

))
ρ

p−1
Φ

(⃗
φ ,θ

)
dmp−1dm

=
∫
(0,∞)

ρ
p−1

∫
A

f
(
hp

(⃗
φ ,θ ,ρ

))
Φ

(⃗
φ ,θ

)
dmp−1dm

Now the claim about f ∈ L1 follows routinely from considering the positive and negative
parts of the real and imaginary parts of f in the usual way. ■

Note that the above equals
∫

Ā×[0,∞) f
(
hp

(⃗
φ ,θ ,ρ

))
ρ p−1Φ

(⃗
φ ,θ

)
dmp and the iter-

ated integral is also equal to∫
[0,∞)

ρ
p−1

∫
Ā

f
(
hp

(⃗
φ ,θ ,ρ

))
Φ

(⃗
φ ,θ

)
dmp−1dm

because the difference is just a set of measure zero.

Notation 10.9.2 Often this is written differently. Note that from the spherical coordinate
formulas, f

(
h
(⃗

φ ,θ ,ρ
))

= f (ρω) where |ω| = 1. Letting Sp−1 denote the unit sphere,
{ω ∈ Rp : |ω|= 1} , the inside integral in the above formula is sometimes written as∫

Sp−1
f (ρω)dσ

where σ is a measure on Sp−1. See “Real and Abstract Analysis” for another description
of this measure. It isn’t an important issue here. Either 10.11 or the formula∫

∞

0
ρ

p−1
(∫

Sp−1
f (ρω)dσ

)
dρ

will be referred to as polar coordinates and is very useful in establishing estimates. Here
σ
(
Sp−1

)
≡
∫

A Φ

(⃗
φ ,θ

)
dmp−1.

Example 10.9.3 For what values of s is the integral
∫

B(0,R)

(
1+ |x|2

)s
dy bounded inde-

pendent of R? Here B(0,R) is the ball, {x ∈ Rp : |x| ≤ R} .

I think you can see immediately that s must be negative but exactly how negative? It
turns out it depends on p and using polar coordinates, you can find just exactly what is
needed. From the polar coordinates formula above,∫

B(0,R)

(
1+ |x|2

)s
dy =

∫ R

0

∫
Sp−1

(
1+ρ

2)s
ρ

p−1dσdρ

= Cp

∫ R

0

(
1+ρ

2)s
ρ

p−1dρ

Now the very hard problem has been reduced to considering an easy one variable prob-
lem of finding when

∫ R
0 ρ p−1

(
1+ρ2

)s dρ is bounded independent of R. You need 2s+
(p−1)<−1 so you need s <−p/2.
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10.10 Exercises
1. Use a change of variables to find the volume of the ellipsoid x2

9 + y2

4 + z2 ≤ 1. Hint:
You might let u = x

3 ,v,w defined similarly and reduce to volume of a ball of radius 1.

2. A random vector X, with values in Rp has a multivariate normal distribution written
as X ∼ Np (m,Σ) if for all Borel E ⊆ Rp,

λX (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dmp

Here Σ is a positive definite symmetric matrix. Recall that λX (E) ≡ P(X ∈ E) .
Using the change of variables formula, show that λX defined above is a probability
measure. One thing you must show is that∫

Rp

1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dmp = 1

Hint: To do this, you might use the fact from linear algebra that Σ = Q∗DQ where D
is a diagonal matrix and Q is an orthogonal matrix. Thus Σ−1 =Q∗D−1Q. Maybe you
could first let y = D−1/2Q(x−m) and change the variables. Note that the change
of variables formula works fine when the open sets are all of Rp. You don’t need
to confine your attention to finite open sets which would be the case with Riemann
integrals which are only defined on bounded sets.

3. Consider the positive integers N. Explain why every function defined on these is
continuous. Here the distance function is just the absolute value of the difference.
What are the functions in Cc (N)? Define L( f ) as ∑i f (i) for every f in Cc (N) . From
the Riesz representation theorem for positive linear functionals, what is the measure
which results in this way? What if L( f ) = ∑i ai f (i) where ai ≥ 0?

4. Let g be an increasing function on R. Consider the Rieman Stieltjes integral L( f )≡∫
R f dg where f ∈ Cc (R). These integrals are described in “Analysis of Functions

of One Variable. Use the Riesz representation theorem to obtain a measure ν which
is regular and complete and Borel representing this functional. Recall that in these
Stieltjes integrals, one typically has one of f ,g continuous and the other increasing
or of bounded variation. In this case, g is of bounded variation on any interval and
the Riesz representation theorem shows we can give meaning to an integral in which
f could be Borel measurable or worse. The next several problems will develop the
fundamentals of the Lp spaces.

5. Show that for a,b ≥ 0 and p > 1, ab ≤ ap

p + bq

q where q is defined by 1
p +

1
q = 1.

Hint: Show that p−1 = p/q and q−1 = q/p.It is obvious if b = 0 so fix b > 0 and
use calculus procedures on a→ ap

p + bq

q −ab.

6. ↑Let (Ω,F ,µ) be any measure space. Show that if f ,g are nonnegative measurable
functions, then it is always the case that

∫
f gdµ ≤ (

∫
f pdµ)1/p (

∫
gqdµ)1/q where

here p,q > 1 and 1/p+1/q = 1. Hint: If either of the terms on the right is 0, then
there is nothing to show. If either of the terms on the right is ∞, there is also nothing
to show by using the above inequality. Assume these are finite and positive. Denoting



258 CHAPTER 10. REGULAR MEASURES

them as ∥ f∥p and ∥g∥q respectively, consider the above inequality in
∫ f
∥ f∥p

g
∥g∥q

dµ .
This is Holder’s inequality. When does equality hold? See previous problem to
determine this.

7. ↑ Lp (Ω,µ) consists of those measurable functions f such that | f |p is integrable.
Show using Holder’s inequality that if µ (Ω) < ∞ that if 1 < p < q, then Lq (Ω) ⊆
Lp (Ω) . Give an example which shows that sometimes the opposite inclusion holds
if µ (Ω) = ∞.

8. ↑ Show that if ∥ f∥p ,∥g∥p < ∞, then ∥ f +g∥p ≤ ∥ f∥p +∥g∥p . Hint: Show∫
| f +g|p dµ ≤

∫
| f +g|p/q | f |dµ +

∫
| f +g|p/q |g|dµ

Now apply Holder’s inequality.

9. ↑If we regard f = g when the two differ only on a set of measure zero, explain why
∥ f∥p is a norm. The collection of these functions with this convention for ∥·∥p is
called Lp (Ω,µ)

10. ↑Now suppose { fn} is a Cauchy sequence in Lp. That is: For every ε > 0 there
exists nε such that if m,n > nε then ∥ fm− fn∥p < ε . Show there exists f ∈ Lp

such that limn→∞ ∥ f − fn∥p = 0. Hint: Recall from Theorem 3.2.2 on Page 65 that
we only need to obtain a subsequence which converges. Here is how you can get
such a subsequence. Pick a subsequence

{
fnk

}
denoted as {gk} for short such that

∥gk−gk+1∥p
p < 4−k. Now let Ek ≡

{
ω : |gk (ω)−gk+1 (ω)|p > 2−k

}
. Explain why

4−k ≥
∫

Ek

|gk (ω)−gk+1 (ω)|p dµ ≥ 2−k
µ (Ek) , µ (Ek)< 2−k

Now recall the Borel Cantelli lemma, Lemma 8.2.5, there is a set of measure zero
N such that if ω /∈ N then ω is in only finitely many of the Ek. Thus for such
ω {gk (ω)} is a Cauchy sequence which converges to some f (ω) . Now explain
using Fatou’s lemma how ∥gk− f∥p → 0 and that f ∈ Lp. First argue that ∥ f∥p ≤
liminfk→∞ ∥gk∥p < ∞ because the ∥gk∥p are bounded due to the fact that {gk} is a
Cauchy sequence. Next pick m such that if k, l > m, then ∥gk−gl∥< ε. Use Fatou’s
lemma again to obtain that for k > m,∥gk− f∥p < ε which was to be shown.

11. ↑Show that the simple functions are dense in Lp. Hint: Consider positive and nega-
tive parts of f ∈ Lp and use Theorem 8.1.6 about pointwise limits of simple functions
along with the dominated convergence theorem or some such thing.

12. ↑In case the measure space is (X ,F ,µ) where µ is regular and Borel and X is a
Polish space, show that Cc (X) is dense in Lp (X).

13. ↑In the situation of (Rn,Fp,mp) , Lebesgue measure, define fy (x) ≡ f (x−y) .
Show limy→0 ∥ fy− f∥p = 0. This is very important and is called continuity of trans-
lation in Lp. Hint: Let g ∈Cc (Rn) . Then

∥ fy− f∥p ≤ ∥ fy−gy∥p +∥gy−g∥p +∥g− f∥p

Now from the above problem, pick g∈Cc (Rn) such that ∥ f −g∥p = ∥ fy−gy∥p < ε.
This comes from a change of variables exercise of using translation invariance of the
measure. Now if y is small enough, the right side is no more than 3ε .
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14. ↑Let {ψm} be a mollifier. Explain why if f ∈ Lp (Rn) then f ∈ L1
loc (Rn) . You might

use Holder’s inequality to show this. Thus from Lemma 10.7.7, f ∗ψm is infinitely
differentiable. Now fill in the details of the following:∣∣∣∣∫ f (x−y)ψm (y)dmn− f (x)

∣∣∣∣p = ∣∣∣∣∫ ( f (x−y)− f (x))ψm (y)dmn

∣∣∣∣p
≤
(∫
| f (x−y)− f (x)|ψm (y)dmn

)p

≤
∫
| f (x−y)− f (x)|p ψm (y)dmn (y)

Then

∥ f ∗ψm− f∥p
p ≤

∫ ∫
| f (x−y)− f (x)|p ψm (y)dmn (y)dmn (x)

=
∫

ψm (y)
∫
| f (x−y)− f (x)|p dmn (x)dmn (y)

=
∫

B(0,1/m)
ψm (y)∥ fy− f∥p

p dmn (y)≤ ε

whenever m large enough. You will want to use Jensen’s inequality at the third
relation in the top. Indeed, ψmdmn is a probability measure. This shows that even
though the functions in Lp might be discontinuous everywhere, the space of infinitely
differentiable functions is dense in Lp.

15. Minkowski’s inequality is very useful. Fill in the details for finite measure spaces
and f ≥ 0 product measurable. Recall 1/p+1/q = 1 where p > 1.∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ =
∫

Y
J (y)p/q

∫
X
| f (x,y)|dµdλ

=
∫

X

∫
Y
| f (x,y)|J (y)p/q dλdµ

Use Holder’s inequality on the inside integral to get

≤
(∫

Y

(∫
X
| f (x,y)|dµ

)p

dλ

)1/q ∫
X

(∫
Y
| f (x,y)|p dλ

)1/p

dµ

Now divide both sides by (
∫

Y (
∫

X | f (x,y)|dµ)p dλ )
1/q. This gives the Minkowski

inequality(∫
Y

(∫
X
| f (x,y)|dµ

)p

dλ

)1/p

≤
∫

X

(∫
Y
| f (x,y)|p dλ

)1/p

dµ

Extend to σ finite measure spaces.

16. You have a measure space (Ω,F ,P) where P is a probability measure on F . Then
you also have a measurable function X : Ω→ Z where Z is some metric space. Thus
X−1 (U) ∈F whenever U is open. Now define a measure on B (Z) denoted by λ X
and defined by λ X (E)=P({ω : X (ω) ∈ E}) . Explain why this yields a well defined
probability measure on B (Z) which is regular.

λ X (F) = sup{λ X (K) : K compact, K ⊆ F}
λ X (F) = inf{λ X (V ) : V open, V ⊇ F}

This is called the distribution measure.
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Chapter 11

Integration on Manifolds
Till now, integrals have mostly pertained to measurable subsets of Rp and not something
like a surface contained in a higher dimensional space. This is what is considered in this
chapter. First is an abstract description of manifolds and then an interesting application of
the representation theorem for positive linear functionals is used to give a measure on a
manifold. This is the higher dimensional version of arc length for a smooth curve seen in
calculus.

Definition 11.0.1 Let S be a nonempty set in a metric space (X ,d). ∂S is the set
of points x, if any with the property that B(x,r) contains points of S and points of X \S for
each r > 0. The interior of S consists of the union of all open subsets of S.

Lemma 11.0.2 Let U be a nonempty open set in a metric space (X ,d) . ∂U = Ū \U.

Proof: If x ∈ ∂U, then x can’t be in U because some ball containing x is contained in
U . However, it must be in Ū because if not, some ball containing x would contain no points
of Ū since Ū is closed.

If x ∈ Ū \U then if some ball containing x fails to contain other points which are in U
then that ball would show x /∈ Ū . Hence every ball containing x must contain points of U .
However, x itself is not in U and so x ∈ ∂U . ■

11.1 Manifolds
Definition 11.1.1 An essential part of the definition of a manifold is the idea of
a relatively open set defined next. Recall that a homeomorphism is a one to one, onto,
continuous mapping from one metric space to another which has continuous inverse. A
half space will be of the form {x : xi ≥ ai} or {x : xi ≤ ai} .

Definition 11.1.2 Let X be a metric space and let Ω⊆ X. Then a set U is called a
relatively open set or open in Ω if it is the intersection of an open set of X with Ω. Thus Ω is
a metric space with respect to the distance d (x,y) inherited from X and all considerations
such as limit points, closures, limits, closed sets, open sets etc. in this metric space are taken
with respect to this metric. Continuity is also defined in terms of this metric on Ω inherited
from X. Ω is a p dimensional manifold with boundary if there is a locally finite cover {Ui}
(here it will be a finite cover) of sets open in Ω such that each Ui is homeomorphic to a set
open in H where H is a half space or some finite intersection of such half spaces. Denote
the open sets and homeomorphisms by (Ui,Ri) . The collection of these is called an atlas.
Thus RiUi is a set open in HRi where HRi is described above. Note that it could be a closed
box. Then a point x is called a boundary point if and only if Rix is a boundary point of the
interior of some HRi for some i.

R−1

I will be assuming that we can replace “locally finite” with finite in the above definition.
This would happen, for example if Ω were compact, but this is not necessary. First I need
to verify that the idea of ∂Ω is well defined.

261
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Lemma 11.1.3 ∂Ω is well defined in the sense that the statement that x is a boundary
point does not depend on which chart is considered.

Proof: Suppose x is not a boundary point with respect to the chart (U,R) but is a
boundary point with respect to (V,S). Then U ∩V is open in Ω so Rx ∈ B ⊆ R(U ∩V )
where R(U ∩V ) is open in HR and B is an open ball contained in R(U ∩V ). But then, by
Theorem 9.14.4, S◦R−1 (B) is open in Rp and contains Sx so x is not a boundary point with
respect to (V,S) after all. ■

Definition 11.1.4 Let V ⊆ Rq. Ck
(
V ;Rp

)
is the set of functions which are restric-

tions to V of some function defined on Rq which has k continuous derivatives which has
values in Rp . When k = 0, it means the restriction to V of continuous functions. A function
is in D

(
V ;Rp

)
if it is the restriction to V of a differentiable function defined on Rq. A

Lipschitz function f is one which satisfies ∥f (x)−f (y)∥ ≤ K ∥x−y∥.

Thus, if f ∈Ck
(
V ;Rq

)
or D

(
V ;Rp

)
, we can consider it defined on V and not just on

V . This is the way one can generalize a one sided derivative of a function defined on a
closed interval.

Lemma 11.1.5 Suppose A is a m×n matrix in which m > n and A is one to one. Then
∥v∥ ≡ |Av| is a norm on Rn equivalent to the usual norm.

Proof: All the algebraic properties of the norm are obvious. If ∥v∥ = 0 then |Av| = 0
and since A is one to one, it follows v = 0 also. Now recall that all norms on Rn are
equivalent. ■

We have in mind, from now on that our manifold will be a compact subset of Rq for
some q≥ p.

Proposition 11.1.6 Suppose in the atlas for a manifold with boundary Ω it is also the

case that each chart (U,R) has R−1 ∈C1
(
R(U)

)
and DR−1 (x) is one to one on R(U).

Then for two charts (U,R) and (V,S) , it will be the case that S◦R−1 :R(U ∩V )→S (V )

will be also C1
(
R(U ∩V )

)
.

Proof: Then

DR−1 (x)h+o(h) = R−1 (x+h)−R−1 (x)

= S−1 (S (R−1 (x+h)
))
−S−1 (S (R−1 (x)

))
(11.1)

= DS−1 (S (R−1 (x)
))(

S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))
+o
(
S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))
(11.2)

By continuity of R−1,S, if h is small enough, which will always be assumed,∣∣o(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣
≤ α

2

∣∣S (R−1 (x+h)
)
−S

(
R−1 (x)

)∣∣
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where here there is α > 0 such that∣∣DS−1 (S (R−1 (x)
))(

S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))∣∣
≥ α

∣∣(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣
thanks to the assumption that DS−1 (S (R−1 (x)

))
is one to one. Thus from 11.2

α

2

∣∣(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣≤ ∣∣DR−1 (x)h+o(h)
∣∣ (11.3)

Now ∣∣o(S (R−1 (x+h)
)
−S

(
R−1 (x)

))∣∣
|h|

≤
∣∣o(S (R−1 (x+h)

)
−S

(
R−1 (x)

))∣∣∣∣S (R−1 (x+h)
)
−S

(
R−1 (x)

)∣∣
∣∣S (R−1 (x+h)

)
−S

(
R−1 (x)

)∣∣
|h|

From 11.3, the second factor in the above is bounded. Now continuity of S ◦R−1 implies
that as h→ 0, the first factor also converges to 0. Thus

o
(
S
(
R−1 (x+h)

)
−S

(
R−1 (x)

))
= o(h)

Returning to 11.2,

DR−1 (x)h+o(h) = DS−1 (S (R−1 (x)
))(

S ◦R−1 (x+h)−S ◦R−1 (x)
)

Thus if h= tv,

lim
t→0

DS−1 (S (R−1 (x)
))((S ◦R−1 (x+ tv)−S ◦R−1 (x)

)
t

)

= DR−1 (x)v+ lim
t→0

o(tv)
t

= DR−1 (x)v

By the above lemma, limt→0
(S◦R−1(x+tv)−S◦R−1(x))

t = Dv

(
S ◦R−1)(x) exists. Also

DS−1 (S (R−1 (x)
))

Dv

(
S ◦R−1)(x) = DR−1 (x)v

Let A(x) ≡ DS−1 (S (R−1 (x)
))

. Then A∗A is invertible and x→ A(x) is continuous.
Then

A(x)∗A(x)Dv

(
S ◦R−1)(x) = A(x)∗DR−1 (x)v

Dv

(
S ◦R−1)(x) =

(
A(x)∗A(x)

)−1 A(x)∗DR−1 (x)v

so Dv

(
S ◦R−1)(x) is continuous. It follows from Theorem 6.6.1 that S ◦R−1 is a func-

tion in C1
(
R
(
U ∩V

))
because the Gateaux derivatives exist and are continuous. ■

Saying DR−1 (x) is one to one is the analog of the situation in calculus with a smooth
curve in which we assume the derivative is non zero and that the parametrization has con-
tinuous derivative.

I will assume in what follows that Ω is a compact subset of Rq, q ≥ p. You could get
by with less using Stone’s theorem about paracompactness but this is enough for what will
be used here.
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Definition 11.1.7 A compact subset Ω of Rq will be called a differentiable p di-
mensional manifold with boundary if it is a C0 manifold and also has some differentiable
structure about to be described. Ω is a differentiable manifold if R j ◦R−1

i is differentiable
on Ri (U j ∩Ui) . This is implied by the condition of Proposition 11.1.6. If, in addition to
this, it has an atlas (Ui,Ri) such that all partial derivatives are continuous and for all x

det
(
DR−1

i (Ri (x))
)∗ (

DR−1
i (Ri (x))

)
̸= 0

then it is called a smooth manifold. This condition is like the one for a smooth curve in
calculus in which the derivative does not vanish. If , in addition “differentiable” is replaced
with Ck meaning the first k derivatives exist and are continuous, then it will be a smooth Ck

manifold with boundary.

Next is the concept of an oriented manifold. Orientation can be defined for general C0

manifolds using the topological degree, but the reason for considering this, at least here,
involves some sort of differentiability.

Definition 11.1.8 A differentiable manifold Ω with boundary is called orientable
if there exists an atlas, {(Ur,Rr)}m

r=1, such that whenever Ui∩U j ̸= /0,

det
(
D
(
R j ◦R−1

i
))

(u)≥ 0 for all u ∈Ri (Ui∩U j) (11.4)

An atlas satisfying 11.4 is called an oriented atlas. Also the following notation is often
used with the convention that v =Ri ◦R−1

j (u)

∂ (v1 · · ·vp)

∂ (u1 · · ·up)
≡ detD

(
Ri ◦R−1

j

)
(u)

In this case, another atlas will be called an equivalent atlas (Vi,Si) if

det
(
D
(
S j ◦R−1

i
))

(u)≥ 0 for all u ∈Ri (Ui∩Vj)

You can verify using the chain rule that this condition does indeed define an equivalence
relation. Thus an oriented manifold would consist of a metric space along with an equiv-
alence class of atlases. You could also define a piecewise smooth manifold as the union of
finitely many smooth manifolds which have intersection only at boundary points.

Orientation is about the order in which the variables are listed or the way the positive
coordinate axes point relative to each other. When you have an n×n matrix, you can always
write its row reduced echelon form as a product of elementary matrices, some of which are
permutation matrices or involve changing the direction by multiplying by a negative scalar,
which also changes orientation the others having positive determinant. If there are an odd
number of switches or multiplication by a negative scalar, you get the determinant is non-
positive. If an even number, the determinant is non-negative. This is why we use the
determinant to keep track of orientation in the above definition.

Example 11.1.9 Let f : Rp+1→ R is C1 and suppose and that D f (x) ̸= 0 for all x con-
tained in the set {x : f (x) = 0} . Then if {x : f (x) = 0} is nonempty, it is a C1 manifold
thanks to an application of the implicit function theorem.
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Note that this includes Sp−1,{x ∈ Rp : |x|= 1} and lots of other things like x4 + y2 +
z4 = 1 and so forth. The details are left as an exercise.

Recall from calculus how you can get pointy places in a space curve when the derivative
of the parametrization is allowed to vanish. Here this would correspond to some DR−1

i (u)

not being one to one which is the same as having D
(
Ri ◦R−1

i (u)
)

having zero determi-
nant.

In the above, it is not assumed that DR−1 is one to one. This can be used to include
the concept of a higher dimensional version of a piecewise smooth curve. Suppose, for
example you have Q1 ≡ [−1,0]×∏

p
i=2 [ai,bi] ,Q2 ≡ [0,1]×∏

p
i=2 [ai,bi] so there are two

boxes joined along a common side. Let R−1
1i ,R

−1
2 j be as described above on these boxes

and that R−1
1i and R−1

2 j are continuous along the common face. We assume the union
of R−1

ri (Uri) ,r = 1,2 is a smooth manifold so that DR−1
ri exists on Qr. Maybe DR−1

1i ,
DR−1

2 j are one to one on Q1,Q2 but on the common face, there is a difference in D1R
−1
1i ,

D1R
−1
2 j at a point on that face. Thus, if the restriction of R−1

i to Qr is R−1
ri then R−1

i is not
differentiable at points on this face. However, we could change the parametrization at the
expense of allowing DR−1

ri to equal zero on the common face which will result in R−1
i be-

ing differentiable. One simply replaces x→R−1
ri (x1, ...,xp) with x→R−1

ri

(
x3

1,x2, ...,xp
)
.

This could be generalized to strings of boxes, successive pairs intersecting along a face
thereby obtaining a higher dimensional notion of “piecewise smooth” as a case where the
determinant of DR−1

i is allowed to vanish. This is why it is useful in what follows to
have a change of variables formula which does not require the non-vanishing of the de-
terminant of the derivative of the transformation. This is the higher dimensional notion
of pointy places occuring in space curves at points where the derivative vanishes. Note
that the resulting union of the two smooth manifolds would end up being orientable if
det
(
D
(
R1 j ◦R−1

2i

))
(u)> 0 for all pertinent u on the common face. Here we would take

the partial derivative D1 from the appropriate side in the chain rule. This is all very fussy
but is mentioned to illustrate that in order to include piecewise smooth manifolds it suffices
to only require that an atlas be differentiable. Thanks to Theorem 10.3.1 edges of a differ-
entiable manifold can be ignored in the development of the area measure on a manifold if
they result from some lower dimensional curve in Rp or more generally a set of measure
zero in Rp. In this regard, see the rank theorem, Theorem 7.6.3 which identifies this as
happening when DR−1

i has smaller rank.

11.2 The Area Measure on a Manifold
Next the “surface measure” on a manifold is given. In what follows, the manifold will be a
compact subset of Rq. This has nothing to do with orientation. It will involve the following
definition. To motivate this definition, recall the way you found the length of a curve in
calculus where t ∈ [a,b] . It was

∫ b
a |r′ (t)|dt =

∫ b
a det

(
Dr (t)∗Dr (t)

)1/2 dt. where r(t) is a

parametrization for the curve. Think of dl = det
(
Dr (t)∗Dr (t)

)1/2 dt and you sum these
to get the length.

Definition 11.2.1 Let (Ui,Ri) be an atlas for a p dimensional differentiable man-
ifold with boundary Ω. Also let {ψ i}

r
i=1 be a partition of unity from Theorem 3.12.5
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sptψ i ⊆Ui. Then for f ∈Cc (Ω) , define

L f ≡
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du

Here du signifies dmp (u) and

Ji (u)≡
(
det
(
DR−1

i (u)∗DR−1
i (u)

))1/2

I need to show that the same thing is obtained if another atlas and/or partition of unity
is used. This is an application of the change of variables theorem.

Theorem 11.2.2 The functional L is well defined in the sense that if another atlas
is used, then for f ∈Cc (Ω) , the same value is obtained for L f .

Proof: Let the other atlas be
{
(Vj,S j)

}s
j=1 where v ∈ Vj and S j has the same prop-

erties as the Ri. Then
(
S j ◦R−1

i

)
(u) = v so R−1

i (u) = S−1
j (v) and so R−1

i (u) =

S−1
j

((
S j ◦R−1

i

)
(u)
)

implying DR−1
i (u) = DS−1

j (v)D
(
S j ◦R−1

i

)
(u) . Therefore,

Ji (u) =
(
det
(
DR−1

i (u)∗DR−1
i (u)

))1/2

=

det


p×p︷ ︸︸ ︷

D
(
S j ◦R−1

i
)∗
(u)

(p×q)(q×p)︷ ︸︸ ︷
DS−1

j (v)∗DS−1
j (v)

p×p︷ ︸︸ ︷
D
(
S j ◦R−1

i
)
(u)




1/2

=
[
det
(

D
(
S j ◦R−1

i
)∗
(u)
)

det
(
D
(
S j ◦R−1

i
)
(u)
)]1/2

J j (v)

=
∣∣det

(
D
(
S j ◦R−1

i
)
(u)
)∣∣J j (v) (11.5)

Similarly

J j (v) =
∣∣∣det

(
D
(
Ri ◦S−1

j

)
(v)
)∣∣∣Ji (u) . (11.6)

Let L̂ go with this new atlas. Thus

L̂( f )≡
s

∑
j=1

∫
S j(V j)

f
(
S−1

j (v)
)

η j

(
S−1

j (v)
)

J j (v)dv (11.7)

where η j is a partition of unity associated with the sets Vj as described above. Now letting
ψ i be the partition of unity for the Ui, v = S j ◦R−1

i (u) for u ∈Ri (Vj ∩Ui) .

∫
S j(V j)

f
(
S−1

j (v)
)

η j

(
S−1

j (v)
)

J j (v)dv

=
r

∑
i=1

∫
S j(V j∩Ui)

f
(
S−1

j (v)
)

ψ i

(
S−1

j (v)
)

η j

(
S−1

j (v)
)

J j (v)dv
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By Lemma 10.4.1, the assumptions of differentiability imply that the boundary points of
Ω are always mapped to a set of measure zero so these can be neglected if desired. Now
S j (Vj ∩Ui) = S j ◦R−1

i (Ri (Vj ∩Ui)) and so using 11.6, the above expression equals
r

∑
i=1

∫
Ri(V j∩Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

η j
(
R−1

i (u)
)
·∣∣∣det

(
D
(
Ri ◦S−1

j

)
(v)
)∣∣∣Ji (u)

∣∣detD
(
S j ◦R−1

i
)
(u)
∣∣du

Now I =
(
Ri ◦S−1

j

)
◦
(
S j ◦R−1

i

)
and so the chain rule implies that the product of the two

Jacobians is 1. Hence 11.7 equals
s

∑
j=1

r

∑
i=1

∫
Ri(V j∩Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

η j
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

s

∑
j=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

η j
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
) s

∑
j=1

η j
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

∫
Ri(Ui)

f
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du = L( f )

Thus L is a well defined positive linear functional. ■

Definition 11.2.3 By the representation theorem for positive linear functionals,
Theorem 8.8.2, there exists a complete Radon measure σ p defined on the Borel sets of
Ω such that L f =

∫
Ω

f dσ p. Then σ p is what is meant by the measure on the differentiable
manifold Ω.

If O is an open set in Ω, what is σ p (O)? Let fn ↑XO where fn is continuous. Then by
the monotone convergence theorem,

σ p (O) = lim
n→∞

L( fn) = lim
n→∞

r

∑
i=1

∫
Ri(Ui)

fn
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du

= lim
n→∞

r

∑
i=1

∫
Ri(Ui∩O)

fn
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du

=
r

∑
i=1

∫
Ri(Ui∩O)

XO
(
R−1

i (u)
)

ψ i
(
R−1

i (u)
)

Ji (u)du.

If K is a compact subset of some Ui, then use Corollary 10.8.5 to obtain a partition of
unity which has ψ i = 1 on K so that all other ψ j equal 0. Then∫

Ω

XKdσ p =
∫
Ri(Ui)

XK
(
R−1

i (u)
)

Ji (u)du

It then follows from regularity of the measure and the monotone convergence theorem that
if E is any measurable set contained in Ui, you can replace K in the above with E. In
general, this implies that for nonnegative measurable f , having support in Ui,∫

Ω

f dσ p =
∫
Ri(Ui)

f
(
R−1

i (u)
)

Ji (u)du
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Indeed, ∂Ω is a closed subset of Ω and so X∂Ω is measurable. That part of the boundary
contained in Ui would then involve a Lebesgue integral over a set of measure zero. This
shows the following proposition.

Proposition 11.2.4 Let Ω be a differentiable manifold as discussed above and let σ p
be the measure on the manifold defined above. Then σ p (∂Ω) = 0.

Note that it suffices in the above to assume only that DR−1
i (u) exists for a.e. u.

11.3 Divergence Theorem
The divergence theorem considered here will feature an open set inRp whose boundary has
a particular form. For convenience, if x ∈ Rp, x̂i ≡

(
x1 · · · xi−1 xi+1 · · · xp

)T
.

Definition 11.3.1 Let U ⊆ Rp satisfy the following conditions. There exist open
boxes, Q1, · · · ,QN , Qi = ∏

p
j=1

(
ai

j,b
i
j

)
such that ∂U ≡U \U is contained in their union.

Also, there exists an open set, Q0 such that Q0 ⊆ Q0 ⊆ U and U ⊆ Q0 ∪Q1 ∪ ·· · ∪QN .
Assume for each Qi, there exists k and a function gi such that U ∩Qi is of the form x : (x1, · · · ,xk−1,xk+1, · · · ,xp) ∈∏

k−1
j=1

(
ai

j,b
i
j

)
×

∏
p
j=k+1

(
ai

j,b
i
j

)
and ai

k < xk < gi (x1, · · · ,xk−1,xk+1, · · · ,xp)

 (11.8)

or else of the form x : (x1, · · · ,xk−1,xk+1, · · · ,xp) ∈∏
k−1
j=1

(
ai

j,b
i
j

)
×

∏
p
j=k+1

(
ai

j,b
i
j

)
and gi (x1, · · · ,xk−1,xk+1, · · · ,xp)< xk < bi

j

 (11.9)

The function, gi is differentiable and has a measurable partial derivatives on

Ai ⊆
k−1

∏
j=1

(
ai

j,b
i
j
)
×

p

∏
j=k+1

(
ai

j,b
i
j
)
≡ Q̂k

where

mp−1

(
k−1

∏
j=1

(
ai

j,b
i
j
)
×

p

∏
j=k+1

(
ai

j,b
i
j
)
\Ai

)
= 0.

and we assume there is a constant C such that for all i and j,
∣∣∣ ∂gi

∂x j

∣∣∣≤C off Ai and that each
gi is Lipschitz. Thus there are no measurability issues by Theorem 10.3.1.

To illustrate the above here is a picture.

U ∩Qi

Qi U ∩Qi
Qi

Recall from calculus that if z−g(x̂) = 0 then to get a normal vector to the level surface,
it will be ± the gradient.
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Lemma 11.3.2 Let α1, · · · ,α p be real numbers and let A(α1, · · · ,α p) be the matrix
which has 1+α2

i in the iith slot and α iα j in the i jth slot when i ̸= j. Then detA = 1+
∑

p
i=1 α2

i .

Proof of the claim: The matrix, A(α1, · · · ,α p) is of the form

A(α1, · · · ,α p) =


1+α2

1 α1α2 · · · α1α p
α1α2 1+α2

2 α2α p
...

. . .
...

α1α p α2α p · · · 1+α2
p


Now consider the product of a matrix and its transpose, BT B below.

1 0 · · · 0 α1
0 1 0 α2
...

. . .
...

0 1 α p
−α1 −α2 · · · −α p 1




1 0 · · · 0 −α1
0 1 0 −α2
...

. . .
...

0 1 −α p
α1 α2 · · · α p 1

 (11.10)

This product equals a matrix of the form(
A(α1, · · · ,α p) 0

0 1+∑
p
i=1 α2

i

)
Therefore,

(
1+∑

p
i=1 α2

i
)

det(A(α1, · · · ,α p)) = det(B)2 = det
(
BT
)2
. However, using row

operations,

detBT = det


1 0 · · · 0 α1
0 1 0 α2
...

. . .
...

0 1 α p
0 0 · · · 0 1+∑

p
i=1 α2

i

= 1+
p

∑
i=1

α
2
i

and therefore, (
1+

p

∑
i=1

α
2
i

)
det(A(α1, · · · ,α p)) =

(
1+

p

∑
i=1

α
2
i

)2

which shows det(A(α1, · · · ,α p)) =
(
1+∑

p
i=1 α2

i
)
. ■

Now consider the case of σ on ∂U . The maps will be of the form

x̂ ∈ Qk→
(

x1 · · · xi−1 g(x̂i) xi+1 · · · xp
)T

= h(x̂i)

I need to describe det
(
Dh(x̂i)

∗Dh(x̂i)
)1/2 ≡ J (x̂) .

Consider an example sufficient to see what happens in general in which p= 3 and i= 2.
Then in this case, J (x̂) will be the square root of the determinant of

(
1 gx1 0
0 gx3 1

) 1 0
gx1 gx3
0 1

=

(
g2

x1
+1 gx1gx3

gx1gx3 g2
x3
+1

)
.
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One can verify that this is just a special case in which Dh(x̂i)
∗Dh(x̂i) will be of the form

considered in Lemma 11.3.2. Thus by this lemma, J (x) =
√

1+∑k ̸=i g2
,xk

.
Then if U ∩Q is of the form in 11.8 or in 11.9 one can identify the unit exterior normal

to the surface either on the top or the bottom of U ∩Q from beginning calculus. These are
respectively

n=

(
−g,x1 · · · −g,xp−1 · · · 1

)T√
1+∑

p−1
k=1 g2

,xk

,

(
g,x1 · · · g,xp−1 · · · −1

)T√
1+∑

p−1
k=1 g2

,xk

The first pointing up away from U and the second pointing down away from U .
If you simply assume gk is differentiable, there is no problem in Definition 11.3.1.

One can show with Rademacher’s theorem that it suffices to assume these functions are
Lipschitz continuous.

In the following proof, I will regard f (x1,x2, ...,xp) as a function of the listed variables.

Definition 11.3.3 Let F ∈C1
(
U ;Rp

)
and the rectangular coordinates are denoted

as x=(x1, ...,xp). Then the divergence of F written as div(F ) is defined as ∑i
∂Fi
∂xi
≡∑i Fi,i.

It is also written as ∇ ·F .

Theorem 11.3.4 Let U be a bounded open set in Rp satisfying the conditions of
Definition 11.3.1 and let F ∈C1

(
U ;Rp

)
. Then∫

U

p

∑
i=1

Fi,i (x)dmp =
∫

∂U
F ·ndσ p−1

where n is the unit exterior normal to U just described. ∑
p
i=1 Fi,i (x) is denoted ∇ ·F . Thus

this is written as
∫

U ∇ ·F dmp =
∫

∂U F ·ndσ p−1. Sometimes you see div(F ) in place of
∇ ·F .

Proof: Let spt(ψ i) be a compact subset of Qi and ∑
N
i=0 ψ i = 1 on Ū and each ψ i is

infinitely differentiable. This partition of unity exists by Lemma 10.8.4. There is an explicit
description of the unit outer normal for each point of the boundary of U described above in
either of the two cases described in Definition 11.3.1 and illustrated in the above picture.
Then∫

U
∑

i
Fi,i (x)dmp =

∫
U

∑
i

N

∑
k=0

(ψkF)i,i (x)dmp = ∑
i

N

∑
k=0

∫
U
(ψkF)i,i (x)dmp

=
N

∑
k=0

∫
Qk

∑
i
(ψkF)i,i (x)dmp (11.11)

Now consider one of the terms in the above. For the sake of simplicity assume k = p so that
the special direction corresponds to xp. Also, I will assume that the function g(x̂) is on the
top, so it is like the left picture in the above. A similar argument works if g(x̂) were on the
bottom. Either way we can specify a unit exterior normal a.e. I will omit the subscript on
gk, Qk, and ψk.

Case that i < p : Pick i < p. Letting Q̂ be (x1, ...,xp−1) where x ∈ Q, For any i,∫
Q
(ψkF)i,i dmp =

∫
Q̂

∫ g(x1,...,xp−1)

−∞

(ψkFi)i dxpdx̂ =
∫

Q̂

∫ 0

−∞

Di (ψFi)(x̂,y+g(x̂))dydx̂

(11.12)
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Now for i < p, that in the integrand is not ∂

∂xi
(ψFi)(x̂,y+g(x̂)) . Indeed, by the chain

rule,

∂

∂xi
(ψFi)(x̂,y+g(x̂)) = Di (ψFi)(x̂,y+g(x̂))+Dp (ψFi)(x̂,y+g(x̂))

∂g(x̂)
∂xi

Since spt(ψ)⊆ Q, it follows that 11.12 reduces to∫ 0

−∞

∫
Q̂

∂

∂xi
(ψFi)(x̂,y+g(x̂))dx̂dy−

∫
Q̂

∫ 0

−∞

Dp (ψFi)(x̂,y+g(x̂))
∂g(x̂)

∂xi
dydx̂

= 0−
∫

Q̂
(ψFi)(x̂,g(x̂))dx̂

Case that i = p : In this case, 11.12 becomes
∫

Q̂ (ψFp)(x̂,g(x̂))dx̂. Recall how it

was just shown that the unit normal is

(
−gx1 ,...,−gxp−1 ,1

)
√

∑
p−1
i=1 g2

xk
+1

and dσ =
√

∑
p−1
i=1 g2

xk
+1dmp−1.

Then the above reduces to
∫

∂ (Q∩U) (ψF ) ·ndσ . The same result will hold for all the Qi.
The sign changes if in the situation of 11.9. As to Q0,

∫
Q0 ∑i (ψ0F)i,i (x)dmp = 0 because

spt(ψ0)⊆ Q0. Returning to 11.11, it follows that

∫
U

∑
i

Fi,i (x)dmp =
N

∑
k=0

∫
Qk

∑
i
(ψkF)i,i (x)dmp =

N

∑
k=0

∫
Qk

∑
i
(ψkF)i,i (x)dmp

=
N

∑
k=1

∫
∂ (Qk∩U)

(ψkF ) ·ndσ =
N

∑
k=1

∫
∂U

(ψkF ) ·ndσ

=
∫

∂U

(
N

∑
k=0

ψk

)
F ·ndσ =

∫
∂U

F ·ndσ ■

Definition 11.3.5 The expression ∑
p
i=1 Fi,i (x) is called div(F ) . It is defined above

in terms of the coordinates with respect to a fixed orthonormal basis (e1, · · · ,ep). However,
it does not depend on such a particular choice for coordinates.

If you had some other orthonormal basis (v1, · · · ,vp) and if (y1, · · · ,yp) are the coordi-
nates of a point z with respect to this other orthonormal system, then there is an orthogonal
matrix Q such that y = Qx for y the coordinate vector for the new basis and x the coordi-
nate vector for the old basis. Then

Ji (x)≡
(
det
(
DR−1

i (x)∗DR−1
i (x)

))1/2
=
(

det
((

DR−1
i (y)Q

)∗
DR−1

i (y)Q
))1/2

=
(
det
(
Q∗DR−1

i (y)∗DR−1
i (y)Q

))1/2
=
(
det
(
Q∗DR−1

i (y)∗DR−1
i (y)Q

))1/2
= Ji (y)

so the two definitions of dσ will be the same with either set of coordinates.
List the vi in the order which will give det(Q) = 1. That is to say, the two bases have

the same orientation.The insistence that detQ = 1 will ensure that the unit normal vectors
defined as above will point away from U . Thus we could take the divergence with respect
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to coordinates of any orthonormal basis having the same orientation. Note that for a.e.
geometric point z

div(F )(z) = lim
r→0

1
mp (B(z,r))

∫
B(z,r)

div(F )dmp = lim
r→0

1
mp (B(z,r))

∫
∂B(z,r)

F ·ndσ p−1

the first equal sign from the fundamental theorem of calculus and the last expression on the
right being independent of the choice of basis. This implies that we could have generalized
the kind of region to be one for which the little rectangles are allowed to be slanted. Creases
and pointy places in the manifold can result from places where some Ji (x)= 0, due to some
DR−1

i not being one to one, but this will not matter because in the definition of the surface
measure this will be a set of measure zero on the manifold. The change of variables formula
which was so important in the above argument is unaffected by these creases.

Globally the region could be quite complicated. As an example in two dimensions, it
might look like this:

Corollary 11.3.6 If the divergence is computed with respect to y where y = Qx for Q
orthogonal with determinant 1, and each box used in the argument of Theorem 11.3.4 is
taken with respect to such a new basis (v1, · · · ,vp), then one still obtains

∫
U div(F )dmp =∫

∂U F ·ndσ p−1.

11.4 Volumes of Balls in Rp

This short section will give an explicit description of surface area given in Section 10.9.
Recall, B(x,r) denotes the set of all y ∈ Rp such that |y−x| < r. By the change of

variables formula for multiple integrals or simple geometric reasoning, all balls of radius
r have the same volume. Furthermore, simple reasoning or change of variables formula
will show that the volume of the ball of radius r equals α prp where α p will denote the
volume of the unit ball in Rp. With the divergence theorem, it is now easy to give a simple
relationship between the surface area of the ball of radius r and the volume. Let dα p−1 be

the area measure above. By the divergence theorem,
∫

B(0,r)

p
div(x)dx=

∫
∂B(0,r)x· x|x|dα p−1

because the unit outward normal on ∂B(0,r) is x
|x| . Therefore, pα prp = rα p−1 (∂B(0,r))

and so α p−1 (∂B(0,r)) = pα prp−1.
Let ω p denote the area of the sphere Sp−1 = {x ∈ Rp : |x|= 1}. I just showed that

ω p = pα p.
I want to find α p now.

y
r
ρ Rn−1

Taking slices at height y as shown and using that these slices have p− 1 dimensional
area equal to α p−1rp−1, it follows α pρ p = 2

∫ ρ

0 α p−1
(
ρ2− y2

)(p−1)/2 dy since the r at a
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given y is
√

ρ2− y2. In the integral, change variables, letting y = ρ cosθ . Then α pρ p =

2ρ pα p−1
∫ π/2

0 sinp (θ)dθ . It follows that

α p = 2α p−1

∫
π/2

0
sinp (θ)dθ . (11.13)

From this we find a formula for α p.
First note that Γ

( 1
2

)
=
∫

∞

0 e−tt−1/2dt =
∫

∞

0 e−u2
u−12udu = 2

∫
∞

0 e−u2
=
√

π from ele-
mentary calculus using polar coordinates and change of variables.

Theorem 11.4.1 α p = π p/2

Γ( p
2 +1)

where Γ denotes the gamma function, defined for

α > 0 by Γ(α)≡
∫

∞

0 e−ttα−1dt.

Proof: Let p = 1 first. Then α1 = π = π1/2

Γ( 1
2+1)

because Γ(α +1) = αΓ(α) so the

right side is π1/2
1
2 Γ( 1

2 )
= 2 which is indeed the one dimensional area of the unit ball in one

dimension. Similarly it is true for p = 2,3. Assume true for p ≥ 3. Then using 11.13 and
induction,

α p+1 = 2

α p

π p/2

Γ
( p

2 +1
) ∫ π/2

0
sinp+1 (θ)dθ

Using an integration by parts, this equals 2 π p/2

Γ( p
2 +1)

p
p+1

∫ π/2
0 sinp−1 (θ)dθ . By 11.13 and

induction this is

π p/2

Γ
( p

2 +1
) p

p+1
α p−1

α p−2
=

π p/2

Γ
( p

2 +1
) p

p+1

π(p−1)/2

Γ

(
p−1

2 +1
)

π(p−2)/2

Γ

(
p−2

2 +1
) =

2π(p+1)/2Γ
( p

2

)
Γ
( p

2 +1
)

Γ

(
p−1

2 +1
) p/2

p+1

=
2π(p+1)/2Γ

( p
2 +1

)
Γ
( p

2 +1
)

Γ

(
p−1

2 +1
) 1

p+1
=

π(p+1)/2

Γ

(
p+1

2

) 1
p+1

2

=
π(p+1)/2

Γ

(
p+1

2 +1
) ■

There is a general treatment of Stoke’s theorem which involves differential forms. This
is developed in my book on the web site, “Real and Abstract Analysis”. I have given a
fairly general version of the divergence theorem above. However, I have chosen here to
deal with the versions of these theorems which are of most use in applications. These are
known as Green’s theorem and Stokes theorem in Calculus and they are the original forms
of these theorems, not that algebraic extravaganza involving differential forms which is
in the other book. I prefer seeing this other approach in terms of the area formula and
Hausdorff measures which are not topics in this book.

11.5 Space Curves and Line Integrals
Here is a short discussion of line integrals and space curves.

Definition 11.5.1 Let [a,b) be a half open interval and let r : [a,b)→Rq be one to

one and continuous such that r ∈C
(
[a,b);Rq

)
and r−1 : r ([a,b))→ [a,b) is continuous.
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If r is the restriction of a C1 function to [a,b) then it is called a C1 curve. It is called a
simple closed curve if limt→b r (t) = r (a) and we can define r (b) ≡ r (a) . This r plays
the role of R−1 in the above and so C is a one dimensional manifold in Rq. Here we
have just one chart in the atlas. If r̂ : [c,d) is defined similarly mapping to C such that
r̂−1 ◦ r is increasing, this would be an equivalent atlas and so from the above general
presentation, if this transition map is differentiable we could use either one to describe the
one dimensional measure on C. Also, since r̂−1 ◦ r is one to one, this function is either
increasing or decreasing. To say that its derivative is nonnegative is to say that the two go
over C in the same direction and deliver the same orientation. These functions are called
parametrizations in this context. It is piecewise smooth if r′ ̸= 0 on a succession of non-
overlapping intervals whose union is [a,b) but possibly at the ends of these intervals the
derivative from left and right are different.

Suppose you have a < b < c and r′1 (t) ̸= 0 on [a,b] ,r′2 (t) ̸= 0 on [b,c] but r′1 (b) ̸=

r′2 (b) although r1 = r2 at b. Then consider r̂ (t) =

 r1

(
b+(t−b)3 1

(b−a)2

)
, t ∈ [a,b]

r2

(
b+(t−b)3 1

(c−b)2

)
, t ∈ [b,c]

.

Then r̂ (t) moves from r1 (a) to r̂ (b) in the same direction as r1 and r2 and is differentiable
on all of [a,c] although r̂′ (b) = 0. Thus this piecewise smooth curve can be expressed as a
C1 curve not smooth because of the vanishing of the derivative at b.

Lemma 11.5.2 If r : [a,b)→Rq is a piecewise smooth curve smooth on successive non-
overlapping intervals. Then there exists a C1 space curve which has the same orientation,
parametrizing the curve.

Therefore a C1 curve, as defined above, includes the case of curves which are piecewise
smooth because modifying the parameter we can have finitely many t with r′ (t) = 0 to
account for pointed places which have a discontinuity in the derivative from either side,
allowing the inclusion of piecewise smooth curves as a special case. Then as a case of
the above theory if f is Borel measurable or continuous defined on C, then for a particular
orientation of C,

∫
C

f dσ =
∫ b

a
f (r (t))

(
det
(
r′ (t)∗ r′ (t)

))1/2 dt =
∫

C
f (r (t))

∣∣r′ (t)∣∣dt

where r′ (t) ·r′ (t) = det
(
r′ (t)∗ r′ (t)

)
. Indeed, r′ (t)∗ r′ (t) is just a nonnegative number.

Now a unit tangent vector to the curve consistent with its orientation is r′ (t)/ |r′ (t)| and
at a point of C the same unit tangent vector would be obtained from another equivalent
parametrization. For a piecewise smooth curve, there will be finitely many points where
this tangent vector will not be defined but this is of no importance here since the interest is
in an integral. For f (x) a vector valued function for each x ∈C where the components are
Borel measurable, the line integral

∫
C f ·dr is defined as

∫ b

a
f (r (t)) · r

′ (t)
|r′ (t)|

∣∣r′ (t)∣∣dt =
∫ b

a
f (r (t)) ·r′ (t)dt

and the above discussion shows that this is independent of the choice of parametrization,
having the same orientation.
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Notation 11.5.3 It is customary to write the line integral
∫

C f ·dr as∫
C

f1 (x)dx1 + f2 (x)dx2 + · · ·+ fq (x)dxq

which is called differential form notation.

11.6 Exercises
1. A random vector X, with values in Rp has a multivariate normal distribution written

as X ∼ Np (m,Σ) if for all Borel E ⊆ Rp,

λX (E) =
∫
Rp

XE (x)
1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dmp

Here Σ is a positive definite symmetric matrix. Recall that λX (E) ≡ P(X ∈ E) .
Using the change of variables formula, show that λX defined above is a probability
measure. One thing you must show is that∫

Rp

1

(2π)p/2 det(Σ)1/2 e
−1
2 (x−m)∗Σ−1(x−m)dmp = 1

Hint: To do this, you might use the fact from linear algebra that Σ = Q∗DQ where D
is a diagonal matrix and Q is an orthogonal matrix. Thus Σ−1 =Q∗D−1Q. Maybe you
could first let y = D−1/2Q(x−m) and change the variables. Note that the change
of variables formula works fine when the open sets are all of Rp. You don’t need
to confine your attention to finite open sets which would be the case with Riemann
integrals which are only defined on bounded sets.

2. Consider the surface z = x2 for (x,y) ∈ (0,1)× (0,1) . Find the area of this sur-
face. Hint: You can make do with just one chart in this case. Let R−1 (x,y) =(
x,y,x2

)T
,(x,y) ∈ (0,1)× (0,1). Then

DR−1 =

(
1 0 2x
0 1 0

)T

It follows that DR−1∗DR−1 =

(
4x2 +1 0

0 1

)
.

3. A parametrization for most of the sphere of radius a > 0 in three dimensions is x =
asin(φ)cos(θ) ,y = asin(φ)sin(θ) ,z = acos(φ). where we will let φ ∈ (0,π) ,θ ∈
(0,2π) so there is just one chart involved. As mentioned earlier, this includes all of
the sphere except for the line of longitude corresponding to θ = 0. Find a formula
for the area of this sphere. Again, we are making do with a single chart.

4. Let V be such that the divergence theorem holds. Show that
∫

V ∇ · (v∇u) dV =∫
∂V v ∂u

∂n dA where n is the exterior normal. Here ∂u
∂n ≡ ∇u ·n.

5. To prove the divergence theorem, it was shown first that the spacial partial deriva-
tive in the volume integral could be exchanged for multiplication by an appropriate
component of the exterior normal. This problem starts with the divergence theorem
and goes the other direction. Assuming the divergence theorem, holds for a region
V , show that

∫
∂V nudA =

∫
V ∇udV . Note this implies

∫
V

∂u
∂x dV =

∫
∂V n1udA.
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6. Fick’s law for diffusion states the flux of a diffusing species, J is proportional to
the gradient of the concentration c. Write this law getting the sign right for the
constant of proportionality and derive an equation similar to the heat equation for
the concentration c. Typically, c is the concentration of some sort of pollutant or a
chemical.

7. Sometimes people consider diffusion in materials which are not homogeneous. This
means that J = −K∇c where K is a 3× 3 matrix and c is called the concentration.
Thus in terms of components, Ji = −∑ j Ki j

∂c
∂x j

. Here c is the concentration which
means the amount of pollutant or whatever is diffusing in a volume is obtained by
integrating c over the volume. Derive a formula for a nonhomogeneous model of
diffusion based on the above.

8. Let V be a ball and suppose ∇
2u = f in V while u = g on ∂V . Show that there is at

most one solution to this boundary value problem which is C2 in V and continuous
on V with its boundary. Hint: You might consider w = u− v where u and v are
solutions to the problem. Then use the result of Problem 4 and the identity w∇

2w =
∇ · (w∇w)−∇w ·∇w to conclude ∇w = 0. Then show this implies w must be a
constant by considering h(t) = w(t x+ (1− t)y) and showing h is a constant.

9. Show that
∫

∂V ∇×v ·ndA = 0 where V is a region for which the divergence theorem
holds and v is a C2 vector field.

10. Let F (x,y,z) = (x,y,z) be a vector field inR3 and let V be a three dimensional shape
and let n= (n1,n2,n3). Show that

∫
∂V (xn1 + yn2 + zn3) dA = 3× volume of V .

11. Let F = xi+yj+zk and let V denote the tetrahedron formed by the planes, x= 0,y=
0,z = 0, and 1

3 x+ 1
3 y+ 1

5 z = 1. Verify the divergence theorem for this example.

12. Suppose f : U →R is continuous where U is some open set and for all B⊆U where
B is a ball,

∫
B f (x) dV = 0. Show that this implies f (x) = 0 for all x ∈U .

13. Let U denote the box centered at (0,0,0) with sides parallel to the coordinate planes
which has width 4, length 2 and height 3. Find the flux integral

∫
∂U F ·ndS where

F = (x+3,2y,3z). Hint: If you like, you might want to use the divergence theorem.

14. Find the flux out of the cylinder whose base is x2 + y2 ≤ 1 which has height 2 of
the vector field F =

(
xy,zy,z2 + x

)
. The flux is the surface integral in the divergence

theorem.

15. Find the flux out of the ball of radius 4 centered at 0 of the vector field F =
(x,zy,z+ x).

16. In one dimension, the heat equation is of the form ut = αuxx. Show that u(x, t) =
e−αn2t sin(nx) satisfies the heat equation

17. The contour integral for C, an oriented piecewise smooth in C = R2, written as∫
C f (z)dz is defined as

∫ b
a f (z(t))z′ (t)dt where we can take z(t) to be a C1 curve

which might vanish at finitely many points. Here f (z) = u(x,y)+ iv(x,y) for z =
x+ iy. Show f (z)z′ = ux′−vy′+ i(vx′+uy′) . Show that the real part of this contour
integral is

∫
C (u,−v) ·dr and the imaginary part is

∫
C (v,u) ·dr. Thus, contour inte-

grals, important in complex analysis, reduce to the consideration of line integrals in
R2.
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18. You have a ball B in three dimensions and there is a material of some sort having
density ρ moving through this ball. Then if v is the velocity of the material, it being a
function of x and t, the rate at which the material leaves B is

∫
∂B ρv ·ndσ where n is

the exterior normal. Thus the rate at which material enters B is −
∫

∂B ρv ·ndσ . This
must equal d

dt
∫

B ρdm3 m3 being Lebesque measure. Explain why it is reasonable to
expect that ∂ρ

∂ t +∇ · (ρv) = 0. Here ∇· signifies the divergence. In general, ∇ ·f
means ∑

n
i=1

∂ fi
∂xi

. Thus ∇ · (ρv) means ∑
3
i=1 (ρv)i,i. This is called mass balance. See

“Calculus of One and Many Variables” to see many other examples of similar uses
of the divergence theorem to physical models.

19. Let V be such that the divergence theorem holds. Show that for ∇
2 = ∆∫

V
(v∆u−u∆v) dV =

∫
∂V

(
v

∂u
∂n
−u

∂v
∂n

)
dσ

where n is the exterior normal and ∂u
∂n is defined in Problem 4. Here ∇

2u≡∑i u,xixi ≡
∆u. Hint: Show that ∇ ·gf = ∇g ·f +g∇ ·f . Use for g = v and f = ∇u so ∇ ·f =
∇ ·∇v = ∆v.

11.7 Harmonic Functions
I am going to give a brief presentation on harmonic functions. To begin with, this features
a ball of radius r centered at 0. I will refer to this ball as U to save notation. Later U will
be allowed to be more general. ∆y will indicate partial derivatives are taken with respect to
the yi components of y. Also, for x,y ∈U , I will use the following definition. For more
on these topics see [16].

Definition 11.7.1 rx (y)≡
{
|y−x|−(n−2) for n≥ 3

ln |y−x| for n = 2
, and also define

ψx (y)≡


∣∣∣y|x|r −

rx
|x|

∣∣∣−(n−2)
, r−(n−2) for x= 0 if n≥ 3

ln
∣∣∣y|x|r −

rx
|x|

∣∣∣ , ln(r) if x= 0 if n = 2

Lemma 11.7.2 The following hold.

1. When |y|= r and x ̸= 0,ψx (y) = rx (y).

2.
∣∣∣y|x|r −

rx
|x|

∣∣∣ ̸= 0 if |y|< r,x ̸= 0.

3. limx→0

∣∣∣y|x|r −
rx
|x|

∣∣∣= r.

4. If a is a real number and b a vector, ∇y |ay+b|= a ay+b
|ay+b| .

5. ∆ψx = 0 = ∆rx.

Proof: 1.) For 1.,
∣∣∣y|x|r −

rx
|x|

∣∣∣2 = |x|2+ |y|2−2(x ·y) = |x−y|2 because |y|= r.Thus
ψx (y) = rx (y).

2.) If
∣∣∣y|x|r −

rx
|x|

∣∣∣= 0 then y |x|2 = r2x which cannot happen if |y|< r,x ̸= 0.
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3.) limx→0

∣∣∣y|x|r −
rx
|x|

∣∣∣2 = limx→0

(
|x|2
r2 |y|2 + r2−2(x ·y)

)
= r2.

4.)|ay+b|=
(

a2 |y|2 +2a(y ·b)+ |b|2
)1/2

and so

∇y |ay+b|= 1
2

(
|ay+b|2

)−1/2 (
2a2y1 +2ab1, ...,2a2yn +2abn

)
=

1
|ay+b|

(
a2y1 +ab1, ...,a2yn +abn

)
=

1
|ay+b|

(
a2y+ab

)
= a

ay+b

|ay+b|

5.) Say n > 2. The other case will be similar. From 4.) and the chain rule,

∇y

(
|ay+b|−(n−2)

)
=−(n−2) |ay+b|−(n−1)

∇y |ay+b|

=−(n−2) |ay+b|−(n−1) a
ay+b

|ay+b|
=−(n−2) |ay+b|−n a(ay+b)

Then ∇y ·∇y

(
|ay+b|−(n−2)

)
=

n(n−2) |ay+b|−(n+1)
∇y |ay+b| ·a(ay+b)−a(n−2) |ay+b|−n

∇y · (ay+b)

= n(n−2) |ay+b|−(n+1) a
ay+b

|ay+b|
·a(ay+b)−a(n−2) |ay+b|−n an

= n(n−2)a2 |ay+b|−(n+1) |ay+b|2

|ay+b|
−a2 (n−2)n |ay+b|−n = 0

In case n = 2 it works similarly. Thus if x ̸= 0,∆ψx = 0 = ∆rx. In case x= 0 and b
might not be defined, there is nothing to show because ψ0 is a constant. This shows 5.)
since both functions fit into the above situation. ■

Now let B(x,ε)≡ Bε be a small ball inside U and let Vε be the region between them.

U

x Vε

Note that when |y|= r,∣∣∣∣y |x|r
− rx
|x|

∣∣∣∣2 = r2 |x|2

r2 +
r2 |x|2

|x|2
−2y ·x= |y−x|2 .

Lemma 11.7.3 Let v(y) ≡ rx (y)−ψx (y). Thus v = 0 on ∂U. Then ∇yv ·n ≡ ∂v
∂n =

(n−2)
r
|x|2−r2

|y−x|n if n > 2 and ∂v
∂n = 1

r
r2−|x|2

|y−x|2
if n = 2. This is on ∂B(0,r).

∣∣∣ ∂ψx

∂n

∣∣∣ is uniformly

bounded on ∂Bε for all ε small enough.
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Proof: Say n > 2 first. Then from Lemma 11.7.2 above, for |y|= r,∇yv(y) =

−(n−2) |y−x|−(n−1) y−x

|y−x|
−

−(n−2) |y−x|−(n−1) |x|
r

y|x|
r −

rx
|x|∣∣∣y|x|r −
rx
|x|

∣∣∣


= −(n−2)
y−x

|y−x|n
−

−(n−2)
y|x|2

r2 −x

|y−x|n


= (n−2)

 y|x|2
r2 −x

|y−x|n
− y−x

|y−x|n

= (n−2)

 y|x|2
r2 −x

|y−x|n
− y−x

|y−x|n


The unit outer normal is y

|y| =
y
r on ∂U and so dotting with this we get

∂v
∂n

= (n−2)

 r2|x|2
r3 − 1

rx ·y
|y−x|n

−
r− x·y

r
|y−x|n

= (n−2)
1
r

 r2|x|2
r2

|y−x|n
− r2

|y−x|n


= (n−2)

1
r
|x|2− r2

|y−x|n

The case where x= 0, r0n (y)−ψ0 (y) = |y|−(n−2)− r−n−2. Thus

∇yv(y) =−(n−2) |y|−(n−1)y

so taking the dot product with y/r gives ∂v
∂n = −(n−2)

r|y|n which is the desired formula in case
x= 0.

In case n = 2, It works exactly the same but in this case you get dv
dn = 1

r
r2−|x|2

|y−x|2
.

Now consider the claim about ∂ψx

∂n on ∂Bε . Here n = y−x
|y−x| . In case x= 0 there is

nothing to show because all partials equal 0 in this case since ψ0 = rn−2 or ln(r). So
assume x ̸= 0. First let n > 2. From Lemma 11.7.2,

∇ψ
x (y) = −(n−2)

∣∣∣∣y |x|r
− rx
|x|

∣∣∣∣−(n−1) |x|
r

y|x|
r −

rx
|x|∣∣∣y|x|r −
rx
|x|

∣∣∣
|∇ψ

x (y)| ≤ (n−2) |x|
r

∣∣∣∣y |x|r
− rx
|x|

∣∣∣∣−(n−1)

Now y→
∣∣∣y|x|r −

rx
|x|

∣∣∣−(n−1)
is continuous, bounded, and nonzero on B̄ε for all ε suffi-

ciently small and so
∣∣∣ ∂ψx

∂n

∣∣∣ is uniformly bounded on ∂Bε for all ε small enough. It works
the same for n = 2. ■

Next I want to represent solutions to ∆u = 0,u = g on ∂B(0,r) where g is some contin-
uous function and u ∈C2

(
U
)
. This will use Problem 19 on Page 277 on Vε also the above

lemmas.

lim
ε→0

∫
Vε

(u∆v− v∆u)dmn = lim
ε→0

∫
∂Vε

u
∂v
∂n
− v

∂u
∂n

dσ (11.14)
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=
∫

∂U
g

∂v
∂n
−=0

v
∂u
∂n

dσ − lim
ε→0

∫
∂Bε

(
u

∂v
∂n
− v

∂u
∂n

)
dσ

0 =
∫

∂U
g

∂v
∂n

dσ − lim
ε→0

∫
∂Bε

(
u

∂ rn

∂n
− rn

∂u
∂n

)
dσ

Now rx ∂u
∂n is bounded uniformly on ∂Bε for small ε and ∂ rx

∂n = −(n−2)
|y−x|n−1

y−x
|y−x| ·

y−x
|y−x| =

−(n−2)
|y−x|n−1

0 =
∫

∂U
g

∂v
∂n

dσ + lim
ε→0

ωn−1

∫
∂Bε

u
(n−2)

ωn−1εn−1 dσ

=
∫

∂U
g

∂v
∂n

dσ +(n−2)ωn−1u(x) (11.15)

u(x) =
1

−(n−2)ωn−1

∫
∂U

g(y)
(n−2)

r
|x|2− r2

|y−x|n
dσ =

∫
∂U

g(y)
1
r

r2−|x|2

|y−x|n
dσ

In case n = 2, u(x) =
∫

∂U g(y) 1
r

r2−|x|2

|y−x|2
dσ .

Theorem 11.7.4 Let u ∈ C2
(

B(0,r)
)

satisfy ∆u = 0 and u = g on ∂B(0,r), and

also B(0,r)⊆ Rn. If n≥ 2, u(x) = 1
ωn−1

∫
∂B(0,r) g(y) 1

r
r2−|x|2
|y−x|n dσ (y) . If u(x) is given by

this formula, then in fact ∆u = 0 and u = g on ∂B(0,r) in the sense that limx→x0 u(x) =
g(x0) and u is infinitely differentiable since all partial derivatives exist.

Proof: I know a solution to ∆u = 0,u = 1 on B(0,r), namely u = 1. It follows from

what was just shown that if n > 2,1 = 1
ωn−1

∫
∂B(0,r)

1
r

r2−|x|2
|y−x|n dσ (y) and if n = 2, then it

follows that 1 = 1
2π

∫
∂B(0,r)

1
r

r2−|x|2

|y−x|2
dσ (y) .

Let n > 2. It is similar if n = 2. Let x0 ∈ ∂B(0,r) and x will be close to x0 and it is
desired to show that |g(x0)−u(x)| is small.

|g(x0)−u(x)| ≤ 1
ωn−1r

∫
∂B(0,r)

|g(y)−g(x0)|
(

r2−|x|2

|y−x|n

)
dσ (y)

≤ 1
ωn−1r

∫
[|y−x0|<δ ]

|g(y)−g(x0)|
(

r2−|x|2

|y−x|n

)
dσ (y)+

1
ωn−1r

∫
[|y−x0|≥δ ]

|g(y)−g(x0)|
(

r2−|x|2

|y−x|n

)
dσ (y) (11.16)

Now since g is continuous, there is a constant M such that |g(y)|< M for all y. Therefore,

|g(x0)−u(x)| <
2M

ωn−1r

∫
[|y−x0|≥δ ]

(
r2−|x|2

|y−x|n

)
dσ (y)+

1
ωn−1r

∫
[|y−x0|<δ ]

|g(y)−g(x0)|
(

r2−|x|2

|y−x|n

)
dσ (y)
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By continuity of g the second term is no more than ε if δ is chosen small enough. Now hav-
ing picked δ , the first term converges to 0 as x→ x0 by an application the dominated con-
vergence theorem. Letting xn→ x0, then eventually |y−xn|> δ/2 and so the integrands
are bounded for all n large enough. Since ε is arbitrary, this shows limx→x0 u(x) = g(x0).

As to ∆u = 0, this will follow from x→ r2−|x|2
|y−x|n being harmonic. That ∆u = 0 in

U follows from the observation that the difference quotients used to compute the partial
derivatives converge uniformly in y ∈ ∂U for any given x∈U. To see this note that for y ∈
∂U, the partial derivatives of the expression, r2−|x|2

|y−x|n taken with respect to the kth variable
xk are uniformly bounded and continuous for y ∈ ∂U and x ∈U . This continues to hold
for higher order partial derivatives also. Therefore you can take the differential operator
inside the integral, using the dominated convergence theorem, and write

∆x
1

ωnr

∫
∂U

g(y)
r2−|x|2

|y−x|n
dσ (y) =

1
ωnr

∫
∂U

g(y)∆x

(
r2−|x|2

|y−x|n

)
dσ (y) = 0.

It involves a computation to verify that ∆x

(
r2−|x|2
|y−x|n

)
= 0 for x ̸= y. ■

The Laplace equation and boundary conditions described above is called the Dirichlet
problem.

Here is a remarkable result on harmonic functions.

Theorem 11.7.5 (Liouville’s theorem) If u is bounded and harmonic on Rn, then u
is constant.

Proof: From Theorem 11.7.4 when n > 2,

r2−|x|2

ωnr

∫
∂B(0,r)

u(y) |y−x|−n dσ (y) = u(x) .

Now, as mentioned, we can take partial derivatives inside the integral.

∂u(x)
∂xk

=
−2xk

ωnr

∫
∂B(0,r)

u(y)
|y−x|n

dσ (y)+
r2−|x|2

ωnr

∫
∂B(0,r)

(−n)
(xk− yk)

|y−x|(n+2) dσ (y)

Therefore, letting |u(y)| ≤M for all y ∈ Rn,∣∣∣∣∂u(x)
∂xk

∣∣∣∣≤ 2 |x|
ωnr

∫
∂B(x0,r)

M
(r−|x|)n dσ (y)+

(
r2−|x|2

)
M

ωnr

∫
∂B(0,r)

1

(r−|x|)n+1 dσ (y)

=
2 |x|
ωnr

M
(r−|x|)n ωnrn−1 +

(
r2−|x|2

)
M

ωnr
1

(r−|x|)n+1 ωnrn−1

and these terms converge to 0 as r→∞. Since the inequality holds for all r > |x| , it follows
∂u(x)

∂xk
= 0. Similarly all the other partial derivatives equal zero as well and so u is a constant

by using the mean value inequality Theorem 6.5.2. It works the same way for n = 2. ■
What about ∆u = 0 on B(x0,r) and u = g on ∂B(x0,r)? Consider ∆w = 0 on B(0,r)

and w(y) = g(y+x0) at ŷ ∈ ∂B(0,r). The above shows that if n≥ 2,

w(z) =
1

ωn−1

∫
∂B(0,r)

g(ŷ+x0)
1
r

r2−|z|2

|ŷ−z|n
dσ (ŷ)
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for z ∈ B(0,r). So let x= z+x0, ŷ+x0 = y Then let

u(x) ≡ w(x−x0) =
1

ωn−1

∫
∂B(x0,r)

g(y)
1
r

r2−|x−x0|2

|y−x|n
dσ (y)

=
r2−|x−x0|2

rωn−1

∫
∂B(x0,r)

g(y)
1

|y−x|n
dσ (y) (11.17)

In particular, if u is harmonic on all of Rn,

u(x0) =
r

ωn−1

∫
∂B(x0,r)

u(y)
1

|y−x0|
n dσ (y) =

1
ωn−1rn−1

∫
∂B(x0,r)

u(y)dσ (y)

So a harmonic function at a point is always equal to the average of its values around any
sphere centered at that point.

Corollary 11.7.6 If u is harmonic, then u(x) is equal to the average of its boundary
values around any sphere centered at x.

This implies the following theorem.

Theorem 11.7.7 Let U be an open connected set in Rn and let u be continuous on
Ū and for all z ∈U, u(z)≤ 1

ωn−1rn−1

∫
∂B(z,r) u(y)dσ (y) for every r > 0 sufficiently small.

Then if u(z) = sup{u(x) : x ∈U} for some z ∈U, it follows that u equals a constant.

Proof: Let z ∈ B(z,r)⊆U. Then u(z)≤ 1
ωn−1rn−1

∫
∂B(z,r) u(y)dσ (y) and so

0≥ 1
ωn−1rn−1

∫
∂B(z,r)

(u(z)−u(y))dσ (y)≥ 0, u(z)≥ u(y)

Then u(y) = u(z) for all y ∈ ∂B(z,r) since otherwise the inequality could not hold. Since
this holds for all r it follows that u is identically equal to u(z) on some open disk containing
z. Thus if S≡ {x : u(x) = u(z)} , S is open and it is also closed. Therefore, U \S must be
empty since otherwise U is not connected and so u is constant. ■

Definition 11.7.8 Let U be an open set and let u be a function defined on Ū . Then u
is subharmonic if it is continuous on Ū and for all x ∈U,u(x)≤ 1

ωn−1rn−1

∫
∂B(x,r) u(y)dσ

whenever r > 0 is small enough.

Proposition 11.7.9 (Maximum principle)Let U be a bounded open set and u is subhar-
monic on U and continuous on Ū. Then u achieves its maximum on ∂U.

Proof: Apply 11.7.7 Theorem 11.7.7 to V a connected component of U. Recall these
are connected open sets, Theorem 3.11.12. If u achieves its maximum at some point of V
then it is constant on V and by continuity, it achieves its maximum on ∂V ⊆ ∂U . ■

11.8 The Dirichlet Problem in General
Here is a general result about the supremum of continuous functions.

Lemma 11.8.1 Let { fn} be continuous real valued functions and f (x)≡ supk { fk (x)} .
Then f is lower semicontinuous.
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Proof: I need to show that if xn → x, then f (x) ≤ liminfn→∞ f (xn). If not, then
there exists, for some ε > 0 a subsequence, still denoted by n such that limn→∞ f (xn) <
f (x)− ε. But then there is fk such that fk (x) > f (x)− ε

2 and so by continuity of fk,
fk (x) = limn→∞ fk (xn)≤ limn→∞ f (xn)< fk (x)− ε

2 , a contradiction. ■
This lemma is about finitely many subharmonic functions.

Lemma 11.8.2 Let U be an open set and let u1,u2, · · · ,up be subharmonic functions
defined on U. Then letting v≡max(u1,u2, · · · ,up) , it follows that v is also subharmonic.

Proof: Let x ∈U. Then whenever r is small enough to satisfy the subharmonic condi-
tion for each ui.

v(x) = max(u1 (x) ,u2 (x) , · · · ,up (x))

≤ max
(

1
ωn−1rn−1

∫
∂B(x,r)

u1 (y)dσ (y) , · · · , 1
ωn−1rn−1

∫
∂B(x,r)

up (y)dσ (y)
)

≤ 1
ωn−1rn−1

∫
∂B(x,r)

max(u1,u2, · · · ,up)(y)dσ (y) =
1

ωn−1rn−1

∫
∂B(x,r)

v(y)dσ (y) .

This proves the lemma. ■

Definition 11.8.3 Let U be an open set and let u be subharmonic on U. Then for
B(x0,r)⊆U define

ux0,r (x)≡

{
u(x) if x /∈ B(x0,r)

1
ωn−1r

∫
∂B(x0,r) u(y) r2−|x−x0|2

|y−x|n dσ (y) if x ∈ B(x0,r)

Thus ux0,r is harmonic on B(x0,r) , and equals to u off B(x0,r) . This is because there
exists a harmonic function w whose boundary values on ∂B(x0,r) are given by u(y) and it
equals ux0,r at x∈B(x0,r). The wonderful thing about this is that ux0,r is still subharmonic
on all of U . Also note that, from Corollary 11.7.6 on Page 282, every harmonic function is
subharmonic.

Lemma 11.8.4 Let U be an open set and B(x0,r)⊆U as in the above definition where
u is subharmonic. Then ux0,r is subharmonic on U and u≤ ux0,r.

Proof: First I show that u ≤ ux0,r. This follows from the maximum principle. Indeed,
the function u−ux0,r is subharmonic on B(x0,r) and equals zero on ∂B(x0,r) . Thus for
all ρ small enough,

u(z)−ux0r (z)≤
1

ωρn−1

∫
∂B(z,ρ)

u(y)−ux0,r (y)dσ (y)

thanks to the mean value property of harmonic functions, Corollary 11.7.6. Since this is
true for all small ρ , it follows from continuity that u(z)−ux0,r (z)≤ 0.The two functions
are equal off B(x0,r) . Thus for such z,

ux0,r (z) = u(z)≤ 1
ωρn−1

∫
∂B(z,ρ)

u(y)dσ (y)≤ 1
ωρn−1

∫
∂B(z,ρ)

ux0,r (y)dσ (y)

The second inequality is because there may be points of B(x0,r) in ∂B(z,ρ) if z ∈
∂B(x0,r). ■
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Definition 11.8.5 For U a bounded open set and g ∈C (∂U), define

wg (x)≡ sup
{

u(x) : u ∈ Sg
}

where Sg consists of those functions u which are subharmonic with u(y) ≤ g(y) for all
y ∈ ∂U and u(y)≥min{g(y) : y ∈ ∂U} ≡ m.

Note that Sg ̸= /0 because u(x) ≡ m is in Sg. Also all functions in Sg have values
between m and max{g(y) : y ∈ ∂U}. The fundamental result is the following amazing
result.

Proposition 11.8.6 Let U be a bounded open set and let g ∈ C (∂U). Then wg ∈ Sg
and in addition to this, wg is harmonic.

Proof: Let B(x0,2r)⊆U and let {xk}∞

k=1 denote a countable dense subset of B(x0,r).
Let {u1k} denote a sequence of functions of Sg with the property that limk→∞ u1k (xl) =
wg (xl) . By Lemma 11.8.4, it can be assumed each ulk is a harmonic function in B(x0,2r)
and continuous on B(x0,r) since otherwise, you could use the process of replacing u with
ux0,2r. Now define wk = (max(u1k, · · · ,ukk))x0,2r . Then each wk ∈ Sg, each wk is harmonic
in B(x0,2r), and for each xl , limk→∞ wk (xl) = wg (xl) .

From the representation theorem for harmonic functions, 11.17, if x ∈ B(x0,r)

wk (x) =
1

ωn−12r

∫
∂B(x0,2r)

wk (y)
r2−|x−x0|2

|y−x|n
dσ (y) (11.18)

and so there exists a constant C which is independent of k such that for all i = 1,2, · · · ,n
and x ∈ B(x0,r),

∣∣∣ ∂wk(x)
∂xi

∣∣∣ ≤ C. Indeed, you could differentiate under the integral sign
with respect to the xi. The wk are all bounded functions thanks to the maximum princi-
ple Proposition 11.7.9. Therefore, this set of functions, {wk} is equicontinuous on B(x0,r)
as well as being uniformly bounded, thanks to the mean value inequality, and so by the
Ascoli Arzela theorem, Theorem 3.10.5, it has a subsequence which converges uniformly
on B(x0,r) to a continuous function I will denote by w which has the property that for all
k, w(xk) = wg (xk). Also since each wk is harmonic,

wk (x) =
1

ωn−1r

∫
∂B(x0,r)

wk (y)
r2−|x−x0|2

|y−x|n
dσ (y) (11.19)

Passing to the limit in 11.19 using the uniform convergence, it follows

w(x) =
1

ωn−1r

∫
∂B(x0,r)

w(y)
r2−|x−x0|2

|y−x|n
dσ (y) (11.20)

which shows that w is also harmonic. I have shown that w = wg on a dense set. Also, it
follows by definition of wg that w(x) ≤ wg (x) for all x ∈ B(x0,r). It remains to verify
these two functions are in fact equal. By Lemma 11.8.1 wg is lower semicontinuous on U .
Let x ∈ B(x0,r) and pick xkl → x where

{
xkl

}
is a subsequence of the dense set, {xk}.

Then
wg (x)≥ w(x) = lim inf

l→∞
w
(
xkl

)
= lim inf

l→∞
wg
(
xkl

)
≥ wg (x) .

This proves w = wg and since w is harmonic, so is wg. ■
It remains to consider whether the boundary values are obtained. This requires an

additional assumption on the set U.
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Definition 11.8.7 A bounded open set U has the barrier condition at z ∈ ∂U, if
there exists a continuous on ∂U function, bz called a barrier function which has the prop-
erty that bz is subharmonic on U, bz (z) = 0, and for all x ∈ ∂U \{z} ,bz (x)< 0.

The main result is the following remarkable theorem.

Theorem 11.8.8 Let U be a bounded open set which has the barrier condition at
z ∈ ∂U and let g ∈C (∂U) . Then the function wg, defined above, is in C2 (U) and satisfies
∆wg = 0 in U, limx→z wg (x) = g(z) .

Proof: From Proposition 11.8.6 it follows ∆wg = 0. Let z ∈ ∂U and let bz be the barrier
function at z. Note that Sg ̸= /0 because v ∈ Sg where v(x)≡ m≡min{g(x) : x ∈ ∂U} .

Claim: For K large enough, g(z)−ε +Kbz (x)≤ g(x) for all x∈ ∂U and g(z)+ε−
Kbz (x)≥ g(x) for all x ∈ ∂U.

Proof of claim: If x is close enough to z that g(x)− g(z)+ ε > 0,say |x−z| < δ ,

then it does not matter what K > 0 is picked. You will have g(x)−g(z)+ε

K ≥ bz (x) because
bz (x) ≤ 0. On the other hand if |x−z| ≥ δ then max{bz (x) : x ∈ ∂U \B(z,δ )} < 0.
Thus, for K > 0 sufficiently large, if x ∈ ∂U \B(z,δ ) ,bz (x) ≤ g(x)−g(z)+ε

K . Thus for K

this large, bz (x)≤ g(x)−g(z)+ε

K for all x ∈ ∂U which gives the first claim.
Next, if x ∈ ∂U is close enough to z that g(x)− g(z)− ε < 0, say if |x−z| < δ

then for any K > 0, g(x)−g(z)−ε

−K ≥ bz (x) because the left is positive while the right is
≤ 0. If |x−z| ≥ δ , then max{bz (x) : x ∈ ∂U \B(z,δ )}< 0 and so if K is large enough
and positive, then g(x)−g(z)−ε

−K ≥ bz (x) and so there is K large enough that for all x ∈
∂U,g(x)−g(z)−ε ≤−Kbz (x) and so for all x ∈ ∂U,ε ≥ g(x)−g(z)+Kbz (x). This
proves the claim.

We have two subharmonic functions of x ∈U,

≤−g(x) if x∈∂U
−g(z)− ε +Kbz (x) and

≤g(x)if x∈∂U
g(z)− ε +Kbz (x) (11.21)

For x ∈ ∂U, the first ≤ −g(x) and the second ≤ g(x) from the above claim. Let u ∈ Sg.
Then x→ u(x)+(−g(z)− ε +Kbz (x)) is subharmonic and when x ∈ ∂U, it is no more
than g(x)−g(x) = 0. By the maximum principle, Proposition 11.7.9, for x ∈U,

u(x)+(−g(z)− ε +Kbz (x))≤ 0

It follows that wg (x) ≤ g(z)+ ε −Kbz (x) for all x ∈ U . Now consider the second in
11.21 g(z)− ε +Kbz (x)≤ g(x) for x ∈ ∂U and so g(z)− ε +Kbz (x)≤ wg (x) for all
x ∈U by definition of wg. Thus for x ∈U,

g(z)− ε +Kbz (x)≤ wg (x)≤ g(z)+ ε−Kbz (x)

It follows that if xn→ z, then from the above and continuity of bz (x) ,

g(z)− ε ≤ lim inf
n→∞

wg (xn)≤ lim sup
n→∞

wg (xn)≤ g(z)+ ε.

Since ε is arbitrary, this shows limn→∞ wg (xn) exists and equals g(z). ■
How can you recognize that a point on the boundary of a bounded open set U has the

barrier condition? One way would be to check the following condition.
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Condition 11.8.9 For z ∈ ∂U, there exists xz /∈U such that |xz−z|< |xz−y| for every
y ∈ ∂U \{z} .

It says that there is a point xz /∈ Ū and a ball B centered at xz with ∂B∩∂U = {z}.

Proposition 11.8.10 Suppose Condition 11.8.9 holds. Then ∂U satisfies the barrier
condition at such z ∈ ∂U. Consequently for such a z, limx→z wg (x) = g(z) where ∆wg =
0 and wg is given above.

Proof: For n≥ 3, let bz (y)≡ rxz (y−xz)−rxz (z−xz), rx in Lemma 11.7.2. Then
bz (z) = 0 and if y ∈ ∂U with y ̸= z, then clearly bz (y)< 0. ■

Here is a picture of a domain which has a barrier at each point of the boundary.

U

You might try to think of some examples which won’t satisfy the above condition.
Maybe an inward pointing cusp would give such an example. Let z be the point of the
cusp. U

You might also consider U = B(0,1)\{positive z axis} inR3. However, for many ordinary
regions, the above condition would hold for all points, and perhaps fail to hold only at
finitely many exceptional points or points in a set of σ measure zero.

11.9 Exercises
1. Suppose U is an open bounded set in Rp, u∈C2 (U)∩C

(
U
)
, and ∆u≥ 0 in U. Then

max
{

u(x) : x ∈U
}
= max{u(x) : x ∈ ∂U} .

Here ∆u ≡ ∑
p
i=1 uxixi . This is called the weak maximum principle. Hint: Suppose

not. Then u(x0) is the maximum at x0 ∈ U . Letting uε (x) ≡ ε |x|2 + u(x) , it
follows that if ε > 0 is small enough, uε also has its maximum at an interior point,
say xε . For some xi,uxixi (xε) ≥ 0 so uεxixi (xε) > 0. A C2 function is harmonic if
∆u = 0. Show that if a C2 function is harmonic on a bounded open set U , continuous
on Ū , then if it equals 0 on ∂U, it must be 0 on U . Show that this proves uniqueness
for the Dirichlet problem which is to find harmonic u on U with given boundary
values.

2. Show that ∆u≥ 0 implies u is subharmonic. Hint: Let v≡ |x− x0|−(n−2)− r−(n−2),
for n > 2, so v = 0 on ∂B(x0,r) and ∆v = 0. Modify using ln if n = 2. Then consider
identity

∫
V (u∆v− v∆u)dmn =

∫
∂V u ∂v

∂n − v ∂u
∂n dσ for V = B\Bε .

3. For n > 2 show that x→ |ax−b|k is harmonic away from a−1b if and only if k =
−(n−2). What of the case where n = 2?



Chapter 12

Theorems Involving Line Integrals
12.1 Green’s Theorem

Green’s theorem is an important theorem which relates line integrals to integrals over a
surface in the plane. It can be used to establish the seemingly more general Stoke’s theorem
but is interesting for it’s own sake. Historically, theorems like it were important in the
development of complex analysis.

Here is a proof of Green’s theorem from the divergence theorem. This discussion is
also in “Calculus of One and Many Variables” which discusses line integrals or see Section
11.5 for a short treatment based on the general case of differentiable manifolds.

Theorem 12.1.1 (Green’s Theorem) Let U be an open set in the plane for which
the divergence theorem holds and let

F (x,y) = (P(x,y) ,Q(x,y))

be a C1 vector field defined near U. Then

∫
∂U

F ·dR=
∫

U

(
∂Q
∂x

(x,y)− ∂P
∂y

(x,y)
)

dm2.

In the other notation, ∫
∂U

Pdx+Qdy =
∫

U
(Qx−Py)dm2

Proof: Suppose the divergence theorem holds for U . Consider the following picture.

(x′,y′) (y′,−x′)

U

Counter clockwise motion around the curve is determined by imagining you stand up-
right with your left hand over U and walk in the direction you are facing. Your right hand
will then be in the direction of the outer normal. The tangent vector in direction of motion
is (x′,y′) is as shown. The unit exterior normal is a multiple of(

x′,y′,0
)
× (0,0,1) =

(
y′,−x′,0

)
.

This would be the case at all the points where the unit exterior normal exists.
Now let G(x,y) = (Q(x,y) ,−P(x,y)). Also note the area (length) element on the

bounding curve ∂U is
√

(x′)2 +(y′)2dt. Then by the divergence theorem,

∫
U
(Qx−Py)dm2 =

∫
U

div(G)dm2 =
∫

∂U
G ·ndσ =

287
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m

∑
i=1

∫ bi

ai

(Q(xi (t) ,yi (t)) ,−P(xi (t) ,yi (t)))
1√

(x′i)
2 +(y′i)

2

(
y′i,−x′i

) dS︷ ︸︸ ︷√
(x′i)

2 +(y′i)
2dt

=
m

∑
i=1

∫ bi

ai

(Q(xi (t) ,yi (t)) ,−P(xi (t) ,yi (t))) ·
(
y′i,−x′i

)
dt

=
m

∑
i=1

∫ bi

ai

Q(xi (t) ,yi (t))y′i (t)+P(xi (t) ,yi (t))x′i (t)dt ≡
∫

∂U
Pdx+Qdy

This proves Green’s theorem from the divergence theorem. ■

Proposition 12.1.2 Let U be an open set in R2 for which Green’s theorem holds. Then
Area of U =

∫
∂U F ·dR where F (x,y) = 1

2 (−y,x) ,(0,x), or (−y,0).

Proof: This follows immediately from Green’s theorem. ■

Example 12.1.3 Use Proposition 12.1.2 to find the area of the ellipse x2

a2 +
y2

b2 ≤ 1.

You can parameterize the boundary of this ellipse as x = acos t, y = bsin t, t ∈ [0,2π].
Then from Proposition 12.1.2,

Area equals =
1
2

∫ 2π

0
(−bsin t,acos t) · (−asin t,bcos t)dt =

1
2

∫ 2π

0
(ab)dt = πab.

Example 12.1.4 Find
∫

∂U F ·dR where U is the set
{
(x,y) : x2 +3y2 ≤ 9

}
and F (x,y) =

(y,−x).

One way to do this is to parameterize the boundary of U and then compute the line
integral directly. It is easier to use Green’s theorem. The desired line integral equals∫

U ((−1)−1)dA = −2
∫

U dA.Now U is an ellipse having area equal to 3
√

3 and so the
answer is −6

√
3.

Example 12.1.5 Find
∫

∂U F ·dR where U is the set {(x,y) : 2≤ x≤ 4,0≤ y≤ 3} and

F (x,y) =
(
xsiny,y3 cosx

)
From Green’s theorem this line integral equals∫ 4

2

∫ 3

0

(
−y3 sinx− xcosy

)
dydx =

81
4

cos4−6sin3− 81
4

cos2.

This is much easier than computing the line integral because you don’t have to break the
boundary in pieces and consider each separately.

Example 12.1.6 Find
∫

∂U F ·dR where U is the set {(x,y) : 2≤ x≤ 4,x≤ y≤ 4} and

F (x,y) = (xsiny,ysinx)

From Green’s theorem, this line integral equals
∫ 4

2
∫ 4

x (ycosx− xcosy)dydx = 4cos2−
8cos4−8sin2−4sin4.
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12.2 Stokes Theorem from Green’s Theorem
Stoke’s theorem is a generalization of Green’s theorem which relates the integral over a
surface to the integral around the boundary of the surface. These terms are a little different
from what occurs in R2. To describe this, consider a sock. The surface is the sock and its
boundary will be the edge of the opening of the sock in which you place your foot. Another
way to think of this is to imagine a region in R2 of the sort discussed above for Green’s
theorem. Suppose it is on a sheet of rubber and the sheet of rubber is stretched in three
dimensions. The boundary of the resulting surface is the result of the stretching applied to
the boundary of the original region in R2. Here is a picture describing the situation.

∂S
S

Recall the following definition of the curl of a vector field. Why do we even consider
it?

Definition 12.2.1 Let F (x,y,z) = (F1 (x,y,z) ,F2 (x,y,z) ,F3 (x,y,z)) be a C1 vector
field defined on an open set V in R3. Then

∇×F ≡

∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂ z
F1 F2 F3

∣∣∣∣∣∣≡
(

∂F3

∂y
− ∂F2

∂ z

)
i+

(
∂F1

∂ z
− ∂F3

∂x

)
j+

(
∂F2

∂x
− ∂F1

∂y

)
k.

This is also called curl(F ) and written as indicated, ∇×F .

The following lemma gives the fundamental identity which will be used in the proof of
Stoke’s theorem.

Lemma 12.2.2 Let R : U →V ⊆R3 where U is an open subset of R2 and V is an open
subset of R3. Suppose R is C2 and let F be a C1 vector field defined in V .

(Ru×Rv) · (∇×F )(R(u,v)) = ((F ◦R)u ·Rv− (F ◦R)v ·Ru)(u,v) . (12.1)

Proof: Start with the left side and let xi = Ri (u,v) for short.

(Ru×Rv) · (∇×F )(R(u,v)) = ε i jkx juxkvε irs
∂Fs

∂xr
= (δ jrδ ks−δ jsδ kr)x juxkv

∂Fs

∂xr

= x juxkv
∂Fk

∂x j
− x juxkv

∂Fj

∂xk
=Rv ·

∂ (F ◦R)

∂u
−Ru ·

∂ (F ◦R)

∂v

which proves 12.1. ■
The proof of Stoke’s theorem given next follows [10]. First, it is convenient to give a

definition.

Definition 12.2.3 A vector valued function R : U ⊆ Rm → Rn is said to be in
Ck
(
U ,Rn

)
if it is the restriction to U of a vector valued function which is defined on Rm

and is Ck. That is, this function has continuous partial derivatives up to order k.
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Theorem 12.2.4 (Stoke’s Theorem) Let U be any region in R2 for which the con-
clusion of Green’s theorem holds and let R∈C2

(
U ,R3

)
be a one to one function satisfying

|(Ru×Rv)(u,v)| ̸= 0 for all (u,v) ∈U and let S denote the surface

S≡ {R(u,v) : (u,v) ∈U} , ∂S≡ {R(u,v) : (u,v) ∈ ∂U}

where the orientation on ∂S is consistent with the counter clockwise orientation on ∂U (U
is on the left as you walk around ∂U). Then for F a C1 vector field defined near S,∫

∂S
F ·dR=

∫
S

curl(F ) ·ndσ

where n is the normal to S defined by n≡ Ru×Rv
|Ru×Rv| .

Proof: Letting C be an oriented part of ∂U having parametrization, r (t)≡ (u(t) ,v(t))
for t ∈ [α,β ] and letting R(C) denote the oriented part of ∂S corresponding to C,

∫
R(C)F ·

dR=

=
∫

β

α

F (R(u(t) ,v(t))) ·
(
Ruu′ (t)+Rvv′ (t)

)
dt

=
∫

β

α

F (R(u(t) ,v(t)))Ru (u(t) ,v(t))u′ (t)dt

+
∫

β

α

F (R(u(t) ,v(t)))Rv (u(t) ,v(t))v′ (t)dt

=
∫

C
((F ◦R) ·Ru,(F ◦R) ·Rv) ·dr.

Since this holds for each such piece of ∂U , it follows∫
∂S
F ·d R=

∫
∂U

((F ◦R) ·Ru,(F ◦R) ·Rv) ·dr.

By the assumption that the conclusion of Green’s theorem holds for U , this equals∫
U
[((F ◦R) ·Rv)u− ((F ◦R) ·Ru)v]dm2

=
∫

U
[(F ◦R)u ·Rv +(F ◦R) ·Rvu− (F ◦R) ·Ruv− (F ◦R)v ·Ru]dm2

=
∫

U
[(F ◦R)u ·Rv− (F ◦R)v ·Ru]dm2

the last step holding by equality of mixed partial derivatives, a result of the assumption that
R is C2. Now by Lemma 12.2.2, this equals∫

U
(Ru×Rv) · (∇×F )dm2 =

∫
U

∇×F ·(Ru×Rv)dm2 =
∫

S
∇×F ·ndσ

because dσ = |(Ru×Rv)|dm2 and n= (Ru×Rv)
|(Ru×Rv)| . Thus

(Ru×Rv)dm2 =
(Ru×Rv)

|(Ru×Rv)|
|(Ru×Rv)|dm2 = ndσ .

This proves Stoke’s theorem. ■
Note that there is no mention made in the final result that R is C2. Therefore, it is not

surprising that versions of this theorem are valid in which this assumption is not present. It
is possible to obtain extremely general versions of Stoke’s theorem.
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12.2.1 The Normal and the Orientation
Stoke’s theorem as just presented needs no apology. However, it is helpful in applications
to have some additional geometric insight.

To begin with, suppose the surface S of interest is a parallelogram in R3 determined by
the two vectors a,b. Thus S = R(Q) where Q = [0,1]× [0,1] is the unit square and for
(u,v) ∈ Q,

R(u,v)≡ ua+ vb+p,

the point p being a corner of the parallelogram S. Then orient ∂S consistent with the
counter clockwise orientation on ∂Q. Thus, following this orientation on S you go from p
to p+a to p+a+b to p+b to p. Then Stoke’s theorem implies that with this orientation
on ∂S, ∫

∂S
F ·dR=

∫
S

∇×F ·nds

where n=Ru ×Rv/ |Ru×Rv| = a×b/ |a×b| . Now recall a,b,a×b forms a right
hand system.

ab
a×b

p+a

p+a+b

S

p

Thus, if you were walking around ∂S in the direction of the orientation with your left
hand over the surface S, the normal vector a×b would be pointing in the direction of your
head.

More generally, if S is a surface which is not necessarily a parallelogram but is instead
as described in Theorem 12.2.4, you could consider a small rectangle Q contained in U
and orient the boundary of R(Q) consistent with the counter clockwise orientation on ∂Q.
Then if Q is small enough, as you walk around ∂R(Q) in the direction of the described
orientation with your left hand over R(Q), your head points roughly in the direction of
Ru×Rv.

Q

u0

∆v

∆u

Rv(u0)∆v

Ru(u0)∆u

R(Q)

As explained above, this is true of the tangent parallelogram, and by continuity of
Rv,Ru, the normals to the surface R(Q)Ru×Rv (u) for u ∈ Q will still point roughly in
the same direction as your head if you walk in the indicated direction over ∂R(Q), meaning
the angle between the vector from your feet to your head and the vector Ru×Rv (u) is less
than π/2.

You can imagine filling U with such non-overlapping regions Qi. Then orienting
∂R(Qi) consistent with the counter clockwise orientation on Qi, and adding the resulting
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line integrals, the line integrals over the common sides cancel as indicated in the following
picture and the result is the line integral over ∂S.

U

R

Thus there is a simple relation between the field of normal vectors on S and the ori-
entation of ∂S. It is simply this. If you walk along ∂S in the direction mandated by the
orientation, with your left hand over the surface, the nearby normal vectors in Stoke’s the-
orem will point roughly in the direction of your head.

This also illustrates that you can define an orientation for ∂S by specifying a field of
unit normal vectors for the surface, which varies continuously over the surface, and require
that the motion over the boundary of the surface is such that your head points roughly in
the direction of nearby normal vectors as you walk along the boundary with your left hand
over S. The existence of such a continuous field of normal vectors is what constitutes an
orientable surface.

12.2.2 The Mobeus Band

It turns out there are more general formulations of Stoke’s theorem than what is presented
above. However, it is always necessary for the surface S to be orientable. This means
it is possible to obtain a vector field of unit normals to the surface which is a continuous
function of position on S.

An example of a surface which is not orientable is the famous Mobeus band, obtained
by taking a long rectangular piece of paper and gluing the ends together after putting a twist
in it. Here is a picture of one.

There is something quite interesting about this Mobeus band and this is that it can be
written parametrically with a simple parameter domain. The picture above is a maple graph
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of the parametrically defined surface

R(θ ,v)≡


x = 4cosθ + vcos θ

2
y = 4sinθ + vcos θ

2 ,

z = vsin θ

2

θ ∈ [0,2π] ,v ∈ [−1,1] .

An obvious question is why the normal vector R,θ ×R,v/
∣∣R,θ ×R,v

∣∣ is not a continuous
function of position on S. You can see easily that it is a continuous function of both θ and
v. However, the map, R is not one to one. In fact, R(0,0) =R(2π,0). Therefore, near
this point on S, there are two different values for the above normal vector. In fact, a tedious
computation will show that this normal vector is(

4sin 1
2 θ cosθ − 1

2 v,4sin 1
2 θ sinθ + 1

2 v,−8cos2 1
2 θ sin 1

2 θ −8cos3 1
2 θ +4cos 1

2 θ
)

D

where

D = 16sin2
(

θ

2

)
+

v2

2
+4sin

(
θ

2

)
v(sinθ − cosθ)

+43 cos2
(

θ

2

)(
cos
(

1
2

θ

)
sin
(

1
2

θ

)
+ cos2

(
1
2

θ

)
− 1

2

)2

and you can verify that the denominator will not vanish. Letting v = 0 and θ = 0 and 2π

yields the two vectors (0,0,−1) ,(0,0,1) so there is a discontinuity. This is why I was
careful to say in the statement of Stoke’s theorem given above that R is one to one.

The Mobeus band has some usefulness. In old machine shops the equipment was run
by a belt which was given a twist to spread the surface wear on the belt over twice the area.

The above explanation shows that R,θ ×R,v/
∣∣R,θ ×R,v

∣∣ fails to deliver an orientation
for the Mobeus band. However, this does not answer the question whether there is some
orientation for it other than this one. In fact there is none. You can see this by looking at the
first of the two pictures below or by making one and tracing it with a pencil. There is only
one side to the Mobeus band. An oriented surface must have two sides, one side identified
by the given unit normal which varies continuously over the surface and the other side
identified by the negative of this normal. The second picture below was taken by Ouyang
when he was at meetings in Paris and saw it at a museum.

12.3 A General Green’s Theorem
Now suppose U is a region in the uv plane for which Green’s theorem holds and that
V ≡R(U) where R is C2

(
U ,R2

)
and is one to one, Ru×Rv ̸= 0. Here, to be specific,

the u,v axes are oriented as the x,y axes respectively.
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x

y

u

v

Also let F (x,y,z) = (P(x,y) ,Q(x,y) ,0) be a C1 vector field defined near V . Note that
F does not depend on z. Therefore, ∇×F (x,y) = (Qx (x,y)−Py (x,y))k.You can check
this from the definition. Also

R(u,v) =
(

x(u,v)
y(u,v)

)
and so, from the definition of Ru×Rv, the desired unit normal vector to V is xuyv−xvyu

|xuyv−xvyu|k.

Suppose xuyv− xvyu > 0. Then the unit normal is k. Then Stoke’s theorem applied to this
special case yields∫

∂V
F ·dR=

∫
U
(Qx (x(u,v) ,y(u,v))−Py (x(u,v) ,y(u,v)))k ·k

∣∣∣∣ xu xv
yu yv

∣∣∣∣dσ

Now by the change of variables formula, this equals
∫

V (Qx (x,y)−Py (x,y))dσ . This is just
Green’s theorem for V . Thus if U is a region for which Green’s theorem holds and if V is
another region, V =R(U) , where |Ru×Rv| ̸= 0, R is one to one, and twice continuously
differentiable with Ru×Rv in the direction of k, then Green’s theorem holds for V also.

This verifies the following theorem.

Theorem 12.3.1 (Green’s Theorem) Let V be an open set in the plane for which
the divergence theorem holds and F (x,y) = (P(x,y) ,Q(x,y)) be a C1 vector field defined
near V. Then if V is oriented counter clockwise,∫

∂V
F ·dR=

∫
V

(
∂Q
∂x

(x,y)− ∂P
∂y

(x,y)
)

dσ . (12.2)

In particular, if there exists U for which the divergence theorem holds and V = R(U)
where R : U → V is C2

(
U ,R2

)
such that

∣∣Rx×Ry
∣∣ ̸= 0 and Rx×Ry is in the direction

of k, then 12.2 is valid where the orientation around ∂V is consistent with the orientation
around U.

This is a very general version of Green’s theorem which will include most if not all
of what will be of interest. However, there are more general versions of this important
theorem. 1 The exercises will present a development of the main topics in complex analysis.
For more, see “Analysis of Functions of Complex and Many Variables” or “Analysis of
Functions of one Variable”. Here I am celebrating the role of Green’s theorem more than
in the latter of the two books. See the listed books for residue theory.

1For a general version see the advanced calculus book by Apostol. Also see my book on calculus of real and
complex variables. The general versions involve the concept of a rectifiable Jordan curve. You need to be able
to take the area integral and to take the line integral around the boundary. This general version of this theorem
appeared in 1951. Green lived in the early 1800’s.
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12.4 Exercises
1. Show using Green’s theorem that the area enclosed by a closed C1 curve is

∫
C xdy.

2. Use the above problem to find the area of the ellipse x2

a2 +
y2

b2 ≤ 1. Here a,b are
positive constants.

3. Let pi = (xi,yi) and consider the polygon p0p1p2 · · ·pn meaning the polygonal curve
going from p0 to p1 etc. till you get to pn = p0 and suppose this polygon forms a
curve which does not cross itself and the area is on the left as you walk over the curve
with you head pointing in the direction of k. Use Green’s theorem to obtain an easy
to use formula for the area of this polygon. Use

∫
C xdy is the area and obtain a simple

description for the line integrals from pi to pi+1 then add these together.

4. Using the chain rule, show the following: Suppose C is a piecewise smooth curve
which goes from p to q. Also suppose that F (x) = ∇φ (x) . Then

∫
C F ·dR =

φ (q)−φ (p) . Such vector fields are called conservative. Hint: To make easier, you
could use Lemma 11.5.2 to consider a single parameter domain.

5. Recall that a connected open set is arcwise connected. Show that between any two
points in such a connected open set, the is a piecewise smooth curve.

6. Use the above problem to show that in a connected open set U , if the line integral∫
C F ·dR joining any two points does not depend on the particular piecewise smooth

curve joining them then there exists φ a scalar function defined on U such that ∇φ =
F . Thus a vector valued function F defined on U is conservative if and only if the
line integrals are path independent.

7. Let U be an open connected set in R2 = C and consider the points as complex
numbers. That is x+ iy means (x,y) and the usual conventions for multiplication
hold in which i2 = −1. Let f : U → C. Then f is said to be analytic if f ′ (z) ≡
limh→0

f (z+h)− f (z)
h exists and is a continuous function of z. Show that for f (z) =

u(x,y)+ iv(x,y) with u,v respectively the real and imaginary parts of f (z) that f is
analytic if and only if the partial derivatives of u,v are continuous and the Cauchy
Riemann equations hold, ux = vy,uy =−vx. Hint: You should let h = t and h = it for
t real and see what happens. Both choices must yield the derivative. The first would
be ux + ivx the second something similar and these would need to be the same.

8. Using Problem 7 show that u,v are both harmonic. That is ∆u = ∆v = 0. Use Theo-
rem 11.7.5 to verify that if f is bounded and analytic on all of C then f is constant.

9. Show that many of the usual differentiation formulas hold. For example, the chain
rule and product rule and quotient rule. Show (zn)′ = nzn−1 for n an integer. Show
that polynomials are analytic.

10. Using Problem 17 on Page 276 which defines contour integrals, show that for f an
analytic function defined on an open set V ⊆ C = R2 and U a region contained in
V such that U is a region for which the divergence theorem holds,

∫
C f (z)dz = 0

where C is the oriented ∂U . Recall this contour integral is just
∫ b

a f (z(t))z′ (t)dt
where z(·) : [a,b)→ C is a closed curve and z is a C1 differentiable map whose
derivative might vanish at finitely many points. Hint: Show that for u,v the real and
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imaginary parts of f , f (z)z′ = ux′−vy′+ i(vx′+uy′) . Show that the real part of this
contour integral is

∫
C udx−vdy and the imaginary part is

∫
C vdx+udy. Apply Greens

theorem and Problem 7 to conclude that this contour integral is 0. This is the Cauchy
integral theorem which is from Cauchy in the early 1800’s and is the foundation for
complex analysis. This is roughly the way Cauchy did it.

11. Suppose f is analytic, explain why f̄ will usually not be analytic. f̄ (z) = u(x,y)−
iv(x,y) where f (z) = u(x,y)+ iv(x,y).

12. Let C be a piecewise smooth oriented curve in C and let f : C→ C be continuous
and bounded so that | f (z)| ≤M for some M. Show that |

∫
C f (z)dz| ≤ML where L

is the length of this curve. For C an oriented curve, let −C be the same set of points
but oriented in the opposite direction. Explain how

∫
C f dz =−

∫
−C f dz. Go right to

the definition, −C involves t going from b to a where the interval for the parameter
is [a,b].

13. Consider the following picture which illustrates a region for Green’s theorem U and
inside a small disk of radius r called Ur centered at a which also is a region for
Green’s theorem. The boundaries of these two are oriented as shown.

U

C

Ur

a Cr

Show that the small circle is parametrized by a+re−it for t ∈ [0,2π]. Then justify the
following for f (z) = u(x,y)+ iv(x,y) , analytic on an open set containing Ū . First
of all show z→ f (z)

z−a is analytic on the region between U and Ur. Next verify that this
region is one which works for Green’s theorem.∫

C

f (z)
z−a

dz+
∫

Cr

f (z)
z−a

dz = 0

Then show that limr→0

∣∣∣∣∫Cr

f (z)−( f (a)+ f ′(a)(z−a))
z−a dz

∣∣∣∣= 0 using the differentiability of

f and the estimate of Problem 12. Thus
∫

C
f (z)
z−a dz+

∫
Cr

f (a)+ f ′(a)(z−a)
z−a dz= e(r) where

limr→0 e(r) = 0. Now show that limr→0
∫

Cr
f (a)+ f ′(a)(z−a)

z−a dz = −2πi f (a) . Explain

why f (a) = 1
2πi
∫

C
f (z)
z−a dz. This is the famous Cauchy integral formula.

14. Use whatever convergence theorem is useful to show that in the above situation,

f (n) (a) =
n!

2πi

∫
C

f (z)

(z−a)n+1 dz

Also show that if f (z) is analytic on all of C (entire) and f ′ (z) = 0 for all z then f (z)
is a constant. Show using the formula of this problem and the estimate of Problem
12 that if f is bounded and entire, then f is a constant. This is Liouville’s theorem.

15. The easiest proof of the fundamental theorem of algebra which states that every non-
constant polynomial having complex coefficients has a zero comes from the above
Liouville’s theorem. If p(z) is a nonconstant polynomial with no zeros, explain why
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1/p(z) is analytic and bounded, thus yielding a contradiction to p(z) being noncon-
stant thanks to Liouville’s theorem. Hint: If p(z) = anzn +q(z) with q(z) a polyno-
mial with all exponents less than n then lim|z|→∞

1
|p(z)| = lim|z|→∞

1
|an||z|n

|z|n
|p(z)| = 0 and

1/p(z) is continuous if p(z) never is 0.

16. Let f : C→ C be entire (has a derivative on all of C) and suppose that

max{| f (z)| : |z| ≤ R} ≤CRk.

Then show that f (z) is actually a polynomial of degree k. Hint: Recall the formula
for the derivative in terms of the Cauchy integral in Problem 14. Nothing like this
holds for functions of a real variable.

17. Suppose you have a sequence of functions { fn} analytic on an open set U . If they
converge uniformly to a function f , show that f is also analytic on U . This is totally
opposed to what takes place in real analysis.

18. Suppose F ′ (z) = f (z) . Show that if γ is an oriented piecewise smooth curve from z0
to z, then

∫
γ

f (z)dz = F (z)−F (z0). In particular, if γ is a closed curve,
∫

γ
f (z)dz =

0. This F is called a primitive.

19. Suppose f has a derivative on a convex set open set U. Let T be a triangular re-
gion along with its boundary ∂T . Orient this boundary counter clockwise. Show∫

T f (z)dz = 0.

TT 1
1

T 1
2T 1

3 T 1
4z1 z2

z3

To do this, suppose |
∫

T f (z)dz|=α > 0. Cut up the triangle into four pieces as shown

above. Then
∣∣∣∫T 1

j
f (z)dz

∣∣∣ ≥ α/4 for one of those triangles. Do the same thing for

it, and pick
∣∣∣∫T 2

i
f (z)dz

∣∣∣≥ α/42 each time making the diameter of the new triangles
half the diameter of the one before. This yields a nested sequence of compact sets
{T n} such that diam(T n)≤C2−n. Let z be a point of the intersecton of all of these.
Then for w ∈ T n, f (w) = f (z)+ f ′ (z)(w− z)+o(w− z) and for all n large enough,
|o(w− z)| < εC2−n. Now explain why

∫
∂T n ( f (z)+ f ′ (z)(w− z))dw = 0. Now

explain why α

4n ≤ εC (2−n)(2−n) and so α ≤Cε a contradiction if ε is chosen small
enough. Now pick a point of U called z0. Let z0z denote the straight line segment
from z0 to z. Let F (z) ≡

∫
z0z f (w)dw. Show that F ′ (z) = f (z) . From the Liouville

problem above, the same procedure will show that F(n) (z) = n!
2πi
∫

C
F(w)dw
(w−z)n+1 which is

a continuous function of z. Here C is a circle enclosing z0. Thus f ′ is continuous as
are all of its derivatives. Note how different this is than the situation in real analysis.
If the derivative exists on an open set, then it has to be continuous along with all of
the higher order derivatives.

20. In calculus, if you have a continuous function f there is F an antiderivative. Show
that this is not true for functions of a complex variable unless f is analytic.
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21. Show the Weierstrass approximation theorem will not work to approximate arbitrary
continuous functions of a complex variable. Hint: You might use the Cauchy integral
formula and the above problems to show that continuity is not enough.

22. The region between two circles centered at z0 is called an annulus.

CR

Ĉr
zz0

In the above picture Ĉr is oriented so that the area is on left hand as you walk around
with head pointed up from the plane and CR is also oriented this way. Let Cr be the
same circle as Ĉr but oriented counter clockwise so the area inside this circle is on
the left. Then using the Cauchy integral formula of Problem 13

f (z) =
1

2πi

(∫
CR

f (w)
w− z

dw−
∫

Cr

f (w)
w− z

dw
)

Then show using the formula for the sum of geometric series that for z in the annulus

f (z) =
1

2πi

(∫
CR

∞

∑
k=0

f (w)

(w− z0)
k+1 (z− z0)

k dw+
∫

Cr

∞

∑
k=0

f (w)(w− z0)
k

(z− z0)
k+1

)
dw

To get this, do the following. On the second integral, f (w)
w−z = − f (w)

(z−z0)
(

1−w−z0
z−z0

) and

something similar for the first integral. Use formula for sum of geometric series.
Explain why for fixed z in the annulus convergence is uniform in both terms so

f (z) =
∞

∑
k=0

1
2πi

∫
CR

f (w)

(w− z0)
k+1 dw(z− z0)

k +
∞

∑
k=0

1
2πi

∫
Cr

f (w)(w− z0)
k 1

(z− z0)
k+1

In case f is analytic on all of the inside of CR, the Cr disappears and so by Problem 14

the above reduces to f (z) = ∑
∞
k=0

f (k)(z0)
k! (z− z0)

k showing that if f is analytic near a
point z0 then its power series expansion converges to the function on the largest open
disk which does not contain a point where f fails to be analytic. In fact one could
define analytic functions as being those correctly given by their power series but this
approach is not done here. When the second sum is a finite sum, we say that f has a
pole at z0. Otherwise z0 is called an essential singularity.

23. Show that if f (z) = ∑
∞
k=0 ak (z− z0)

k for |z− z0| ≤ r, then f is analytic on B(z0, r̂) for
r̂ < r. Hint: You might show uniform convergence and then use the Cauchy integral
formula.

24. If f is analytic on an open connected set U , and if Z is the set of zeros of f , show that
f is identically zero if and only if the set of zeros has a limit point in U . Hint: Sup-
pose z is a limit point of Z. Then by continuity f (z) = 0 so the set of zeroes is closed.
On the other hand, if z is a limit point of Z then f (w) = am (w− z)m g(w) where
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g(z) ̸= 0 and am is the first nonzero coefficient in the power series expansion about
z. But you could pick wn→ z where f (wn) = 0 thus am = 0 after all. Thus all coef-
ficients of the power series of f at z = 0 so f = 0 in an open ball containing z. Take
a piecewise smooth curve γ from z to some ẑ ∈U . Let T = sup{t : f (γ (t)) = 0} .
Then repeat the argument to show that f (ẑ) = 0.

25. Using the above problem, show that if you want ez to be analytic and agree with ex

whenever z = x ∈R then you have no choice but to define ez ≡ ex (cos(y)+ isin(y)).
Give similar treatments for sin(z) and cos(z). Explain why sin(z) ,cos(z) cannot be
bounded using Liouville’s theorem. Also verify that all the usual trig identities will
continue to hold for arbitrary complex z.

26. Let r be a ray, straight line starting at 0 and proceeding in one direction from there,
and let a be an angle associated with this ray r. For z /∈ r let arg(z) = θ where z =
|z|eiθ , for θ ∈ (a−π,a+π) . Then defining log(z)≡ ln(|z|)+ iarg(z), this delievers
a “branch” of the logarithm associated with this ray. Show that if a =−π, this is the
principle branch and in this case log(x) = ln(x) for x > 0. In any case, show that
elog(z) = z and that, from geometric reasoning, z→ log(z) is continuous and satisfies
the usual functional equation for logarithms, log(z+w) = log(z) + log(w). Note
that z+w stays in the complement of r if both z,w are.

27. Show that if f is analytic and one to one on a connected open set U with f ′ (z) ̸= 0 on
U and f −1 is continuous, then f−1 will also be analytic on the connected open set
f (U). This will show that the above log function is analytic and the usual calculus
theorem holds

(
f−1
)′
( f (z)) f ′ (z) = 1. Hint: You could make this an exercise in

using the inverse function theorem and the Cauchy Riemann equations. You could
prove f−1 is continuous if desired, using either invariance of domain or inverse func-
tion theorem.

28. Suppose g(z0) ̸= 0 where g is analytic near z0. Then if m∈N, is given. Show that on
some ball B(z0,r) , there is an analytic function φ (z) such that g(z) = φ (z)m. Hint:
Pick a ray from 0 which misses g(z0). Then pick r small enough that g(B(z0,r))
does not intersect this ray. Let log(z) be a branch of the logarithm associated with
this ray as described. Then let φ (z) = e

1
m log(z). This must be analytic because it is

the composition of analytic functions.

29. Suppose f is analytic on B̂ ≡ B(z0,r)\{z0}. Show that f can be defined at z0 such
that the resulting function is analytic on B(z0,r) if and only if limz→z0 (z− z0) f (z) =
0. Such a z0 is called a removable singularity. Hint: One direction is obvious. For the
other, consider h(z)≡ (z− z0)

2 f (z) ,h(z0)≡ 0. Argue that h is analytic on B(z0,r)
and in fact, h′ (z0) = 0. Thus h(z) has a power series. Note h(z)−h(z0)

z−z0
= (z− z0) f (z) .

30. Use the above problem here. Suppose f is analytic near z0 and f
(
B̂
)

is not dense in
C. This means that there is w and δ > 0 such that B(w,δ ) has no points of f

(
B̂
)
.

Then, the Casorati Weierstrass theorem says that f (z) = g(z)+∑
m
k=1

bk
(z−z0)

k for some

m < ∞. That is, f has a pole at z0. Show this is the case. Note that this implies
the surprising result that if f (z) = g(z) +∑

∞
k=1

bk
(z−z0)

k for z near z0, then f
(
B̂
)

is

dense in the plane. In this second case, z0 is called an isolated essential singularity.
The Picard theorems say something even more dramatic, that f

(
B̂
)

actually is all
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of C except for one exception and in addition, other than this single exception, for
w ∈ C, there are infinitely many z ∈ B̂ such that f (z) = w. This theorem is for a
more advanced presentation of complex analysis than this short introduction. Hint
for Casorati Weierstrass: If f

(
B̂
)

is not dense, then there exists w and δ > 0 such
that B(w,δ )∩ f

(
B̂
)
= /0. Consider 1

f (z)−w . This is analytic near z0 and show that

limz→z0 (z− z0)
1

f (z)−w = 0. Thus there is h(z) analytic which equals 1
f (z)−w near z0

but which also makes sense at z0. Consider two cases, h(z0) = 0 and h(z0) ̸= 0. In
the second case, f (z)−w = 1

h(z) which is analytic near 0. Now consider the first
case. The zero of h at z0 has some multiplicity m. Otherwise, you would have h = 0
on some ball having z0 as center.

31. Let C be an oriented closed piecewise smooth curve. Then for z /∈ C, n(C,z) ≡
1

2πi
∫

C
1

w−z dw is an integer called the winding number. To show this, let γ : [0,2π]→C
be a C1 parametrization for C where maybe γ ′ (t) = 0 for some finite number of
t,γ (2π)≡ limt→2π γ (t). Then define F (t)≡

∫ t
0

γ ′(s)
γ(s)−z ds. Show

(
e−F(t) (γ (t)− z)

)′
=
−γ ′ (t)
γ (t)− z

e−F(t) (γ (t)− z)+ e−F(t)
γ
′ (t) = 0

thus e−F(t) (γ (t)− z) is a constant. e−F(2π) (γ (2π)− z) = (γ (0)− z) so, −F (2π) =
−2πin for some integer n and so n(C,z) = n.

32. Suppose U is a connected open set and f : U → C is analytic. Show that f (U)
is either a single point or a connected open set. Hint: Suppose f (U) is not a
single point. Then pick z0 ∈ U . Then near z0, f (z) = f (z0)+∑

∞
k=m ak (z− z0)

k =
f (z0)+g(z)(z− z0)

m where g(z0) ̸= 0. Not all ak can equal zero because if so, you
would have f − f (z0) zero in a set with a limit point and f would be constant con-
trary to the assumption that it is not. Using Problem 28, for z sufficiently close to z0,

f (z) = f (z0)+
(

g(z)1/m (z− z0)
)m
≡ f (z0)+ φ (z)m where φ (z0) = 0,g(z0) ̸= 0,

and φ
′ (z0) ̸= 0. Now apply the inverse function theorem and Cauchy Riemann equa-

tions to obtain that f (B(z0,r)) is an open set for r small enough. This is called the
open mapping theorem.

33. Use the above open mapping theorem to show the maximum modulous theorem. If
f is analytic on an open connected, bounded set U and continuous on Ū then | f |
achieves its maximum value on the boundary of U .

34. If U is an open connected subset of C and f : U → R is analytic, what can you say
about f ? Hint: You might consider the open mapping theorem.

35. When we count the zeros of an analytic function f we count them according to multi-
plicity. This means that if z0 is a zero of f so that for z near z0, f (z) = am (z− z0)

m +

am+1 (z− z0)
m+1+ ..., then we would regard this z0 as a zero of multiplicity m. Show

that if C is the boundary of a ball B(a,r) and if f (z) is analytic on an open connected
set containing this ball and f has no zeros on C, then the number of zeros of f in the
ball is 1

2πi
∫

C
f ′(z)
f (z) dz if these zeroes are counted according to multiplicity.



Chapter 13

Degree Theory
This chapter is on the Brouwer degree, a very useful concept with numerous and important
applications. The degree can be used to prove some difficult theorems in topology such
as the Brouwer fixed point theorem, the Jordan separation theorem, and the invariance of
domain theorem. A couple of these big theorems have been presented earlier, but when you
have degree theory, they get much easier. Degree theory is also used in bifurcation theory
and many other areas in which it is an essential tool. The degree will be developed forRp in
this book. When this is understood, it is not too difficult to extend to versions of the degree
which hold in Banach space. There is more on degree theory in the book by Deimling [11]
and much of the presentation here follows this reference. Another more recent book which
is really good is [13]. This is a whole book on degree theory.

The original reference for the approach given here, based on analysis, is [24] and dates
from 1959. The degree was developed earlier by Brouwer and others using different meth-
ods. The more classical approach based on simplices and approximations with these is in
[26]. I have given an approach based on singular homology as an appendix in [31].

To give you an idea what the degree is about, consider a real valued C1 function defined
on an interval I, and let y ∈ f (I) be such that f ′ (x) ̸= 0 for all x ∈ f−1 (y). In this case the
degree is the sum of the signs of f ′ (x) for x ∈ f−1 (y), written as d ( f , I,y).

y

In the above picture, d ( f , I,y) is 0 because there are two places where the sign is 1 and
two where it is −1.

The amazing thing about this is the number you obtain in this simple manner is a spe-
cialization of something which is defined for continuous functions and which has nothing
to do with differentiability. The reason one can extend the above simple idea to continuous
functions is is an integral expression for the degree which is insensitive to homotopy. It is
very similar to the winding number of complex analysis. The difference between the two
is that with the degree, the integral which ties it all together is taken over the open set while
the winding number is taken over the boundary, although proofs of it in the case of the
winding number sometimes involve Green’s theorem which involves an integral over the
open set. I think these analogies are better seen in the other presentation in [31].

In this chapter Ω will refer to a bounded open set.

Definition 13.0.1 For Ω a bounded open set, denote by C
(
Ω
)

the set of functions
which are restrictions of functions in Cc (Rp) , equivalently C (Rp) to Ω and by Cm

(
Ω
)
,m≤

∞ the space of restrictions of functions in Cm
c (Rp) , equivalently Cm (Rp) to Ω. If f ∈C

(
Ω
)

the symbol f will also be used to denote a function defined on Rp equalling f on Ω when
convenient. The subscript c indicates that the functions have compact support. The norm
in C

(
Ω
)

is defined as follows.

∥ f∥
∞,Ω = ∥ f∥

∞
≡ sup

{
| f (x)| : x ∈Ω

}
.

301
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If the functions take values in Rp write Cm
(
Ω;Rp

)
or C

(
Ω;Rp

)
for these functions if there

is no differentiability assumed. The norm on C
(
Ω;Rp

)
is defined in the same way as above,

∥f∥
∞,Ω = ∥f∥

∞
≡ sup

{
|f (x)| : x ∈Ω

}
.

If m = ∞, the notation means that there are infinitely many derivatives. Also, C (Ω;Rp)
consists of functions which are continuous on Ω that have values in Rp and Cm (Ω;Rp)
denotes the functions which have m continuous derivatives defined on Ω. Also let P con-
sist of functions f (x) such that fk (x) is a polynomial, meaning an element of the alge-
bra of functions generated by

{
1,x1, · · · ,xp

}
. Thus a typical polynomial is of the form

∑i1···ip a(i1 · · · ip)xi1 · · ·xip where the i j are nonnegative integers and a(i1 · · · ip) is a real
number.

Some of the theorems are simpler if you base them on the Weierstrass approximation
theorem.

Note that, by applying the Tietze extension theorem to the components of the function,
one can always extend a function continuous on Ω to all of Rp so there is no loss of gener-
ality in simply regarding functions continuous on Ω as restrictions of functions continuous
on Rp. Next is the idea of a regular value.

Definition 13.0.2 For W an open set in Rp and g ∈C1 (W ;Rp) , y is called a reg-
ular value of g if whenever x ∈ g−1 (y), det(Dg (x)) ̸= 0. Note that if g−1 (y) = /0, it
follows that y is a regular value from this definition. That is, y is a regular value if and
only if

y /∈ g ({x ∈W : detDg (x) = 0})

Denote by Sg the set of singular values of g, those y such that det(Dg (x)) = 0 for some
x ∈ g−1 (y).

Also, ∂Ω will often be referred to. It is those points with the property that every open
set (or open ball) containing the point contains points not in Ω and points in Ω. Then the
following simple lemma will be used frequently.

Lemma 13.0.3 Define ∂U to be those points x with the property that for every r > 0,
B(x,r) contains points of U and points of UC. Then for U an open set, ∂U = U \U. Let
C be a closed subset of Rp and let K denote the set of components of Rp \C. Then if K is
one of these components, it is open and ∂K ⊆C.

Proof: Let x∈U \U. If B(x,r) contains no points of U, then x /∈U . If B(x,r) contains
no points of UC, then x ∈U and so x /∈U \U . Therefore, U \U ⊆ ∂U . Now let x ∈ ∂U .
If x ∈U, then since U is open there is a ball containing x which is contained in U contrary
to x ∈ ∂U . Therefore, x /∈U. If x is not a limit point of U, then some ball containing x
contains no points of U contrary to x ∈ ∂U . Therefore, x ∈U \U which shows the two
sets are equal.

Why is K open for K a component of Rp \C? This follows from Theorem 3.11.12 and
results from open balls being connected. Thus if k ∈ K, letting B(k,r) ⊆ CC, it follows
K ∪B(k,r) is connected and contained in CC and therefore is contained in K because K is
maximal with respect to being connected and contained in CC.

Now for K a component of Rp \C, why is ∂K ⊆C? Let x ∈ ∂K. If x /∈C, then x ∈ K1,
some component of Rp \C. If K1 ̸= K then x cannot be a limit point of K and so it cannot
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be in ∂K. Therefore, K = K1 but this also is a contradiction because if x ∈ ∂K then x /∈ K
thanks to the first part that ∂U =U \U . ■

Note that for an open set U ⊆ Rp, and h : U → Rp, dist(h(∂U) ,y)≥ dist
(
h
(
U
)
,y
)

because U ⊇ ∂U .
The following lemma will be nice to keep in mind.

Lemma 13.0.4 f ∈C
(
Ω× [a,b] ;Rp

)
if and only if

t→ f (·, t) ∈C
(
[a,b] ;C

(
Ω;Rp))

Also
∥f∥

∞,Ω×[a,b] = max
t∈[a,b]

(
∥f (·,t)∥

∞,Ω

)
Proof:⇒By uniform continuity, if ε > 0 there is δ > 0 such that if |t− s|< δ , then for

all x ∈Ω, ∥f (x,t)−f (x,s)∥< ε

2 . It follows that

∥f (·, t)−f (·,s)∥
∞
≤ ε

2
< ε

⇐Say (xn, tn)→ (x,t) . Does it follow that f (xn, tn)→ f (x,t)?

∥f (xn, tn)−f (x,t)∥ ≤ ∥f (xn, tn)−f (xn, t)∥+∥f (xn, t)−f (x, t)∥
≤ ∥f (·, tn)−f (·, t)∥

∞
+∥f (xn, t)−f (x, t)∥

both terms converge to 0, the first because f is continuous into C
(
Ω;Rp

)
and the second

because x→ f (x, t) is continuous.
The claim about the norms is next. Let (x, t) be such that ∥f∥

∞,Ω×[a,b] < ∥f (x, t)∥+ε .
Then

∥f∥
∞,Ω×[a,b] < ∥f (x, t)∥+ ε ≤ max

t∈[a,b]

(
∥f (·, t)∥

∞,Ω

)
+ ε

and so ∥f∥
∞,Ω×[a,b] ≤ maxt∈[a,b] max

(
∥f (·,t)∥

∞,Ω

)
because ε is arbitrary. However, the

same argument works in the other direction. There exists t such that

∥f (·, t)∥
∞,Ω = max

t∈[a,b]

(
∥f (·, t)∥

∞,Ω

)
by compactness of the interval. Then by compactness of Ω, there is x such that

∥f (·,t)∥
∞,Ω = ∥f (x, t)∥ ≤ ∥f∥

∞,Ω×[a,b]

and so the two norms are the same. ■

13.1 Sard’s Lemma and Approximation
First are easy assertions about approximation of continuous functions with smooth ones.

The following is the Weierstrass approximation theorem. It is Corollary 5.5.3 presented
earlier.
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Corollary 13.1.1 If f ∈C ([a,b] ;X) where X is a normed linear space, then there exists
a sequence of polynomials which converge uniformly to f on [a,b]. The polynomials are of
the form

m

∑
k=0

pk (t) f
(

l
(

k
m

))
(13.1)

where l is a linear one to one and onto map from [0,1] to [a,b] and p0 (a) = 1 but pk (a) = 0
if k ̸= 0, pm (b) = 1 but pk (b) = 0 for k ̸= m.

Applying the Weierstrass approximation theorem, Theorem 5.7.7 or Theorem 5.9.5 to
the components of a vector valued function yields the following Theorem.

Theorem 13.1.2 If f ∈C
(
Ω;Rp

)
for Ω a bounded subset ofRp, then for any ε > 0,

there exists g ∈C∞
(
Ω;Rp

)
such that ∥g−f∥

∞,Ω < ε.

Recall Sard’s lemma, shown earlier. It is Lemma 10.4.3. I am stating it here for conve-
nience.

Lemma 13.1.3 (Sard) Let Ω be an open set in Rp and let h : Ω→Rp be differentiable.
Let

S≡ {x ∈Ω : detDh(x) = 0} .

Then mp (h(S)) = 0.

First note that if y /∈ g (Ω) , then y /∈ g ({x ∈Ω : detDg (x) = 0}) so it is a regular
value.

Observe that any uncountable set in Rp has a limit point. To see this, tile Rp with
countably many congruent boxes. One of them has uncountably many points. Now sub-
divide this into 2p congruent boxes. One has uncountably many points. Continue sub-
dividing this way to obtain a limit point as the unique point in the intersection of a nested
sequence of compact sets whose diameters converge to 0.

Lemma 13.1.4 Let g ∈C∞ (Rp;Rp) and let {yi}
∞

i=1 be points ofRp and let η > 0. Then
there exists e with ∥e∥< η and yi +e is a regular value for g for all i.

Proof: Let S = {x ∈ Rp : detDg (x) = 0}. By Sard’s lemma, g (S) has measure zero.
Let N ≡ ∪∞

i=1 (g (S)−yi) . Thus N has measure 0. Pick e ∈ B(0,η) \N. Then for each
i,yi +e /∈ g (S) . ■

Next we approximate f with a smooth function g such that each yi is a regular value
of g.

Lemma 13.1.5 Let f ∈C
(
Ω;Rp

)
,Ω a bounded open set, and let {yi}

∞

i=1 be points not
in f (∂Ω) and let δ > 0. Then there exists g ∈C∞

(
Ω;Rp

)
such that ∥g−f∥

∞,Ω < δ and

yi is a regular value for g for each i. That is, if g (x) = yi, then Dg (x)−1 exists. Also,
if δ < dist(f (∂Ω) ,y) for some y a regular value of g ∈ C∞

(
Ω;Rp

)
, then g−1 (y) is a

finite set of points in Ω. Also, if y is a regular value of g ∈C∞ (Rp,Rp) , then g−1 (y) is
countable.
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Proof: Pick g̃ ∈C∞
(
Ω;Rp

)
,∥g̃−f∥

∞,Ω < δ . From Lemma 13.1.4, yi +e is a regular
value for g̃ for each i where e can be chosen as small as desired. Let g = g̃−e where e is
so small that also ∥g−f∥

∞,Ω < δ . Thus yi is a regular value of g for all i. (same as yi +e
regular value of g̃). This shows the first part.

It remains to verify the last claims. Since ∥g−f∥
Ω,∞ < δ , if x ∈ ∂Ω, then

∥g (x)−y∥ ≥ ∥f (x)−y∥−∥f (x)−g (x)∥ ≥ dist(f (∂Ω) ,y)−δ > δ −δ = 0

and so y /∈ g (∂Ω), so if g (x) = y, then x ∈ Ω. Thus g−1 (y) is a compact subset of Ω

and so for each x ∈ g−1 (y) there is a ball containing x, Bx contained in Ω such that there
is at most one point in g−1 (y)∩Bx this by the inverse function theorem. Finitely many of
these balls cover g−1 (y) so this set must be finite and at each point, the determinant of the
derivative of g is nonzero. For y a regular value, g−1 (y) is countable since otherwise, there
would be a limit point x ∈ g−1 (y) and g would fail to be one to one near x contradicting
the inverse function theorem. ■

Now with this, here is a definition of the degree.

Definition 13.1.6 Let Ω be a bounded open set in Rp and let f : Ω→ Rp be con-
tinuous. Let y /∈ f (∂Ω) . Then the degree is defined as follows: Let g be infinitely differ-
entiable,

∥f −g∥
∞,Ω < δ ≡ dist(f (∂Ω) ,y) ,

and y is a regular value of g. Then y /∈ g (∂Ω) and we define

d (f,Ω,y)≡∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y) ,x ∈Ω
}

where the sum is finite by Lemma 13.1.5, defined to equal 0 if g−1 (y) is empty.

Note that if g is such an approximation of f then if x ∈ ∂Ω and t ∈ [0,1] ,

|tg (x)+(1− t)f (x)−y| ≥ |f (x)−y|− t ∥g−f∥
∞

> dist(f (∂Ω) ,y)−dist(f (∂Ω) ,y) = 0

Thus t g+ (1− t)f maps no point of ∂Ω to y. In particular, g maps no point of ∂Ω to y.

Lemma 13.1.7 The above sum in the definition makes sense for a single g and, assum-
ing this definition of d (f,Ω,y) is well defined, then it would follow that if y /∈ f (Ω) , then
d (f,Ω,y) = 0.

Proof: As just noted, if ∥f −g∥
∞,Ω < dist(f (∂Ω) ,y) then y /∈ g (∂Ω). In fact

y /∈ (tg (x)+(1− t)f (x))(∂Ω)

for any t ∈ [0,1]. Thus the sum is a finite sum and makes sense by Lemma 13.1.5. What if
y /∈ f (Ω)? In this case, assuming the definition is well defined, you could pick g such that
y is a regular value for g and also ∥f −g∥

∞,Ω < dist
(
f
(
Ω
)
,y
)

so the above definition
would say that d (f,Ω,y) = 0 because there would be no terms in the sum. ■

We really need to verify that this definition is well defined, not dependent on which g
is chosen. This involves the use of an integral.

Next is an identity. It was Lemma 6.11.2 on Page 159.
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Lemma 13.1.8 Let g : Ω→ Rp be C2 where Ω is an open subset of Rp. Then

p

∑
j=1

cof(Dg)i j, j = 0,

where here (Dg)i j ≡ gi, j ≡ ∂gi
∂x j

. Also, cof(Dg)i j =
∂ det(Dg)

∂gi, j
.

Next is an integral representation of ∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y)
}

but first is a
little lemma about disjoint sets.

Lemma 13.1.9 Let K be a compact set and C a closed set in Rp such that K ∩C = /0.
Then

dist(K,C)≡ inf{∥k−c∥ : k ∈ K,c ∈C}> 0.

Proof: Let d ≡ inf{∥k−c∥ : k ∈ K,c ∈C}. Let {ki} ,{ci} be such that

d +
1
i
> ∥ki−ci∥ .

Since K is compact, there is a subsequence still denoted by {ki} such that ki → k ∈ K.
Then also

∥ci−cm∥ ≤ ∥ci−ki∥+∥ki−km∥+∥cm−km∥

If d = 0, then as m, i→ ∞ it follows ∥ci−cm∥ → 0 and so {ci} is a Cauchy sequence
which must converge to some c ∈ C. But then ∥c−k∥ = limi→∞ ∥ci−ki∥ = 0 and so
c= k ∈C∩K, a contradiction to these sets being disjoint. ■

In particular the distance between a point and a closed set is always positive if the point
is not in the closed set. Of course this is obvious even without the above lemma.

Definition 13.1.10 Let g ∈ C∞
(
Ω;Rp

)
where Ω is a bounded open set. Also let

φ ε be a mollifier.

φ ε ∈C∞
c (B(0,ε)) , φ ε ≥ 0,

∫
φ ε dx = 1.

The idea is that ε will converge to 0 to get suitable approximations.

First, here is a technical lemma which will be used to identify the degree with an inte-
gral.

Lemma 13.1.11 Let y /∈ g (∂Ω) for g ∈C∞
(
Ω;Rp

)
. Also suppose y is a regular value

of g. Then for all positive ε small enough,∫
Ω

φ ε (g (x)−y)detDg (x)dx = ∑
{

sgn(detDg (x)) : x ∈ g−1 (y)
}

Proof: First note that the sum is finite from Lemma 13.1.5. It only remains to verify
the equation. If y /∈ g (Ω) , then for ε < dist

(
g
(
Ω
)
,y
)
, φ ε (g (x)−y) = 0 for all x ∈ Ω

so both sides equal 0.
I need to show the left side of this equation is constant for ε small enough and equals the

right side. By what was just shown, there are finitely many points, {xi}m
i=1 = g−1 (y). By

the inverse function theorem, there exist disjoint open sets Ui with xi ∈Ui, such that g is one
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to one on Ui with det(Dg (x)) having constant sign on Ui and g (Ui) is an open set contain-
ing y. Then let ε be small enough that B(y,ε)⊆ ∩m

i=1g (Ui) . Also, y /∈ g
(
Ω\
(
∪n

i=1Ui
))

,

a compact set. Let ε be still smaller, if necessary, so that B(y,ε)∩g
(
Ω\
(
∪n

i=1Ui
))

= /0
and let Vi ≡ g−1 (B(y,ε))∩Ui.

g(U2)g(U3)

g(U1)•yε

•x1

•x2

•
x3 V1

V2

V3

Therefore, for any ε this small,∫
Ω

φ ε (g (x)−y)detDg (x)dx =
m

∑
i=1

∫
Vi

φ ε (g (x)−y)detDg (x)dx

The reason for this is as follows. The integrand on the left is nonzero only if g (x)−y ∈
B(0,ε) which occurs only if g (x) ∈ B(y,ε) which is the same as x ∈ g−1 (B(y,ε)).
Therefore, the integrand is nonzero only if x is contained in exactly one of the disjoint sets,
Vi. Now using the change of variables theorem, (z = g (x)−y,g−1 (y+z) = x.)

=
m

∑
i=1

∫
g(Vi)−y

φ ε (z)detDg
(
g−1 (y+z)

)∣∣detDg−1 (y+z)
∣∣dz (13.2)

By the chain rule, I = Dg
(
g−1 (y+z)

)
Dg−1 (y+z) and so in the above for a single Vi,

detDg
(
g−1 (y+z)

)∣∣detDg−1 (y+z)
∣∣

= sgn
(
detDg

(
g−1 (y+z)

))∣∣detDg
(
g−1 (y+z)

)∣∣ ∣∣detDg−1 (y+z)
∣∣

= sgn
(
detDg

(
g−1 (y+z)

))
= sgn(detDg (x)) = sgn(detDg (xi)) .

Therefore, 13.2 reduces to

m

∑
i=1

sgn(detDg (xi))
∫
g(Vi)−y

φ ε (z)dz =

m

∑
i=1

sgn(detDg (xi))
∫

B(0,ε)
φ ε (z)dz =

m

∑
i=1

sgn(detDg (xi)) .

In case g−1 (y) = /0, there exists ε > 0 such that g
(
Ω
)
∩B(y,ε) = /0 and so for ε this small,∫

Ω

φ ε (g (x)−y)detDg (x)dx = 0.■

As noted above, this will end up being d (g,Ω,y) in this last case where g−1 (y) = /0.
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Lemma 13.1.12 Suppose g, ĝ both satisfy Definition 13.1.6. For δ given there, δ =
dist(f (∂Ω) ,y) ,

δ > ∥f −g∥
∞,Ω , δ > ∥f − ĝ∥

∞,Ω

Then for t ∈ [0,1] so does tg+ (1− t) ĝ. In particular, y /∈ (tg+(1− t) ĝ)(∂Ω). Also
d (f −y,Ω,0) = d (f,Ω,y).

Proof: This follows from the fact that B(y,δ ) in ∥·∥
∞,Ω is convex. From the triangle

inequality, if t ∈ [0,1] ,

∥f−(tg+(1− t) ĝ)∥
∞
≤ t ∥f −g∥

∞
+(1− t)∥f − ĝ∥

∞

< tδ +(1− t)δ = δ .

If ∥h−f∥
∞
< δ , as was just shown for h≡ tg+(1− t) ĝ, then if x ∈ ∂Ω,

∥y−h(x)∥ ≥ ∥y−f (x)∥−∥h(x)−f (x)∥> dist(f (∂Ω) ,y)−δ ≥ δ −δ = 0

Now consider the last claim. This follows because ∥g−f∥
∞

small is the same as
∥g−y−(f −y)∥

∞
being small. They are the same. Also, (g−y)−1 (0) = g−1 (y) and

Dg (x) = D(g−y)(x). ■
Next is an important result on homotopy which is used to show that Definition 13.1.6

is well defined.

Lemma 13.1.13 If h is in C∞
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) then for 0< ε <

dist(0,h(∂Ω× [a,b])) ,

t→
∫

Ω

φ ε (h(x, t))detD1h(x, t)dx

is constant for t ∈ [a,b]. As a special case, d (f ,Ω,y) is well defined. Also, if y /∈ f
(
Ω
)
,

then d (f,Ω,y) = 0.

Proof: By continuity of h, h(∂Ω× [a,b]) is compact and so is at a positive distance
from 0. Let ε > 0 be such that for all t ∈ [a,b] ,

B(0,ε)∩h(∂Ω× [a,b]) = /0 (13.3)

Define for t ∈ (a,b), H (t) ≡
∫

Ω
φ ε (h(x, t))detD1h(x, t)dx. I will show that H ′ (t) = 0

on (a,b) . Then, since H is continuous on [a,b] , it will follow from the mean value theorem
that H (t) is constant on [a,b]. If t ∈ (a,b),

H ′ (t) =
∫

Ω
∑
α

φ ε,α (h(x, t))hα,t (x, t)detD1h(x, t)dx

+
∫

Ω

φ ε (h(x, t))∑
α, j

detD1 (h(x, t)),α j hα, jtdx≡A+B. (13.4)

In this formula, the function det is considered as a function of the n2 entries in the n× n
matrix and the ,α j represents the derivative with respect to the α jth entry hα, j. Now as in
the proof of Lemma 6.11.2 on Page 159, detD1 (h(x, t)),α j = (cofD1 (h(x, t)))

α j and so

B =
∫

Ω
∑
α

∑
j

φ ε (h(x, t))(cofD1 (h(x, t)))
α j hα, jtdx.
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By hypothesis
x→ φ ε (h(x, t))(cof D1 (h(x, t)))

α j for x ∈Ω

is in C∞
c (Ω) because if x ∈ ∂Ω, it follows that for all t ∈ [a,b] ,h(x, t) /∈ B(0,ε) and so

φ ε (h(x, t)) = 0 off some compact set contained in Ω. Therefore, integrate by parts and
write

B =−
∫

Ω
∑
α

∑
j

∂

∂x j
(φ ε (h(x, t)))(cof D1 (h(x, t)))

α j hα,tdx+

−
∫

Ω
∑
α

∑
j

φ ε (h(x, t))(cofD(h(x, t)))
α j, j hα,tdx

The second term equals zero by Lemma 13.1.8. Simplifying the first term yields

B = −
∫

Ω
∑
α

∑
j
∑
β

φ ε,β (h(x, t))hβ , jhα,t (cofD1 (h(x, t)))
α j dx

= −
∫

Ω
∑
α

∑
β

φ ε,β (h(x, t))hα,t ∑
j

hβ , j (cofD1 (h(x, t)))
α j dx

Now the sum on j is the dot product of the β
th row with the α th row of the cofactor matrix

which equals zero unless β = α because it would be a cofactor expansion of a matrix with
two equal rows. When β = α, the sum on j reduces to det(D1 (h(x, t))) . Thus B reduces
to

=−
∫

Ω
∑
α

φ ε,α (h(x, t))hα,t det(D1 (h(x, t)))dx

Which is the same thing as A, but with the opposite sign. Hence A+B in 13.4 is 0 and
H ′ (t) = 0 and so H is a constant on [a,b].

Finally consider the last claim. If g, ĝ both work in the definition for the degree, then
consider h(x, t)≡ tg (x)+(1− t) ĝ (x)−y for t ∈ [0,1] . For x ∈ ∂Ω,

|tg (x)+(1− t) ĝ (x)−y|
= |t (g (x)−f (x))+(1− t)(ĝ (x)−f (x))+f (x)−y|

≥ |f (x)−y|− |t (g (x)−f (x))+(1− t)(ĝ (x)−f (x))|
≥ dist(f (∂Ω) ,y)− (t ∥g−f∥

∞
+(1− t)∥ĝ−f∥

∞
)

> dist(f (∂Ω) ,y)− (tδ +(1− t)δ ) = 0

From Lemma 13.1.12, h satisfies what is needed for the first part of this lemma. Namely,
0 /∈ h(∂Ω× [0,1]) . Then from the first part, if 0 < ε < dist(0,h(∂Ω× [0,1])) and ε is
also sufficiently small that the second and last equations hold in what follows,

d (f ,Ω,y) = ∑
{

sgn(det(Dg (x))) : x ∈ g−1 (y)
}
=
∫

Ω

φ ε (h(x,1))detD1h(x,1)dx

=
∫

Ω

φ ε (h(x,0))detD1h(x,0)dx = ∑
{

sgn(det(Dĝ (x))) : x ∈ ĝ−1 (y)
}
■
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13.2 Properties of the Degree
Now that the degree for a continuous function has been defined, it is time to consider
properties of the degree. In particular, it is desirable to prove a theorem about homotopy
invariance which depends only on continuity considerations.

Theorem 13.2.1 If h is in C
(
Ω× [a,b] ,Rp

)
, and 0 /∈ h(∂Ω× [a,b]) for each t,

then t→ d (h(·, t) ,Ω,0) is constant for t ∈ [a,b].

Proof: Let 0 < δ = min |h(∂Ω× [a,b])| . By Corollary 13.1.1, there exists hm (·, t) =
∑

m
k=0 pk (t)h(·, tk) for pk (t) a polynomial in t of degree m such that p0 (a) = 1 but pk (a) =

0 if k ̸= 0 and pm (b) = 1 but pk (b) = 0 if k ̸= m and

max
t∈[a,b]

∥hm (·, t)−h(·, t)∥
∞,Ω < δ , t0 = a, tm = b (13.5)

Now replace h(·, tk) with gm
k (·) ∈ C∞

(
Ω,Rp

)
and 0 is a regular value of gm

k and let
gm (·, t)≡ ∑

m
k=0 pk (t)gm

k (·) where the functions gm
k are close enough to h(·, tk) that

max
t∈[a,b]

∥gm (·, t)−h(·, t)∥
∞,Ω < δ . (13.6)

gm ∈ C∞
(
Ω× [a,b] ;Rp

)
because all partial derivatives with respect to either t or x are

continuous. Thus gm
0 (·) = gm (·,a) , gm

m (·) = gm (·,b) . Also, from the definition of the
degree and Lemma 13.1.13, for small enough ε ,

d (h(·,a) ,Ω,0) = d (gm
0 (·) ,Ω,0) =

∫
Ω

φ ε (gm (x,a))detD1gm (x,a)dx

=
∫

Ω

φ ε (gm (x,b))detD1gm (x,b)dx = d (gm
m (·) ,Ω,0) = d (h(·,b) ,Ω,0)

Since a,b are arbitrary, this proves the theorem. ■
Now the following theorem is a summary of the main result on properties of the degree.

Theorem 13.2.2 Definition 13.1.6 is well defined and the degree satisfies the fol-
lowing properties.

1. (homotopy invariance) If h∈C
(
Ω× [0,1] ,Rp

)
and y (t) /∈ h (∂Ω, t) for all t ∈ [0,1]

where y is continuous, then

t→ d (h(·, t) ,Ω,y (t))

is constant for t ∈ [0,1] .

2. If Ω⊇Ω1∪Ω2 where Ω1∩Ω2 = /0, for Ωi an open set, then if

y /∈ f
(
Ω\ (Ω1∪Ω2)

)
,

then
d (f ,Ω1,y)+d (f ,Ω2,y) = d (f ,Ω,y)

3. d (I,Ω,y) = 1 if y ∈Ω.
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4. d (f ,Ω, ·) is continuous and constant on every connected component of Rp \f (∂Ω).

5. d (g,Ω,y) = d (f ,Ω,y) if g|
∂Ω

= f |
∂Ω

.

6. If y /∈ f (∂Ω), and if d (f,Ω,y) ̸= 0, then there exists x ∈Ω such that f (x) = y.

Proof: That the degree is well defined follows from Lemma 13.1.13.
Consider 1., the first property about homotopy. This follows from Theorem 13.2.1

applied to H (x, t)≡ h(x, t)−y (t).
Consider 2. where y /∈ f

(
Ω\ (Ω1∪Ω2)

)
. Note that

dist
(
y,f

(
Ω\ (Ω1∪Ω2)

))
≤ dist(y,f (∂Ω))

Then let g be in C
(
Ω;Rp

)
and

∥g−f∥
∞

< dist
(
y,f

(
Ω\ (Ω1∪Ω2)

))
≤ min(dist(y,f (∂Ω1)) ,dist(y,f (∂Ω2)) ,dist(y,f (∂Ω)))

where y is a regular value of g. Then by definition,

d (f,Ω,y)≡∑
{

det(Dg (x)) : x ∈ g−1 (y)
}

= ∑
{

det(Dg (x)) : x ∈ g−1 (y) ,x ∈Ω1
}

+∑
{

det(Dg (x)) : x ∈ g−1 (y) ,x ∈Ω2
}

≡ d (f,Ω1,y)+d (f,Ω2,y)

It is of course obvious that this can be extended by induction to any finite number of disjoint
open sets Ωi.

Note that 3. is obvious because I (x) = x and so if y ∈ Ω, then I−1 (y) = y and
DI (x) = I for any x so the definition gives 3.

Now consider 4. Let U be a connected component of Rp \f (∂Ω) . This is open as well
as connected and arc wise connected by Theorem 3.11.12. Hence, if u,v ∈U, there is a
continuous function y (t) which is in U such that y (0) = u and y (1) = v. By homotopy
invariance, it follows d (f ,Ω,y (t)) is constant. Thus d (f ,Ω,u) = d (f ,Ω,v).

Next consider 5. When f = g on ∂Ω, it follows that if y /∈ f (∂Ω) , then y /∈ f (x)+
t (g (x)−f (x)) for t ∈ [0,1] and x∈ ∂Ω so d (f + t (g−f) ,Ω,y) is constant for t ∈ [0,1]
by homotopy invariance in part 1. Therefore, let t = 0 and then t = 1 to obtain 5.

Claim 6. follows from Lemma 13.1.13 which says that if y /∈ f
(
Ω
)
, then d (f ,Ω,y) =

0. ■
From the above, there is an easy corollary which gives related properties of the degree.

Corollary 13.2.3 The following additional properties of the degree are also valid.

1. If y /∈ f
(
Ω\Ω1

)
and Ω1 is an open subset of Ω, then d (f ,Ω,y) = d (f ,Ω1,y) .

2. d (·,Ω,y) is defined and constant on{
g ∈C

(
Ω;Rp) : ∥g−f∥

∞
< r
}

where r = dist(y,f (∂Ω)).
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3. If y ∈ f (Ω) , dist(y,f (∂Ω))≥ δ and |z−y|< δ , then d (f ,Ω,y) = d (f ,Ω,z).

Proof: Consider 1. You can take Ω2 = /0 in 2 of Theorem 13.2.2 or you can modify
the proof of 2 slightly. Consider 2. To verify, let h(x, t) = f (x)+ t (g (x)−f (x)) . Then
note that y /∈ h(∂Ω, t) and use Property 1 of Theorem 13.2.2.

Finally, consider 3. Let y (t)≡ (1− t)y+ tz. Then for x ∈ ∂Ω

|(1− t)y+ tz−f (x)| = |y−f (x)+ t (z−y)|
≥ δ − t |z−y|> δ −δ = 0

Then by 1 of Theorem 13.2.2, d (f ,Ω,(1− t)y+ tz) is constant. When t = 0 you get
d (f ,Ω,y) and when t = 1 you get d (f ,Ω,z) . ■

Corollary 13.2.4 Let h ∈ C∞
(
Ω,Rn

)
where Ω is a bounded open set in Rnand let

y /∈ h(∂Ω) . Then d (h,Ω,y) = limε→0
∫

Ω
φ ε (h(x)−y)detDh(x)dx.

Proof: Let
∥∥∥h̃−h

∥∥∥
∞,Ω

< δ where 0 < δ < dist(y,h(∂Ω)) and y is a regular value

for h̃, and Dh̃(x) = Dh(x). Then

d (h,Ω,y) = d
(
h̃,Ω,y

)
= lim

ε→0

∫
Ω

φ ε

(
h̃(x)−y

)
detDh̃(x)dx

= lim
ε→0

∫
Ω

φ ε

(
h̃(x)−y

)
detDh̃(x)dx

= lim
ε→0

∫
Ω

φ ε (h(x)−y)detDh(x)dx

because for h(x, t) = t (h(x)−y)+(1− t)
(
h̃(x)−y

)
,

t→
∫

Ω

φ ε (h(x, t))detD1h(x, t)dx

is constant for t ∈ [0,1]. ■

13.3 Brouwer Fixed Point Theorem
The degree makes it possible to give a very simple proof of the Brouwer fixed point theo-
rem.

Theorem 13.3.1 (Brouwer fixed point) Let B = B(0,r)⊆ Rp and let f : B→ B be
continuous. Then there exists a point x ∈ B, such that f (x) = x.

Proof: Assume there is no fixed point. Consider h(x, t) ≡ x− tf (x) for t ∈ [0,1] .
Then for ∥x∥= r, 0 /∈ x− tf (x) , t ∈ [0,1] . By homotopy invariance, t→ d (I− tf ,B,0)
is constant. But when t = 0, this is d (I,B,0) = 1 ̸= 0. This is a contradiction so there must
be a fixed point after all. ■

You can use standard stuff from Hilbert space to get this the fixed point theorem for
a compact convex set. Let K be a closed bounded convex set and let f : K → K be con-
tinuous. Let P be the projection map onto K as in Problem 10 on Page 138. Then P is
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continuous because |Px−Py| ≤ |x−y|. Recall why this is. From the characterization of
the projection map P, (x−Px,y−Px)≤ 0 for all y ∈ K. Therefore,

(x−Px,Py−Px)≤ 0, (y−Py,Px−Py)≤ 0 so (y−Py,Py−Px)≥ 0

Hence, subtracting the first from the last,

(y−Py− (x−Px) ,Py−Px)≥ 0

consequently,
|x−y| |Py−Px| ≥ (y−x,Py−Px)≥ |Py−Px|2

and so |Py−Px| ≤ |y−x| as claimed.
Now let r be so large that K ⊆ B(0,r) . Then consider f ◦P. This map takes B(0,r)→

B(0,r). In fact it maps B(0,r) to K. Therefore, being the composition of continuous func-
tions, it is continuous and so has a fixed point in B(0,r) denoted as x. Hence f (P(x))=x.
Now, since f maps into K, it follows that x ∈ K. Hence Px= x and so f (x) = x. This
has proved the following general Brouwer fixed point theorem.

Theorem 13.3.2 Let f : K→ K be continuous where K is compact and convex and
nonempty, K ⊆ Rp. Then f has a fixed point.

Definition 13.3.3 f is a retract of B(0,r) onto ∂B(0,r) if f is continuous,

f
(

B(0,r)
)
⊆ ∂B(0,r)

and f (x) = x for all x ∈ ∂B(0,r).

Theorem 13.3.4 There does not exist a retract of B(0,r) onto ∂B(0,r), its bound-
ary.

Proof: Suppose f were such a retract. Then for all x∈ ∂B(0,r), f (x)=x and so from
the properties of the degree, the one which says if two functions agree on ∂Ω, then they
have the same degree, 1 = d (I,B(0,r) ,0) = d (f ,B(0,r) ,0) which is clearly impossible
because f−1 (0) = /0 which implies d (f ,B(0,r) ,0) = 0. ■

You should now use this theorem to give another proof of the Brouwer fixed point
theorem.

13.4 Borsuk’s Theorem
In this section is an important theorem which can be used to verify that d (f ,Ω,y) ̸= 0. This
is significant because when this is known, it follows from Theorem 13.2.2 that f−1 (y) ̸= /0.
In other words there exists x ∈Ω such that f (x) = y.

Definition 13.4.1 A bounded open set, Ω is symmetric if −Ω = Ω. A continuous
function f : Ω→ Rp is odd if f (−x) =−f (x).

Suppose Ω is symmetric and g ∈ C∞
(

Ω;Rp
)

is an odd map for which 0 is a regular
value. Then the chain rule implies Dg (−x) = Dg (x) and so d (g,Ω,0) must equal an
odd integer because if x ∈ g−1 (0), it follows that−x ∈ g−1 (0) also and since Dg (−x) =
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Dg (x), it follows the overall contribution to the degree from x and−x must be an even in-
teger. Also 0 ∈ g−1 (0) and so the degree equals an even integer added to sgn (detDg (0)),
an odd integer, either−1 or 1. It seems reasonable to expect that something like this would
hold for an arbitrary continuous odd function defined on symmetric Ω. In fact this is the
case and this is next. The following lemma is the key result used. This approach is due to
Gromes [21]. See also Deimling [11] which is where I found this argument. I think it is
one of the cleverest calculus manipulations I have seen.

To get an idea consider the case of p = 1. Then Ω is bounded and symmetric and h
is odd and in C∞

(
Ω
)
. Suppose that h′ (0) ̸= 0. I want to find arbitrarily small ε such that

ĥ(x)≡ h(x)−εx3 has 0 as a regular value for x ̸= 0. Let ε be a regular value for h(x)
x3 ≡ f (x)

for x ̸= 0. By Sard’s lemma the singular values of f (x) contain no balls so we can take ε as
small as desired and have ε a regular value of f . Then at a point where ĥ(x) = 0, f (x) = ε

and so ĥ(x)+ εx3 = x3 f (x). Now differentiate this. ĥ′ (x)+ 3εx2 = 3x2 f (x)+ x3 f ′ (x) =
3x2ε + x3 f ′ (x) so ĥ′ (x) = x3 f ′ (x) ̸= 0. This is the motivation for the following process.

The idea is to start with a smooth odd map and approximate it with a smooth odd map
which also has 0 a regular value. Note that 0 is a value because g (0) =−g (0) .

Process: Suppose h0 ∈ C∞
(
Ω,Rp

)
is odd and det(Dh0 (0)) ̸= 0. Let Ωk be those

points of Ω where xk ̸= 0. Here x≡ (x1, ...,xp) . Then x→ h0(x)

x3
k

is a smooth map defined

on Ωk so by Sard’s lemma, its singular values do not contain B(0,η). Therefore, there is
yk with yk a regular value and

∥∥yk
∥∥ < η where η > 0 is given. Then consider ĥ(x) ≡

h0 (x)− x3
ky

k. I want to argue that 0 is a regular value of ĥ on Ωk. Note that h0(x)

x3
k

= yk if

and only if ĥ(x) = 0.

Letting f (x)≡ h0(x)

x3
k

=
ĥ(x)+x3

ky
k

x3
k

, then ĥ(x) = x3
k

(
f (x)−yk

)
and Df (x) is invert-

ible at the x of interest, one where ĥ(x) = 0 and f (x)−yk = 0. Then

Dĥ(x)(u) = 3x2
k

(
=0

f (x)−yk

)
(u)+ x3

kDf (x)(u) . (13.7)

At the point of interest, the first term on the right is 0 and so

det
(

Dĥ(x)
)
= x3

k det(Df (x)) ̸= 0.

If 0 is a regular value for h0 on U ⊆ Ω, will 0 be a regular value for ĥ on U where
ĥ is described above? The only points of concern are those x ∈ U for which xk = 0
because if xk ̸= 0 then x ∈ Ωk. But for these points where xk = 0, ĥ(x) = h0 (x) and
Dĥ(x) = Dh0 (x) because 3x2

k = 0 when xk = 0. Thus the new function ĥ has 0 a regular
value for all x ∈U ∪Ωk. This Process is the basis for the following lemma.

Lemma 13.4.2 Let h0 ∈ C∞
(
Ω,Rp

)
is odd and det(Dh0 (0)) ̸= 0 for Ω a symmetric

open set and let η > 0. Then there are vectors yk each with
∥∥yk
∥∥ < η such that h(x) ≡

h0 (x)−∑
p
k=1 x3

ky
k has 0 as a regular value.

Proof: Use the above process leading to 13.7 repeatedly. Start with h0 which has 0 a
regular value on {0} . Then use the process to get h1 (x) = h0 (x)−y1x3

1 which has 0 as
a regular value on {0}∪Ω1. Then repeat the process to get h2 (x) = h1 (x)−y2x3

2 which
has 0 as a regular value on {0}∪Ω1∪Ω2. Continue this way and let h= hp which has 0
a regular value on {0}∪Ω1∪·· ·∪Ωp = Ω. ■
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Lemma 13.4.3 Let g ∈C∞
(

Ω;Rp
)

be an odd map. Then for every ε > 0, there exists
h ∈C∞

(
Ω;Rp

)
such that h is also an odd map, ∥h−g∥

∞
< ε , and 0 is a regular value of

h,0 /∈ g (∂Ω) . Here Ω is a symmetric bounded open set. In addition, d (g,Ω,0) is an odd
integer.

Proof: In this argument η > 0 will be a small positive number. Let h0 (x) = g (x)+ηx
where η is sufficiently small but nonzero that detDh0 (0) ̸= 0. See Lemma 9.14.1. Note
that h0 is odd and 0 is a value of h0 thanks to h0 (0) = 0. This has taken care of 0.
However, it is not known whether 0 is a regular value of h0 because there may be other
x where h0 (x) = 0. By Lemma 13.4.2, there are vectors y j with

∥∥yk
∥∥ ≤ η and 0 is a

regular value of h(x)≡ h0 (x)−∑
p
j=1y

jx3
j . Then

∥h−g∥
∞, Ω

≤ max
x∈Ω

{
∥ηx∥+

p

∑
k=1

∥∥∥yk
∥∥∥∥x∥}

≤ η ((p+1)diam(Ω))< ε < dist(g (∂Ω) ,0)

provided η was chosen sufficiently small to begin with.
So what is d (h,Ω,0)? Since 0 is a regular value and h is odd,

h−1 (0) = {x1, · · · ,xr,−x1, · · · ,−xr,0} .

So consider Dh(x) and Dh(−x).

Dh(−x)u+o(u) = h(−x+u)−h(−x) =−h(x+(−u))+h(x)

=−(Dh(x)(−u))+o(−u) = Dh(x)(u)+o(u)

Hence Dh(x) = Dh(−x) and so the determinants of these two are the same. It follows
from the definition that d (g,Ω,0) = d (h,Ω,0)

=
r

∑
i=1

sgn(det(Dh(xi)))+
r

∑
i=1

sgn(det(Dh(−xi)+ sgn(det(Dh(0)))))

= 2m±1 some integer m ■

Theorem 13.4.4 (Borsuk) Let f ∈C
(

Ω;Rp
)

be odd and let Ω be symmetric with
0 /∈ f (∂Ω). Then d (f ,Ω,0) equals an odd integer.

Proof: Let ψn be a mollifier which is symmetric, ψ (−x) = ψ (x). Also recall that f
is the restriction to Ω of a continuous function, still denoted as f which is defined on all of
Rp. Let g be the odd part of this function. That is,

g (x)≡ 1
2
(f (x)−f (−x)) = f (x) on Ω

Thus d (f ,Ω,0) = d (g,Ω,0). Then

gn (−x)≡ g ∗ψn (−x) =
∫

Ω

g (−x−y)ψn (y)dy

=−
∫

Ω

g (x+y)ψn (y)dy =−
∫

Ω

g (x−(−y))ψn (−y)dy =−gn (x)

Thus gn is odd and is infinitely differentiable. Let n be large enough that

∥gn−g∥
∞,Ω < δ < dist(f (∂Ω) ,0) = dist(g (∂Ω) ,0)

Then by definition of the degree, d (f,Ω,0) = d (g,Ω,0) = d (gn,Ω,0) and by Lemma
13.4.3 this is an odd integer. ■
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13.5 Some Applications
With Borsuk’s theorem it is possible to give relatively easy proofs of some very important
and difficult theorems.

Lemma 13.5.1 Let g : B(0,r) ⊆ Rp → Rp be one to one and continuous. Then there
exists δ > 0 such that B(g (0) ,δ )⊆ g (B(0,r)) .

Proof: For t ∈ [0,1] , let h(x, t)≡ g (x)−g (−tx) . Then for x ∈ ∂B(0,r) , h(x, t) ̸=
0 because if this were so, the fact g is one to one implies x = −tx and this requires
x= 0, not the case since ∥x∥ = r. Then d (h(·, t) ,B(0,r) ,0) is constant by Theorem
13.2.1, homotopy invariance. Hence it is an odd integer for all t thanks to Borsuk’s
theorem, because h(·,1) is odd. Now let B(0,δ ) be such that B(0,δ )∩h(∂Ω,0) = /0.
Then 0 ̸= d (h(·,0) ,B(0,r) ,0) = d (h(·,0) ,B(0,r) ,z) for z ∈ B(0,δ ) because the de-
gree is constant on connected components of Rp \h(∂Ω,0) by Theorem 13.2.2. Hence
z = h(x,0) = g (x)−g (0) for some x ∈ B(0,r). Thus

g (B(0,r))⊇ g (0)+B(0,δ ) = B(g (0) ,δ ) . ■

Theorem 13.5.2 (invariance of domain)Let Ω be any open subset of Rp and let
f : Ω→ Rp be continuous and one to one. Then f maps open subsets of Ω to open sets in
Rp.

Proof: Let B(x0,r) ⊆ Ω where f is one to one on B(x0,r). Let g be defined on
B(0,r) given by

g (x)≡ f (x+x0)

Then g satisfies the conditions of Lemma 13.5.1, being one to one and continuous. It
follows from that lemma that there exists δ > 0 such that

f (Ω) ⊇ f (B(x0,r)) = f (x0 +B(0,r))

= g (B(0,r))⊇ g (0)+B(0,δ )

= f (x0)+B(0,δ ) = B(f (x0) ,δ )

This shows that for any x0 ∈ Ω,f (x0) is an interior point of f (Ω) which shows f (Ω) is
open. ■

Definition 13.5.3 If f : U ⊆ Rp → Rp where U is an open set. Then f is locally
one to one if for every x ∈U, there exists δ > 0 such that f is one to one on B(x,δ ).

Then an examination of the proof of the above theorem shows the following corollary.

Corollary 13.5.4 In Theorem 13.5.2 it suffices to assume f is locally one to one.

With the above, one gets easily the following amazing result. It is something which is
clear for linear maps but this is a statement about continuous maps.

Corollary 13.5.5 If p > m there does not exist a continuous one to one map from Rp to
Rm.
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Proof: Suppose not and let f be such a continuous map, f (x)≡ ( f1 (x) , · · · , fm (x))T .
Then let g (x)≡ ( f1 (x) , · · · , fm (x) ,0, · · · ,0)T where there are p−m zeros added in. Then
g is a one to one continuous map from Rp to Rp and so g (Rp) would have to be open from
the invariance of domain theorem and this is not the case. ■

Corollary 13.5.6 Let f : Rp→ Rp and lim|x|→∞ |f (x)|= ∞ where f is locally one to
one and continuous. Then f maps Rp onto Rp.

Proof: By the invariance of domain theorem, f (Rp) is an open set. It is also true that
f (Rp) is a closed set. Here is why. If f (xk)→ y, the growth condition ensures that {xk}
is a bounded sequence. Taking a subsequence which converges to x ∈ Rp and using the
continuity of f, it follows f (x) = y. Thus f (Rp) is both open and closed which implies
f must be an onto map since otherwise, Rp would not be connected. ■

The proofs of the next two theorems make use of the Tietze extension theorem, Theo-
rem 5.7.5.

Theorem 13.5.7 Let Ω be a symmetric open set in Rp such that 0 ∈ Ω and let
f : ∂Ω→ V be continuous where V is an m dimensional subspace of Rp,m < p. Then
f (−x) = f (x) for some x ∈ ∂Ω.

Proof: You could reduce to the case where V = Rm if desired. Suppose not. Using the
Tietze extension theorem on components of the function, extend f to all of Rp, f

(
Ω
)
⊆V .

(Here the extended function is also denoted by f .) Let g (x) = f (x)− f (−x). Then
0 /∈ g (∂Ω) and so for some r > 0, B(0,r) ⊆ Rp \g (∂Ω). For z ∈ B(0,r), d (g,Ω,z) =
d (g,Ω,0) ̸= 0 because B(0,r) is contained in a component of Rp \g (∂Ω) and Borsuk’s
theorem implies that d (g,Ω,0) ̸= 0 since g is odd. Hence V ⊇ g (Ω)⊇ B(0,r) and this is
a contradiction because V is m dimensional. ■

This theorem is called the Borsuk Ulam theorem. Note that it implies there exist two
points on opposite sides of the surface of the earth which have the same atmospheric pres-
sure and temperature, assuming the earth is symmetric and that pressure and temperature
are continuous functions. The next theorem is an amusing result which is like combing
hair. It gives the existence of a “cowlick”.

Theorem 13.5.8 Let p be odd and let Ω be an open bounded set in Rp with 0 ∈Ω.
Suppose f : ∂Ω→Rp \{0} is continuous. Then for some x ∈ ∂Ω and λ ̸= 0, f (x) = λx.

Proof: Using the Tietze extension theorem, extend f to all of Rp. Also denote the
extended function by f . Suppose for all x ∈ ∂Ω, f (x) ̸= λx for all λ ∈ R. Then

0 /∈ tf (x)+(1− t)x, (x, t) ∈ ∂Ω× [0,1] .

0 /∈ tf (x)− (1− t)x, (x, t) ∈ ∂Ω× [0,1] .

Thus there exists a homotopy of f and I and a homotopy of f and −I. Then by the
homotopy invariance of degree,

d (f ,Ω,0) = d (I,Ω,0) , d (f ,Ω,0) = d (−I,Ω,0) .

But this is impossible because d (I,Ω,0) = 1 but d (−I,Ω,0) = (−1)n =−1. ■
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13.6 Product Formula, Separation Theorem
This section is on the product formula for the degree which is used to prove the Jordan sep-
aration theorem. To begin with is a significant observation which is used without comment
below. Recall that the connected components of an open set are open. The formula is all
about the composition of continuous functions.

Ω
f→ f (Ω)⊆ Rp g→ Rp

Lemma 13.6.1 Let {Ki}N
i=1 ,N ≤ ∞ be the connected components of Rp \C where C is

a closed set. Then ∂Ki ⊆C.

Proof: Since Ki is a connected component of an open set, it is itself open. See Theorem
3.11.12. Thus ∂Ki consists of all limit points of Ki which are not in Ki. Let p be such a
point. If it is not in C then it must be in some other K j which is impossible because these
are disjoint open sets. Thus if x is a point in U it cannot be a limit point of V for V disjoint
from U . ■

Definition 13.6.2 Let the connected components of Rp \f (∂Ω) be denoted by Ki.
From the properties of the degree listed in Theorem 13.2.2, d (f ,Ω, ·) is constant on each
of these components. Denote by d (f ,Ω,Ki) the constant value on the component Ki.

The following is the product formula. Note that if K is an unbounded component of
f (∂Ω)C , then d (f ,Ω,y) = 0 for all y ∈ K by homotopy invariance and the fact that for
large enough ∥y∥ ,f−1 (y) = /0 since f

(
Ω
)

is compact.

Theorem 13.6.3 (product formula)Let {Ki}∞

i=1 be the bounded components of Rp \
f (∂Ω) for f ∈C

(
Ω;Rp

)
, let g ∈C (Rp,Rp), and suppose that y /∈ g (f (∂Ω)) or in other

words, g−1 (y)∩f (∂Ω) = /0. Then

d (g ◦f ,Ω,y) =
∞

∑
i=1

d (f ,Ω,Ki)d (g,Ki,y) . (13.8)

All but finitely many terms in the sum are zero. If there are no bounded components of
f (∂Ω)C , then d (g ◦f ,Ω,y) = 0.

Proof: The compact set f
(
Ω
)
∩g−1 (y) is contained inRp\f (∂Ω) so f

(
Ω
)
∩g−1 (y)

is covered by finitely many of the components K j one of which may be the unbounded
component. Since these components are disjoint, the other components fail to intersect
f
(
Ω
)
∩g−1 (y). Thus, if Ki is one of these others, either it fails to intersect g−1 (y) or Ki

fails to intersect f
(
Ω
)
. Thus either d (f ,Ω,Ki) = 0 because Ki fails to intersect f

(
Ω
)

or
d (g,Ki,y) = 0 if Ki fails to intersect g−1 (y). Thus the sum is always a finite sum. I am
using Theorem 13.2.2, the part which says that if y /∈ h

(
Ω
)
, then d (h,Ω,y) = 0. Note

that by Lemma 13.6.1 ∂Ki ⊆ f (∂Ω) so g (∂Ki)⊆ g (f (∂Ω)) and so y /∈ g (∂Ki) because
it is assumed that y /∈ g (f (∂Ω)).

Let g̃ be in C∞ (Rp,Rp) and let ∥g− g̃∥
∞,f(Ω) < dist(y,g (f (∂Ω))) . Thus, for each

of the finitely many Ki intersecting f
(
Ω
)
∩g−1 (y) ,

d (g,Ki,y) = d (g̃,Ki,y) and
d (g ◦f ,Ω,y) = d (g̃ ◦f ,Ω,y) (13.9)
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By Lemma 13.1.5, there exists g̃ such that y is a regular value of g̃ in addition to 13.9
and g̃−1 (y)∩f (∂Ω) = /0. Then g̃−1 (y) is contained in the union of the Ki along with the
unbounded component(s) and by Lemma 13.1.5 g̃−1 (y) is countable. As discussed there,

g̃−1 (y)∩Ki is finite if Ki is bounded. Let g̃−1 (y)∩Ki =
{
xi

j

}mi

j=1
,mi ≤ ∞. mi could only

be ∞ on the unbounded component.
Now use Lemma 13.1.5 again to get f̃ in C∞

(
Ω;Rp

)
such that each xi

j is a regular

value of f̃ on Ω and also
∥∥∥f̃ −f

∥∥∥
∞

is very small, so small that

d
(
g̃ ◦ f̃ ,Ω,y

)
= d (g̃ ◦f ,Ω,y) = d (g ◦f ,Ω,y)

and d
(
f̃ ,Ω,xi

j

)
= d

(
f ,Ω,xi

j

)
for each i, j.

Thus, from the above,

d (g ◦f ,Ω,y) = d
(
g̃ ◦ f̃ ,Ω,y

)
,

d
(
f̃ ,Ω,xi

j

)
= d

(
f ,Ω,xi

j
)
= d (f ,Ω,Ki)

d (g̃,Ki,y) = d (g,Ki,y)

Is y a regular value for g̃ ◦ f̃ on Ω? Suppose z ∈Ω and y = g̃ ◦ f̃ (z) so f̃ (z) ∈ g̃−1 (y) .

Then f̃ (z) = xi
j for some i, j and Df̃ (z)−1 exists. Hence

D
(
g̃ ◦ f̃

)
(z) = Dg̃

(
xi

j
)

Df̃ (z) ,

both linear transformations invertible. Thus y is a regular value of g̃ ◦ f̃ on Ω.
What of xi

j in Ki where Ki is unbounded? As observed, the sum of sgn
(

detDf̃ (z)
)

for z ∈ f̃
−1
(
xi

j

)
is d

(
f̃ ,Ω,xi

j

)
and is 0 because the degree is constant on Ki which is

unbounded.
From the definition of the degree, the left side of 13.8 d (g ◦f ,Ω,y) equals

∑

{
sgn
(

detDg̃
(
f̃ (z)

))
sgn
(

detDf̃ (z)
)

: z ∈ f̃
−1 (

g̃−1 (y)
)}

The g̃−1 (y) are the xi
j. Thus the above is of the form

= ∑
i

∑
j

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Dg̃
(
xi

j
)))

sgn
(

det
(

Df̃ (z)
))

As mentioned, if xi
j ∈ Ki an unbounded component, then

∑
z∈f̃−1

(
xi

j

)sgn
(
det
(
Dg̃
(
xi

j
)))

sgn
(

det
(

Df̃ (z)
))

= 0

and so, it suffices to only consider bounded components in what follows and the sum makes
sense because there are finitely many xi

j in bounded Ki. This also shows that if there are
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no bounded components of f (∂Ω)C, then d (g ◦f ,Ω,y) = 0. Thus d (g ◦f ,Ω,y) equals

= ∑
i

∑
j

sgn
(
det
(
Dg̃
(
xi

j
)))

∑
z∈f̃−1

(
xi

j

)sgn
(

det
(

Df̃ (z)
))

= ∑
i

d (g̃,Ki,y)d
(
f̃ ,Ω,Ki

)
To explain the last step,

∑
z∈f̃−1

(
xi

j

)sgn
(

det
(

Df̃ (z)
))
≡ d

(
f̃ ,Ω,xi

j

)
= d

(
f̃ ,Ω,Ki

)
.

This proves the product formula because g̃ and f̃ were chosen close enough to f,g respec-
tively that

∑
i

d
(
f̃ ,Ω,Ki

)
d (g̃,Ki,y) = ∑

i
d (f ,Ω,Ki)d (g,Ki,y) ■

Before the general Jordan separation theorem, I want to first consider the examples of
most interest.

Recall that if a function f is continuous and one to one on a compact set K, then f
is a homeomorphism of K and f (K). Also recall that if U is a nonempty open set, the
boundary of U , denoted as ∂U and meaning those points x with the property that for all
r > 0 B(x,r) intersects both U and UC, is U \U .

Proposition 13.6.4 Let C be a compact set and let f : C→ D ⊆ Rp, p ≥ 2 be one to
one and continuous so that C and f (C)≡D are homeomorphic. Suppose CC has only one
connected component so CC is connected. Then DC also has only one component.

Proof: Extend f , using the Tietze extension theorem on its entries to all of Rp and let
g be an extension of f−1 to all of Rp. Suppose DC has a bounded component K. Then
from Lemma 13.6.1,∂K ⊆D,g (∂K)⊆ g (D) =C. It follows that d (f ◦g,K,z) = 1 where
z ∈ K because on ∂K, f ◦g = id.

If z ∈ K, then z ̸= f ◦g (k) for any k ∈ ∂K because f ◦g = id on ∂K ⊆ C, this by
Lemma 13.6.1. Then g (∂K)C ⊇ CC. If Q is a bounded component of g (∂K)C then if Q
contains a point of CC it follows that CC is connected, has no points of C and hence no
points of g (∂K) so Q⊇CC and Q is not bounded after all. Thus g (∂K)C has no bounded
components. Then from the product formula Theorem 13.6.3, d (f ◦g,K,z) = 0 which is
a contradiction. Thus there is no bounded component of DC. ■

This says that if a compact set H fails to separate Rp and if f is continuous and one to
one, then also f (H) fails to separate Rp.

It is obvious that the unit sphere Sp−1 divides Rp into two disjoint open sets, the inside
and the outside. The following shows that this also holds for any homeomorphic image of
Sp−1.

Proposition 13.6.5 Let B be the ball B(0,1) with Sp−1 its boundary, p ≥ 2. Suppose
f : Sp−1→C ≡ f

(
Sp−1

)
⊆ Rp is a homeomorphism. Then CC also has exactly two com-

ponents, one bounded and one unbounded.
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Proof: By Proposition 13.6.4 there is at least one component of f (∂B)C called K since
it is clear that

(
Sp−1

)C is not connected. Let f denote the extension of f to all of Rp and
let g = f−1 on f (∂B) where g is also extended using the Tietze extension theorem to all
of Rp. Let H be the unbounded component of Rp \Sp−1.

From Lemma 13.6.1, ∂K ⊆ f (∂B) so g (∂K)⊆ ∂B. Also,

f ◦g (∂K)⊆ f ◦g (f (∂B)) = f (∂B) .

Recall that K has no points in f (∂B) so if p ∈ K, then p cannot be in f (∂B) and conse-
quently p cannot be in f ◦g (∂K) either. Summarizing this,

∂K ⊆ f (∂B) , g (∂K)⊆ ∂B, f ◦g (∂K)∩K = /0

Then picking p ∈ K, by the product rule,

1 = d (id,K,p) = d (f ◦g,K,p) = ∑
i

d (g,K,Qi)d (f,Qi,p)

where here the Qi are the bounded components of (g (∂K))C. These are maximal open
connected sets in Rp. Recall g (∂K) ⊆ ∂B. If Qi has a point of H, then H would be
connected and contain no points of g (∂K) and so H would be contained in Qi which does
not happen because Qi is bounded. Thus Qi ⊆ B̄ but also Qi is open and so it must be
contained in B. Now B is connected and open and contains no points of g (∂K) because it
contains no points of ∂B which is a larger set than g (∂K) and so in fact Qi = B and there
is only one term in the above sum. Thus, from properties of the degree,

1 = d (id,K,p) = d (f ◦g,K,p) = d (g,K,B)d (f,B,p)

= d (g,K,0)d (f,B,K) = d (g ◦f ,B,0)

so by the product rule there is no more than one bounded component of f (∂B)C the K just
mentioned. To emphasize this, if you had bounded components Ki of f (∂B)C , i ≤ m ≤ ∞

Then 1 = d (g,Ki,0)d (f,B,Ki) = d (g ◦f ,B,0) , but then, by the product rule, you would

have for K ≡ K0, 1 = d (g ◦f ,B,0) = ∑
m
k=0

=1
d (g,Ki,0)d (f,B,Ki) = m+ 1. Thus there is

exactly one bounded component of f (∂B)C. ■
A repeat of the above proof yields the following corollary. Replace B with Ω.

Corollary 13.6.6 Let Ω ⊆ Rp, p ≥ 2be a bounded open connected set such that ∂ΩC

has two components, a bounded and an unbounded component. Suppose f : ∂Ω→ C ≡
f (∂Ω)⊆Rp is a homeomorphism. Then CC also has exactly two components, one bounded
and one unbounded.

As an application, here is a very interesting little result. It has to do with d (f ,Ω,f (x))
in the case where f is one to one and Ω is open and connected. You might imagine this
should equal 1 or−1 based on one dimensional analogies. Recall a one to one map defined
on an interval is either increasing or decreasing. It either preserves or reverses orientation.
It is similar in n dimensions and it is a nice application of the Jordan separation theorem
and the product formula.

Proposition 13.6.7 Let Ω be an open connected bounded set in Rp, p ≥ 2 such that
Rp \∂Ω consists of two connected components. Let f ∈C

(
Ω;Rp

)
be continuous and one

to one. Then f (Ω) is the bounded component ofRp\f (∂Ω) and for y ∈ f (Ω) , d (f ,Ω,y)
either equals 1 or −1.
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Proof: By the Jordan separation theorem, Corollary 13.6.6, Rp \ f (∂Ω) consists of
two components, a bounded component B and an unbounded component U . Using the
Tietze extention theorem, there exists g defined on Rp such that g = f−1 on f

(
Ω
)
. Thus

on ∂Ω,g ◦f = id. It follows from this and the product formula that

1 = d (id,Ω,g (y)) = d (g ◦f ,Ω,g (y)) = d (g,B,g (y))d (f ,Ω,B)

Therefore, d (f ,Ω,B) ̸= 0 and so for every z ∈ B, it follows z ∈ f (Ω) . Thus B ⊆ f (Ω) .
On the other hand, f (Ω) cannot have points in both U and B because it is a connected set.
Therefore f (Ω) ⊆ B and this shows B = f (Ω). Thus d (f ,Ω,B) = d (f ,Ω,y) for each
y ∈ B and the above formula shows this equals either 1 or −1 because the degree is an
integer. ■

The one dimensional case also fits into this although it is easier to do by more elemen-
tary means. In the case where n = 1, the argument is essentially the same. There is one and
only one bounded component for R\ f ({a,b}) . This shows how to generalize orientation.
It is just the degree. One could use this to describe an orientable manifold without any
direct reference to differentiability.

In the case of f
(
Sp−1

)
one wants to verify that this is the is the boundary of both

components, the bounded one and the unbounded one.

Theorem 13.6.8 Let Sp−1 be the unit sphere in Rp, p≥ 2. Suppose γ : Sp−1→ Γ⊆
Rp is one to one onto and continuous. Then Rp \Γ consists of two components, a bounded
component (called the inside) Ui and an unbounded component (called the outside), Uo.
Also the boundary of each of these two components of Rp \Γ is Γ and Γ has empty interior.

Proof: γ−1 is continuous since Sp−1 is compact and γ is one to one. By the Jordan
separation theorem, Rp \Γ =Uo∪Ui where these on the right are the connected compo-
nents of the set on the left, both open sets. Only Ui is bounded. Thus Γ∪Ui ∪Uo = Rp.
Since both Ui,Uo are open, ∂U ≡U \U for U either Uo or Ui. If x ∈ Γ, and is not a limit
point of Ui, then there is B(x,r) which contains no points of Ui. Let S be those points x of
Γ for which, B(x,r) contains no points of Ui for some r > 0. This S is open in Γ. Let Γ̂ be
Γ \ S. Then if Ĉ = γ−1

(
Γ̂
)
, it follows that Ĉ is a closed set in Sp−1and is a proper subset

of Sp−1. It is obvious that taking a relatively open set from Sp−1 results in a compact set
whose complement in Rp is an open connected set. By Proposition 13.6.4, Rp \ Γ̂ is also an
open connected set. Start with x ∈Ui and consider a continuous curve which goes from x
to y ∈Uo which is contained in Rp \ Γ̂ . Thus the curve contains no points of Γ̂. However,
it must contain points of Γ which can only be in S. The first point of Γ intersected by this
curve is a point in Ui and so this point of intersection is not in S after all because every ball
containing it must contain points of Ui. Thus S = /0 and every point of Γ is in Ui. Similarly,
every point of Γ is in Uo. Thus Γ ⊆Ui \Ui and Γ ⊆Uo \Uo. However, if x ∈Ui \Ui, then
x /∈Uo because it is a limit point of Ui and so x ∈ Γ. It is similar with Uo. Thus Γ =Ui \Ui
and Γ = Uo \Uo. This could not happen if Γ had an interior point. Such a point would be
in Γ but would fail to be in either ∂Ui or ∂Uo. ■

When p = 2, this theorem is called the Jordan curve theorem.
What if γ maps B̄ toRp instead of γ only being defined on Sp−1? Obviously, one should

be able to say a little more.

Corollary 13.6.9 Let B be an open ball and let γ : B̄→ Rp be one to one and contin-
uous. Let Ui,Uo be as in the above theorem, the bounded and unbounded components of
γ (∂B)C. Then Ui = γ (B).



13.7. GENERAL JORDAN SEPARATION THEOREM 323

Proof: This follows from Proposition 13.6.7.
Note how this yields the invariance of domain theorem. If f is one to one on U an open

set, you could consider B̄ ⊆U and then f (B) is the bounded component of f (∂B)C. You
can do this for each ball contained in U . Thus f (U) is open.

13.7 General Jordan Separation Theorem
What follows is the general Jordan separation theorem. First note that if C,D are compact
sets and f : C→ D is a homeomorphism, continuous, one to one and onto, then if C,D are
both in R and if CC, has no bounded components, then C would be a closed interval and so
would D. Thus CC,DC have the same number of bounded components. In general for Rp,
Proposition 13.6.4 says CC,DC both have no bounded components together. The Jordan
Separation Theorem shows that CC,DC have the same number of bounded components in
general.

Lemma 13.7.1 Let Ω be a bounded open set in Rp, f ∈ C
(
Ω;Rp

)
, and suppose the

sequence {Ωi}∞

i=1 are disjoint open sets contained in Ω such that

y /∈ f
(
Ω\∪∞

j=1Ω j
)

Then d (f ,Ω,y) = ∑
∞
j=1 d (f ,Ω j,y) where the sum has only finitely many terms equal to

0.

Proof: By assumption, the compact set f−1 (y) ≡
{
x ∈Ω : f (x) = y

}
has empty

intersection with Ω\∪∞
j=1Ω j and so this compact set is covered by finitely many of the Ω j,

say {Ω1, · · · ,Ωn−1} and y /∈ f
(
∪∞

j=nΩ j

)
. By Theorem 13.2.2 and letting O = ∪∞

j=nΩ j,

d (f ,Ω,y) =
n−1

∑
j=1

d (f ,Ω j,y)+d (f,O,y) =
∞

∑
j=1

d (f ,Ω j,y)

because d (f,O,y) = 0 as is d (f ,Ω j,y) for every j ≥ n. ■

Theorem 13.7.2 (Jordan separation theorem) Let f be a homeomorphism of C and
f (C)≡ D where C is a compact set in Rp. Then Rp \C and Rp \D have the same number
of connected components.

Proof: If either C or D has no bounded components, then so does the other, this from
Proposition 13.6.4. Let f denote a Tietze extension of f to all of Rp and let g be a Tietze
extension of f−1 to all of Rp. Let the bounded components of CC be {Jr}n

r=1 ≡J and let
the bounded components of DC be {Ks}m

s=1 ≡K ,n,m≤∞. If both are ∞ then we consider
the theorem proved. Assume one of n,m is less than ∞. Pick xr ∈ Jr and ys ∈ Ks. By
Lemma 13.6.1, ∂Ks ⊆ D and so g (∂Ks)⊆ g (D) =C. f ◦g (∂Ks)⊆ f (C) = D and Ks is a
component of DC and so ys /∈ f ◦g (∂Ks) . Then from the definition of the degree and its
properties along with the product formula,

1 = d (f ◦g,Ks,ys) = ∑
j

d (g,Ks,Q j)d (f,Q j,ys) (13.10)

where the Q j are the bounded components of g (∂Ks)
C. If the unbounded component of

CC is U, then considering Q j, it can’t have any point of U . This is because U has no points
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of g (∂Ks) a smaller set than C and so Q j ∪U would be connected, open, and contained
in g (∂Ks)

C so it would equal Q j resulting in Q j not being bounded after all. Could Q j
intersect some Jr? If it does, then Jr ⊆ Q j because Jr is connected and does not intersect
g (∂Ks)

C . Consider f
(
Q̄ j⧹∪J j

)
where J j are the components Jr contained in Q j. Is

ys ∈ f
(
Q̄ j⧹∪J j

)
? From Lemma 13.6.1, ∂Q j ⊆ g (∂Ks) ⊆C so f (∂Q j) ⊆ ∂Ks and so

ys /∈ f (∂Q j) . Suppose ys = f (z) where z ∈Q j. If z is not in any of the Jr but is in Q̄ j then
z ∈C so f (z) = ys ∈ D. But ys is in Ks a component of DC so this is impossible. Hence
z is in one of the Jr and so this Jr is in J j. Therefore, ys /∈ f

(
Q̄ j⧹∪J j

)
and so we can

apply Lemma 13.7.1 in 13.10. First note that if Jr ∈J j then d (g,Ks,Q j) = d (g,Ks,Jr)

1 = d (f ◦g,Ks,ys) = ∑
j

d (g,Ks,Q j)d (f,Q j,ys) = ∑
j

∑
J∈J j

d (g,Ks,J)d (f,J,ys)

Since the Q j cover at least CC, it follows that each J intersects some Q j and from the above
is contained in Q j. Thus the J j cover ∪J . Therefore, the above equals

= ∑
J∈J

d (g,Ks,J)d (f,J,ys) =
n

∑
r=1

d (g,Ks,Jr)d (f,Jr,Ks)

where J is the set of components of CC. Recall that in the product formula the sums are
finite. Then adding over s, it follows

m =
m

∑
s=1

n

∑
r=1

d (g,Ks,Jr)d (f,Jr,Ks)

However, we could do the same thing in the other order starting with components in CC

and obtain

1 =
m

∑
s=1

d (g,Ks,Jr)d (f,Jr,Ks)

and then summing over r,

n =
n

∑
r=1

m

∑
s=1

d (g,Ks,Jr)d (f,Jr,Ks) =
m

∑
s=1

n

∑
r=1

d (g,Ks,Jr)d (f,Jr,Ks) = m. ■

13.8 Uniqueness of the Degree
I am mainly interested in the topological theorems which can be proved using the above
topological degree. To me this justifies its importance. Nevertheless, there are other meth-
ods for finding the degree which are based more directly on topological considerations and
algebra. These other methods are older than the presentation given here. Nevertheless if
the degree satisfies the properties of the degree given in Theorem 13.2.2 along with the
following condition, then this is sufficient to determine the degree.

Condition 13.8.1 Let f : B(w,R)→ Rp be such that f−1 (f (w)) = {w} and suppose
Df (w) is invertible. Then d (f ,B(w,R) ,f (w)) = sgn(det(Df (w))).

This follows from a repeat of the arguments which led to the degree in the above.
Homotopy invariance and the properties of Theorem 13.2.2 can be used to get the same
definition of the degree for continuous functions given in the above. From this all the rest
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followed. In an appendix to my book “Linear Algebra and Analysis” such an approach to
the degree based on algebra is given and it verifies the above condition. Thus this other
approach based on homology gives the same degree function. Also, the above condition
will end up following from Theorem 13.2.2 and by insisting that if s(x) = x̂ where x̂ has
two components switched so it corresponds to that elementary matrix then the degree is
−1, this will suffice with the other properties to show the above condition. This process
is followed in that other approach to the degree. That something more is required follows
because the degree also keeps track of orientation.

13.9 Exercises
1. Show that if y1, · · · ,yr in Rp \f (∂Ω) , then if f̃ has the property that∥∥∥f̃ −f

∥∥∥
∞

< min
i≤r

dist(yi,f (∂Ω)) ,

then d (f ,Ω,yi) = d
(
f̃ ,Ω,yi

)
for each yi. Hint: Consider for

t ∈ [0,1] ,f (x)+ t
(
f̃ (x)−f (x)

)
−yi

and homotopy invariance.

2. Show the Brouwer fixed point theorem is equivalent to the nonexistence of a contin-
uous retraction onto the boundary of B(0,r).

3. Give a version of Proposition 13.6.7 which is valid for the case where n = 1.

4. It was shown that if lim|x|→∞ |f (x)| = ∞,f : Rn → Rn is locally one to one and
continuous, then f maps Rn onto Rn. Suppose you have f : Rm → Rn where f is
one to one, continuous, and lim|x|→∞ |f (x)| = ∞, m < n. Show that f cannot be
onto.

5. Can there exist a one to one onto continuous map, f which takes the unit interval to
the unit disk?

6. Let m < n and let Bm (0,r) be the ball in Rm and Bn (0,r) be the ball in Rn. Show
that there is no one to one continuous map from Bm (0,r) to Bn (0,r). Hint: It is like
the above problem.

7. Consider the unit disk,
{
(x,y) : x2 + y2 ≤ 1

}
≡ D and the annulus{

(x,y) :
1
2
≤ x2 + y2 ≤ 1

}
≡ A.

Is it possible there exists a one to one onto continuous map f such that f (D) = A?
Thus D has no holes and A is really like D but with one hole punched out. Can you
generalize to different numbers of holes? Hint: Consider the invariance of domain
theorem. The interior of D would need to be mapped to the interior of A. Where do
the points of the boundary of A come from? Consider Theorem 3.11.3.
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8. Suppose C is a compact set in Rn which has empty interior and f : C→ Γ ⊆ Rn is
one to one onto and continuous with continuous inverse. Could Γ have nonempty
interior? Show also that if f is one to one and onto Γ then if it is continuous, so is
f−1.

9. Let K be a nonempty closed and convex subset of Rp. Recall K is convex means that
if x,y ∈K, then for all t ∈ [0,1] , tx+(1− t)y ∈K. Show that if x∈Rp there exists
a unique z ∈ K such that |x−z| = min{|x−y| : y ∈ K} . This z will be denoted
as Px. Hint: First note you do not know K is compact. Establish the parallelogram
identity if you have not already done so,

|u−v|2 + |u+v|2 = 2 |u|2 +2 |v|2 .

Then let {zk} be a minimizing sequence,

lim
k→∞

|zk−x|2 = inf{|x−y| : y ∈ K} ≡ λ .

Using convexity, explain why∣∣∣∣zk−zm

2

∣∣∣∣2 + ∣∣∣∣x−zk +zm

2

∣∣∣∣2 = 2
∣∣∣∣x−zk

2

∣∣∣∣2 +2
∣∣∣∣x−zm

2

∣∣∣∣2
and then use this to argue {zk} is a Cauchy sequence. Then if zi works for i = 1,2,
consider (z1 +z2)/2 to get a contradiction.

10. In Problem 9 show that Px satisfies the following variational inequality. (x−Px) ·
(y−Px)≤ 0 for all y ∈ K. Then show that |Px1−Px2| ≤ |x1−x2|. Hint: For the
first part note that if y ∈ K, the function

t→ |x−(Px+ t (y−Px))|2

achieves its minimum on [0,1] at t = 0. For the second part,

(x1−Px1) · (Px2−Px1)≤ 0, (x2−Px2) · (Px1−Px2)≤ 0.

Explain why
(x2−Px2− (x1−Px1)) · (Px2−Px1)≥ 0

and then use a some manipulations and the Cauchy Schwarz inequality to get the
desired inequality.

11. Suppose D is a set which is homeomorphic to B(0,1). This means there exists a
continuous one to one map, h such that h

(
B(0,1)

)
= D such that h−1 is also one

to one. Show that if f is a continuous function which maps D to D then f has a fixed
point. Now show that it suffices to say that h is one to one and continuous. In this
case the continuity of h−1 is automatic. Sets which have the property that continuous
functions taking the set to itself have at least one fixed point are said to have the fixed
point property. Work Problem 7 using this notion of fixed point property. What about
a solid ball and a donut? Could these be homeomorphic?

12. Using the definition of the derivative and the Vitali covering theorem, show that
if f ∈ C1

(
U,Rn

)
and ∂U has n dimensional measure zero then f (∂U) also has

measure zero. (This problem has little to do with this chapter. It is a review.)
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13. Suppose Ω is any open bounded subset of Rn which contains 0 and that f : Ω→ Rn

is continuous with the property that f (x) ·x ≥ 0 for all x ∈ ∂Ω. Show that then
there exists x ∈ Ω such that f (x) = 0. Give a similar result in the case where
the above inequality is replaced with ≤. Hint: You might consider the function
h(t,x)≡ tf (x)+(1− t)x.

14. Suppose Ω is an open set in Rn containing 0 and suppose that f : Ω→Rn is continu-
ous and |f (x)| ≤ |x| for all x ∈ ∂Ω. Show f has a fixed point in Ω. Hint: Consider
h(t,x)≡ t (x−f (x))+(1− t)x for t ∈ [0,1] . If t = 1 and some x ∈ ∂Ω is sent to
0, then you are done. Suppose therefore, that no fixed point exists on ∂Ω. Consider
t < 1 and use the given inequality.

15. Let Ω be an open bounded subset of Rn and let f,g : Ω→ Rn both be continu-
ous, 0 /∈ f (∂Ω) , such that |f (x)| − |g (x)| > 0 for all x ∈ ∂Ω. Show that then
d (f −g,Ω,0) = d (f ,Ω,0) . Show that if there exists x ∈ f−1 (0) , then there exists
x ∈ (f −g)−1 (0). Hint: Consider h(t,x) ≡ (1− t)f (x)+ t (f (x)−g (x)) and
argue 0 /∈ h(t,∂Ω) for t ∈ [0,1].

16. Let f : C→ C where C is the field of complex numbers. Thus f has a real and
imaginary part. Letting z = x+ iy, f (z) = u(x,y)+ iv(x,y). Recall that the norm in
C is given by |x+ iy| =

√
x2 + y2 and this is the usual norm in R2 for the ordered

pair (x,y) . Thus complex valued functions defined on C can be considered as R2

valued functions defined on some subset of R2. Such a complex function is said to
be analytic if the usual definition holds. That is f ′ (z) = limh→0

f (z+h)− f (z)
h . In other

words,
f (z+h) = f (z)+ f ′ (z)h+o(h) (13.11)

at a point z where the derivative exists. Let f (z) = zn where n is a positive integer.
Thus zn = p(x,y)+ iq(x,y) for p,q suitable polynomials in x and y. Show this func-
tion is analytic. Next show that for an analytic function and u and v the real and
imaginary parts, the Cauchy Riemann equations hold, ux = vy, uy =−vx. In terms of
mappings show 13.11 has the form(

u(x+h1,y+h2)
v(x+h1,y+h2)

)

=

(
u(x,y)
v(x,y)

)
+

(
ux (x,y) uy (x,y)
vx (x,y) vy (x,y)

)(
h1
h2

)
+o(h)

=

(
u(x,y)
v(x,y)

)
+

(
ux (x,y) −vx (x,y)
vx (x,y) ux (x,y)

)(
h1
h2

)
+o(h)

where h= (h1,h2)
T and h is given by h1 + ih2. Thus the determinant of the above

matrix is always nonnegative. Letting Br denote the ball B(0,r) = B((0,0) ,r) show

d ( f ,Br,0) = n where f (z) = zn. As a mapping on R2, f (x,y) =
(

u(x,y)
v(x,y)

)
. Thus

show d (f ,Br,0) = n. Hint: You might consider g(z) ≡∏
n
j=1 (z−a j) where the a j

are small real distinct numbers and argue that both this function and f are analytic
but that 0 is a regular value for g although it is not so for f . However, for each a j
small but distinct d (f ,Br,0) = d (g,Br,0).
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17. Using Problem 16, prove the fundamental theorem of algebra as follows. Let p(z)
be a nonconstant polynomial of degree n, p(z) = anzn + an−1zn−1 + · · · Show that
for large enough r, |p(z)|> |p(z)−anzn| for all z ∈ ∂B(0,r). Now from Problem 15
you can conclude d (p,Br,0) = d ( f ,Br,0) = n where f (z) = anzn.

18. Suppose f :Rp→Rp satisfies |f (x)−f (y)| ≥α |x−y| , α > 0. Show that f must
map Rp onto Rp. Hint: First show f is one to one. Then use invariance of domain.
Next show, using the inequality, that the points not in f (Rp) must form an open set
because if y is such a point, then there can be no sequence {f (xn)} converging to
it. Finally recall that Rp is connected.

19. Suppose D is a nonempty bounded open set in Rp and suppose f : D→ ∂D is con-
tinuous with f (x) = x for x ∈ ∂D. Show this cannot happen. Hint: Let y ∈ D
and note that id and f agree on ∂D. Therefore, from properties of the degree,
d (f ,D,y) = d (id,D,y). Explain why this cannot occur.

20. Assume D is a closed ball in Rp and suppose f : D→ D is continuous. Use the
above problem to conclude f has a fixed point. Hint: If no fixed point, let g (x) be
the point on ∂D which results from extending the ray starting at f (x) to x. This
would be a continuous map from D to ∂D which does not move any point on ∂D.
Draw a picture. This may be the easiest proof of the Brouwer fixed point theorem
but note how dependent it is on the properties of the degree.



Appendix A

Basic Vector Analysis
A.1 The Cross Product

The cross product is the other way of multiplying two vectors in R3. It is very different
from the dot product in many ways. First the geometric meaning is discussed and then
a description in terms of coordinates is given. Both descriptions of the cross product are
important. The geometric description is essential in order to understand the applications
to physics and geometry while the coordinate description is the only way to practically
compute the cross product.

Definition A.1.1 Three vectors a,b,c form a right handed system if when you ex-
tend the fingers of your right hand along the vector a and close them in the direction of b,
the thumb points roughly in the direction of c.

For an example of a right handed system of vectors, see the following picture.

a

b

c

In this picture the vector c points upwards from the plane determined by the other
two vectors. You should consider how a right hand system would differ from a left hand
system. Try using your left hand and you will see that the vector c would need to point in
the opposite direction as it would for a right hand system.

From now on, the vectors i,j,k will always form a right handed system. To repeat,
if you extend the fingers of our right hand along i and close them in the direction j, the
thumb points in the direction of k.

k

i

j

The following is the geometric description of the cross
product. It gives both the direction and the magnitude and
therefore specifies the vector.

Definition A.1.2 Let a and b be two vectors in R3.
Then a×b is defined by the following two rules.

1. |a×b|= |a| |b|sinθ where θ is the included angle.

2. a×b ·a= 0, a×b ·b= 0, and a,b,a×b forms a right hand system.

Note that |a×b| is the area of the parallelogram spanned by a and b.

329
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b

aθ

|bsin(θ)

The cross product satisfies the following properties.

a×b=−(b×a) , a×a= 0, (1.1)

For α a scalar,
(αa)×b= α (a×b) = a×(αb) , (1.2)

For a,b, and c vectors, one obtains the distributive laws,

a×(b+c) = a×b+a×c, (1.3)

(b+c)×a= b×a+c×a. (1.4)

Formula 1.1 follows immediately from the definition. The vectors a×b and b×a
have the same magnitude, |a| |b|sinθ , and an application of the right hand rule shows they
have opposite direction. Formula 1.2 is also fairly clear. If α is a nonnegative scalar, the
direction of (αa)×b is the same as the direction of a×b,α (a×b) and a×(αb) while
the magnitude is just α times the magnitude of a×b which is the same as the magnitude
of α (a×b) and a×(αb) . Using this yields equality in 1.2. In the case where α < 0,
everything works the same way except the vectors are all pointing in the opposite direction
and you must multiply by |α| when comparing their magnitudes. The distributive laws are
much harder to establish but the second follows from the first quite easily. Thus, assuming
the first, and using 1.1,

(b+c)×a=−a×(b+c) =−(a×b+a×c) = b×a+c×a.

A proof of the distributive law is given later.
Now from the definition of the cross product,

i×j = k, j× i=−k
k× i= j, i×k=−j
j×k= i, k×j =−i

With this information, the following gives the coordinate description of the cross product.

Proposition A.1.3 Let a = a1i+ a2j+ a3k and b = b1i+ b2j+ b3k be two vectors.
Then

a×b= (a2b3−a3b2) i+ (a3b1−a1b3)j+ (a1b2−a2b1)k. (1.5)

Proof: From the above table and the properties of the cross product listed,

(a1i+a2j+a3k)× (b1i+b2j+b3k) =

a1b2i×j+a1b3i×k+a2b1j× i+a2b3j×k+a3b1k× i+a3b2k×j
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= a1b2k−a1b3j−a2b1k+a2b3i+a3b1j−a3b2i

= (a2b3−a3b2) i+ (a3b1−a1b3)j+ (a1b2−a2b1)k (1.6)

■
It is probably impossible for most people to remember 1.5. Fortunately, there is a

somewhat easier way to remember it.

a×b=

∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ (1.7)

where you formally expand the determinant along the top row. For those who have not seen
determinants, here is a short description. All you need here is how to evaluate 2× 2 and
3×3 determinants. ∣∣∣∣ x y

z w

∣∣∣∣= xw− yz

and ∣∣∣∣∣∣
a b c
x y z
u v w

∣∣∣∣∣∣= a
∣∣∣∣ y z

v w

∣∣∣∣−b
∣∣∣∣ x z

u w

∣∣∣∣+ c
∣∣∣∣ x y

u v

∣∣∣∣ .
Here is the rule: You look at an entry in the top row and cross out the row and column
which contain that entry. If the entry is in the ith column, you multiply (−1)1+i times the
determinant of the 2× 2 which remains. This is the cofactor. You take the element in the
top row times this cofactor and add all such terms. The rectangular array enclosed by the
vertical lines is called a matrix and a lot more can be said about these, but this is enough
for our purposes here.

Example A.1.4 Find (i−j+2k)× (3i−2j+k) .

Use 1.7 to compute this.∣∣∣∣∣∣
i j k
1 −1 2
3 −2 1

∣∣∣∣∣∣=
∣∣∣∣ −1 2
−2 1

∣∣∣∣ i− ∣∣∣∣ 1 2
3 1

∣∣∣∣j+ ∣∣∣∣ 1 −1
3 −2

∣∣∣∣k = 3i+5j+k.

Example A.1.5 Find the area of the parallelogram determined by the vectors

(i−j+2k) , (3i−2j+k) .

These are the same two vectors in Example A.1.4.

From Example A.1.4 and the geometric description of the cross product, the area is just
the norm of the vector obtained in Example A.1.4. Thus the area is

√
9+25+1 =

√
35.

Example A.1.6 Find the area of the triangle with verticies (1,2,3) ,(0,2,5) , and (5,1,2) .

This triangle is obtained by connecting the three points with lines. Picking (1,2,3) as
a starting point, there are two displacement vectors (−1,0,2) and (4,−1,−1) such that the
given vector added to these displacement vectors gives the other two vectors. The area of
the triangle is half the area of the parallelogram determined by (−1,0,2) and (4,−1,−1) .
Thus (−1,0,2)× (4,−1,−1) = (2,7,1) and so the area of the triangle is 1

2

√
4+49+1 =

3
2

√
6.



332 APPENDIX A. BASIC VECTOR ANALYSIS

Observation A.1.7 In general, if you have three points in R3,P,Q,R the area of the
triangle is given by

1
2
|(Q−P )× (R−P )| .

P

Q

R

A.2 The Box Product
Definition A.2.1 A parallelepiped determined by the three vectors a,b, and c con-
sists of

{ra+ sb+ tc : r,s, t ∈ [0,1]} .
That is, if you pick three numbers, r,s, and t each in [0,1] and form ra+ sb+ tc, then the
collection of all such points is what is meant by the parallelepiped determined by these
three vectors.

The following is a picture of such a thing.

a
b

c

a×b

θ

You notice the area of the base of the parallelepiped, the parallelogram determined by
the vectors a and b has area equal to |a×b| while the altitude of the parallelepiped is
|c|cosθ where θ is the angle shown in the picture between c and a×b. Therefore, the
volume of this parallelepiped is the area of the base times the altitude which is just

|a×b| |c|cosθ = a×b ·c.

This expression is known as the box product and is sometimes written as [a,b,c] . You
should consider what happens if you interchange the b with the c or the a with the c. You
can see geometrically from drawing pictures that this merely introduces a minus sign. In
any case the box product of three vectors always equals either the volume of the paral-
lelepiped determined by the three vectors or else minus this volume.

Example A.2.2 Find the volume of the parallelepiped determined by the vectors i+2j−
5k,i+3j−6k,3i+2j+3k.

According to the above discussion, pick any two of these, take the cross product and
then take the dot product of this with the third of these vectors. The result will be either the
desired volume or minus the desired volume.

(i+2j−5k)× (i+3j−6k) =

∣∣∣∣∣∣
i j k
1 2 −5
1 3 −6

∣∣∣∣∣∣= 3i+j+k
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Now take the dot product of this vector with the third which yields

(3i+j+k) · (3i+2j+3k) = 9+2+3 = 14.

This shows the volume of this parallelepiped is 14 cubic units.
There is a fundamental observation which comes directly from the geometric definitions

of the cross product and the dot product.

Lemma A.2.3 Let a,b, and c be vectors. Then (a×b) ·c= a· (b×c) .

Proof: This follows from observing that either (a×b) ·c and a·(b×c) both give the
volume of the parallelepiped or they both give −1 times the volume. ■

A.3 Proof of the Distributive Law
Let x be a vector. From the above observation,

x ·a×(b+c) = (x×a) · (b+c) = (x×a) ·b+(x×a) ·c
= x ·a×b+x ·a×c= x·(a×b+a×c) .

Therefore,
x· [a×(b+c)− (a×b+a×c)] = 0

for all x. In particular, this holds for x= a×(b+c)− (a×b+a×c) showing that

a×(b+c) = a×b+a×c

and this proves the distributive law for the cross product.

Observation A.3.1 Suppose you have three vectors, u = (a,b,c) ,v = (d,e, f ) , and
w = (g,h, i) . Then u ·v×w is given by the following.

u ·v×w = (a,b,c) ·

∣∣∣∣∣∣
i j k
d e f
g h i

∣∣∣∣∣∣= a
∣∣∣∣ e f

h i

∣∣∣∣−b
∣∣∣∣ d f

g i

∣∣∣∣+ c
∣∣∣∣ d e

g h

∣∣∣∣
= det

 a b c
d e f
g h i

 .

The message is that to take the box product, you can simply take the determinant of the
matrix which results by letting the rows be the rectangular components of the given vectors
in the order in which they occur in the box product.

A.4 Vector Identities and Notation
To begin with consider u× (v×w) and it is desired to simplify this expression. It turns
out this expression comes up in many different contexts. Let u= (u1,u2,u3) and let v and
w be defined similarly.

v×w =

∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣= (v2w3− v3w2) i+ (w1v3− v1w3)j+ (v1w2− v2w1)k
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Next consider u×(v×w) which is given by

u×(v×w) =

∣∣∣∣∣∣
i j k

u1 u2 u3
(v2w3− v3w2) (w1v3− v1w3) (v1w2− v2w1)

∣∣∣∣∣∣ .
When you multiply this out, you get

i(v1u2w2 +u3v1w3−w1u2v2−u3w1v3)+j (v2u1w1 + v2w3u3−w2u1v1−u3w2v3)

+k (u1w1v3 + v3w2u2−u1v1w3− v2w3u2)

and if you are clever, you see right away that

(iv1 +jv2 +kv3)(u1w1 +u2w2 +u3w3)− (iw1 +jw2 +kw3)(u1v1 +u2v2 +u3v3) .

Thus
u×(v×w) = v (u ·w)−w (u ·v) . (1.8)

A related formula is

(u×v)×w = − [w×(u×v)] =− [u(w ·v)−v (w ·u)]
= v (w ·u)−u(w ·v) . (1.9)

This derivation is simply wretched and it does nothing for other identities which may arise
in applications. Actually, the above two formulas, 1.8 and 1.9 are sufficient for most appli-
cations if you are creative in using them, but there is another way. This other way allows
you to discover such vector identities as the above without any creativity or any cleverness.
Therefore, it is far superior to the above nasty and tedious computation. It is a vector iden-
tity discovering machine and it is this which is the main topic in what follows. I cannot
understand why it is not routinely presented in calculus texts. The engineers I have known
seem to know all about it.

There are two special symbols, δ i j and ε i jk which are very useful in dealing with vector
identities. To begin with, here is the definition of these symbols.

Definition A.4.1 The symbol δ i j, called the Kroneker delta symbol is defined as
follows.

δ i j ≡
{

1 if i = j
0 if i ̸= j .

With the Kroneker symbol i and j can equal any integer in {1,2, · · · ,n} for any n ∈ N.

Definition A.4.2 For i, j, and k integers in the set, {1,2,3} , ε i jk is defined as fol-
lows.

ε i jk ≡

 1 if (i, j,k) = (1,2,3) ,(2,3,1) , or (3,1,2)
−1 if (i, j,k) = (2,1,3) ,(1,3,2) , or (3,2,1)
0 if there are any repeated integers

.

The subscripts i jk and i j in the above are called indices. A single one is called an index.
This symbol ε i jk is also called the permutation symbol.
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The way to think of ε i jk is that ε123 = 1 and if you switch any two of the numbers in the
list i, j,k, it changes the sign. Thus ε i jk =−ε jik and ε i jk =−εk ji etc. You should check that
this rule reduces to the above definition. For example, it immediately implies that if there
is a repeated index, the answer is zero. This follows because ε ii j =−ε ii j and so ε ii j = 0.

It is useful to use the Einstein summation convention when dealing with these symbols.
Simply stated, the convention is that you sum over the repeated index. Thus aibi means
∑i aibi. Also, δ i jx j means ∑ j δ i jx j = xi. When you use this convention, there is one very
important thing to never forget. It is this: Never have an index be repeated more than once.
Thus aibi is all right but aiibi is not. The reason for this is that you end up getting confused
about what is meant. If you want to write ∑i aibici it is best to simply use the summation
notation. There is a very important reduction identity connecting these two symbols.

Lemma A.4.3 The following holds.

ε i jkε irs = (δ jrδ ks−δ krδ js) .

Proof: If { j,k} ̸= {r,s} then every term in the sum on the left must have either ε i jk
or ε irs contains a repeated index. Therefore, the left side equals zero. The right side also
equals zero in this case. To see this, note that if the two sets of indices are not equal, then
there is one of the indices in one of the sets which is not in the other set. For example, it
could be that j is not equal to either r or s. Then the right side equals zero.

Therefore, it can be assumed { j,k} = {r,s} . If i = r and j = s for s ̸= r, then there
is exactly one term in the sum on the left and it equals 1. The right also reduces to 1
in this case. If i = s and j = r, there is exactly one term in the sum on the left which is
nonzero and it must equal −1. The right side also reduces to −1 in this case. If there is
a repeated index in { j,k} , then every term in the sum on the left equals zero. The right
also reduces to zero in this case because then j = k = r = s and so the right side becomes
(1)(1)− (−1)(−1) = 0. ■

Proposition A.4.4 Let u,v be vectors in Rp where the Cartesian coordinates of u are
(u1, · · · ,up) and the Cartesian coordinates of v are (v1, · · · ,vp). Then u ·v = uivi. If u,v
are vectors in R3, then

(u×v)i = ε i jku jvk.

Also, δ ikak = ai.

Proof: The first claim is obvious from the definition of the dot product. The second is
verified by simply checking it works. For example,

u×v ≡

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
and so

(u×v)1 = (u2v3−u3v2) .

From the above formula in the proposition,

ε1 jku jvk ≡ u2v3−u3v2,

the same thing. The cases for (u×v)2 and (u×v)3 are verified similarly. The last claim
follows directly from the definition. ■

With this notation, you can easily discover vector identities and simplify expressions
which involve the cross product.
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Example A.4.5 Discover a formula which simplifies (u×v)×w.

From the above reduction formula,

((u×v)×w)i = ε i jk (u×v) j wk = ε i jkε jrsurvswk

= −ε jikε jrsurvswk =−(δ irδ ks−δ isδ kr)urvswk

= −(uivkwk−ukviwk) = u ·wvi−v ·wui

= ((u ·w)v− (v ·w)u)i .

Since this holds for all i, it follows that

(u×v)×w = (u ·w)v− (v ·w)u.

A.5 Divergence and Curl of a Vector Field
Here the important concepts of divergence and curl are defined in terms of rectangular
coordinates.

Definition A.5.1 Let f : U→Rp for U ⊆Rp denote a vector field. A scalar valued
function is called a scalar field. The function f is called a Ck vector field if the function f
is a Ck function. For a C1 vector field, as just described ∇ ·f (x)≡ divf (x) known as the
divergence, is defined as

∇ ·f (x)≡ divf (x)≡
p

∑
i=1

∂ fi

∂xi
(x) .

Using the repeated summation convention, this is often written as

fi,i (x)≡ ∂i fi (x)

where the comma indicates a partial derivative is being taken with respect to the ith variable
and ∂i denotes differentiation with respect to the ith variable. In words, the divergence is
the sum of the ith derivative of the ith component function of f for all values of i. If p = 3,
the curl of the vector field yields another vector field and it is defined as follows.

(curl(f)(x))i ≡ (∇×f (x))i ≡ ε i jk∂ j fk (x)

where here ∂ j means the partial derivative with respect to x j and the subscript of i in
(curl(f)(x))i means the ith Cartesian component of the vector curl(f)(x). Thus the curl
is evaluated by expanding the following determinant along the top row.∣∣∣∣∣∣

i j k
∂

∂x
∂

∂y
∂

∂ z
f1 (x,y,z) f2 (x,y,z) f3 (x,y,z)

∣∣∣∣∣∣ .
Note the similarity with the cross product. Sometimes the curl is called rot. (Short for

rotation not decay.) Also
∇

2 f ≡ ∇ · (∇ f ) .
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This last symbol is important enough that it is given a name, the Laplacian.It is also de-
noted by ∆. Thus ∇

2 f = ∆ f . In addition for f a vector field, the symbol f ·∇ is defined as
a “differential operator” in the following way.

f ·∇(g)≡ f1 (x)
∂g (x)

∂x1
+ f2 (x)

∂g (x)

∂x2
+ · · ·+ fp (x)

∂g (x)

∂xp
.

Thus f ·∇ takes vector fields and makes them into new vector fields.

This definition is in terms of a given rectangular coordinate system but later coordinate
free definitions of the curl and div are presented. For now, everything is defined in terms
of a given Cartesian coordinate system. The divergence and curl have profound physical
significance and this will be discussed later. For now it is important to understand their
definition in terms of coordinates. Be sure you understand that for f a vector field, divf
is a scalar field meaning it is a scalar valued function of three variables. For a scalar field
f , ∇ f is a vector field described earlier. For f a vector field having values in R3,curlf is
another vector field.

Example A.5.2 Let f (x) = xyi+(z− y)j+(sin(x)+ z)k. Find divf and curlf .

First the divergence of f is

∂ (xy)
∂x

+
∂ (z− y)

∂y
+

∂ (sin(x)+ z)
∂ z

= y+(−1)+1 = y.

Now curlf is obtained by evaluating∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂ z
xy z− y sin(x)+ z

∣∣∣∣∣∣=
i

(
∂

∂y
(sin(x)+ z)− ∂

∂ z
(z− y)

)
−j

(
∂

∂x
(sin(x)+ z)− ∂

∂ z
(xy)

)
+

k

(
∂

∂x
(z− y)− ∂

∂y
(xy)

)
=−i− cos(x)j− xk.

A.6 Vector Identities
There are many interesting identities which relate the gradient, divergence and curl.

Theorem A.6.1 Assuming f,g are a C2 vector fields whenever necessary, the fol-
lowing identities are valid.

1. ∇ · (∇×f) = 0

2. ∇×∇φ = 0

3. ∇× (∇×f) = ∇(∇ ·f)−∇
2f where ∇

2f is a vector field whose ith component is
∇

2 fi.

4. ∇ · (f ×g) = g·(∇×f)−f ·(∇×g)
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5. ∇× (f ×g) = (∇ ·g)f− (∇ ·f)g+ (g·∇)f− (f ·∇)g

Proof: These are all easy to establish if you use the repeated index summation conven-
tion and the reduction identities.

∇ · (∇×f) = ∂i (∇×f)i = ∂i
(
ε i jk∂ j fk

)
= ε i jk∂i (∂ j fk)

= ε jik∂ j (∂i fk) =−ε i jk∂ j (∂i fk) =−ε i jk∂i (∂ j fk)

= −∇ · (∇×f) .

This establishes the first formula. The second formula is done similarly. Now consider the
third.

(∇× (∇×f))i = ε i jk∂ j (∇×f)k = ε i jk∂ j (εkrs∂r fs)

=

=ε i jk︷︸︸︷
εki j εkrs∂ j (∂r fs) = (δ irδ js−δ isδ jr)∂ j (∂r fs)

= ∂ j (∂i f j)−∂ j (∂ j fi) = ∂i (∂ j f j)−∂ j (∂ j fi)

=
(

∇(∇ ·f)−∇
2f
)

i

This establishes the third identity.
Consider the fourth identity.

∇ · (f ×g) = ∂i (f ×g)i = ∂iε i jk f jgk

= ε i jk (∂i f j)gk + ε i jk f j (∂igk)

=
(
εki j∂i f j

)
gk−

(
ε jik∂igk

)
fk

= ∇×f ·g−∇×g ·f.

This proves the fourth identity.
Consider the fifth.

(∇× (f ×g))i = ε i jk∂ j (f ×g)k = ε i jk∂ jεkrs frgs

= εki jεkrs∂ j ( frgs) = (δ irδ js−δ isδ jr)∂ j ( frgs)

= ∂ j ( fig j)−∂ j ( f jgi)

= (∂ jg j) fi +g j∂ j fi− (∂ j f j)gi− f j (∂ jgi)

= ((∇ ·g)f +(g ·∇)(f)− (∇ ·f)g− (f ·∇)(g))i

and this establishes the fifth identity. ■



Appendix B

Curvilinear Coordinates
B.1 Basis Vectors

In this chapter, I will use the repeated index summation convention unless stated otherwise.
Thus, a repeated index indicates a sum. Also, it is helpful in order to keep things straight
to always have the two repeated indices be on different levels. That is, I will write a j

i b j and
not ai jb j. The reason for this will become clear as the exposition proceeds.

The usual basis vectors are denoted by i,j,k and are as the following picture describes.

k

j
i

The vectors, i,j,k, are fixed. If v is a vector, there are unique scalars called
components such that v = v1 i+ v2 j+ v3k . This is what it means that i,j,k
is a basis.

Now suppose e1,e2,e3 are three vectors which satisfy

e1×e2 ·e3 ̸= 0.

Recall this means the volume of the box spanned by the three vectors is not zero.

e1

e3

e2

Suppose e1,e2,e3 are as just described. Does it follow that they form
a basis? In other words, for any vector v, there are unique scalars vi such
that v = viei. Of course this is the case because the box product is really
the determinant of the matrix which has ei as the ith row (column). This is
the content of the following theorem.

Theorem B.1.1 If e1,e2,e3 are three vectors, then they form a ba-
sis if and only if

e1×e2 ·e3 ̸= 0.

This gives a simple geometric condition which determines whether a list of three vectors
forms a basis in R3. One simply takes the box product. If the box product is not equal to
zero, then the vectors form a basis. If not, the list of three vectors does not form a basis.
This condition generalizes to Rp as follows. If ei = a j

i i j, then {ei}p
i=1 forms a basis if and

only if det
(

a j
i

)
̸= 0.

These vectors may or may not be orthonormal. In any case, it is convenient to define
something called the dual basis.

Definition B.1.2 Let {ei}p
i=1 form a basis for Rp. Then

{
ei
}p

i=1 is called the dual
basis if

ei ·e j = δ
i
j ≡
{

1 if i = j
0 if i ̸= j . (2.1)

Theorem B.1.3 If {ei}p
i=1 is a basis then

{
ei
}p

i=1 is also a basis provided 2.1 holds.

Proof: Suppose
v = vie

i. (2.2)

Then taking the dot product of both sides of 2.2 with e j,yields

v j = v ·e j. (2.3)

339
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Thus there is at most one choice of scalars v j such that v = v je
j and it is given by 2.3.(

v−v ·e je
j) ·ek = 0

and so, since {ei}p
i=1 is a basis, (

v−v ·e je
j) ·w = 0

for all vectors w. It follows v−v ·e je
j = 0 and this shows

{
ei
}p

i=1 is a basis. ■
In the above argument are obtained formulas for the components of a vector v, vi,

with respect to the dual basis, found to be v j = v ·e j. In the same way, one can find the
components of a vector with respect to the basis {ei}p

i=1 . Let v be any vector and let

v = v je j. (2.4)

Then taking the dot product of both sides of 2.4 with ei we see vi = ei ·v.
Does there exist a dual basis and is it uniquely determined?

Theorem B.1.4 If {ei}p
i=1 is a basis for Rp, then there exists a unique dual basis,{

e j
}p

j=1 satisfying

e j ·ei = δ
j
i .

Proof: First I show the dual basis is unique. Suppose
{
f j}p

j=1 is another set of vectors

which satisfies f j ·ei = δ
j
i . Then

f j = f j ·eie
i = δ

j
i e

i = e j.

Note that from the definition, the dual basis to
{
i j
}p

j=1 is just i j = i j. It remains to verify
the existence of the dual basis. Consider the matrix gi j ≡ ei ·e j. This is called the metric
tensor. If the resulting matrix is denoted as G, does it follow that G−1 exists? Suppose you
have ei ·e jx j = 0. Then, since i is arbitrary, this implies e jx j = 0 and since

{
e j
}

is a basis,
this requires each x j to be zero. Thus G is invertible. Denote by gi j the i jth entry of this
inverse matrix. Consider e j ≡ g jkek. Is this the dual basis as the notation implies?

e j ·ei = g jkek ·ei = g jkgki = δ
j
i

so yes, it is indeed the dual basis. This has shown both existence and uniqueness of the
dual basis. ■

From this is a useful observation.

Proposition B.1.5 {ei}p
i=1 is a basis forRp if and only if when ei = a j

i i j, det
(

a j
i

)
̸= 0.

Proof: First suppose {ei}p
i=1 is a basis for Rp. Letting Ai j ≡ a j

i , we need to show that
det(A) ̸= 0. This is equivalent to showing that A or AT is one to one. But

a j
i xi = 0⇒ a j

i xii j = 0⇒ eixi = 0⇒ xi = 0

so AT is one to one if and only if det(A) = det
(
AT
)
̸= 0.
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Conversely, suppose A has nonzero determinant. Why are the ek a basis? Suppose
xkek = 0. Is each xk = 0? Then xka j

ki j = 0 and so for each j, a j
kxk = 0 and since A has

nonzero determinant, xk = 0. ■
Summarizing what has been shown so far, we know that {ei}p

i=1 is a basis for Rp if and
only if when ei = a j

i i j,

det
(

a j
i

)
̸= 0. (2.5)

If {ei}p
i=1 is a basis, then there exists a unique dual basis,

{
e j
}p

j=1 satisfying

e j ·ei = δ
j
i , (2.6)

and that if v is any vector,
v = v je

j, v = v je j. (2.7)

The components of v which have the index on the top are called the contravariant compo-
nents of the vector while the components which have the index on the bottom are called the
covariant components. In general vi ̸= v j! We also have formulae for these components in
terms of the dot product.

v j = v ·e j, v j = v ·e j. (2.8)

As indicated above, define gi j ≡ ei ·e j and gi j ≡ ei ·e j. The next theorem describes the
process of raising or lowering an index.

Theorem B.1.6 The following hold.

gi je j = ei, gi je
j = ei, (2.9)

gi jv j = vi, gi jv j = vi, (2.10)

gi jg jk = δ
i
k, (2.11)

det(gi j)> 0, det
(
gi j)> 0. (2.12)

Proof: First,
ei = ei ·e je j = gi je j

by 2.7 and 2.8. Similarly, by 2.7 and 2.8,

ei = ei ·e je
j = gi je

j.

This verifies 2.9. To verify 2.10,

vi = ei ·v = gi je j ·v = gi jv j.

The proof of the remaining formula in 2.10 is similar.
To verify 2.11,

gi jg jk = ei ·e je j ·ek =
((
ei ·e j)e j

)
·ek = ei ·ek = δ

i
k.

This shows the two determinants in 2.12 are non zero because the two matrices are inverses
of each other. It only remains to verify that one of these is greater than zero. Letting
ei = a j

i i j = bi
ji

j, we see that since i j = i j,a j
i = bi

j. Therefore,

ei ·e j = ar
i ir ·b j

ki
k = ar

i b
j
kδ

k
r = ak

i b j
k = ak

i ak
j.
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It follows that for G the matrix whose i jth entry is ei ·e j, G = AAT where the ikth entry of
A is ak

i . Therefore, det(G) = det(A)det
(
AT
)
= det(A)2 > 0. It follows from 2.11 that if H

is the matrix whose i jth entry is gi j, then GH = I and so H = G−1 and

det(G)det
(
G−1)= det

(
gi j)det(G) = 1.

Therefore, det
(
G−1

)
> 0 also. ■

Note that det
(
AAT

)
≥ 0 always, because the eigenvalues are nonegative.

As noted above, we have the following definition.

Definition B.1.7 The matrix (gi j) = G is called the metric tensor.

B.2 Exercises
1. Let e1 = i+j,e2 = i−j,e3 = j+k. Find e1,e2,e3, (gi j) ,

(
gi j
)
. If

v = i+2j+k, find vi and v j, the contravariant and covariant components of the
vector.

2. Let e1 = 2i+j,e2 = i−2j,e3 = k. Find e1,e2,e3, (gi j) ,
(
gi j
)
. If

v = 2 i− 2j+k, find vi and v j, the contravariant and covariant components of the
vector.

3. Suppose e1,e2,e3 have the property that ei ·e j = 0 whenever i ̸= j. Show the same
is true of the dual basis.

4. Let e1,· · · ,e3 be a basis for Rn and let v = viei = vie
i,w= w je j = w je

j be two
vectors. Show

v ·w = gi jviw j = gi jviw j.

5. Show if {ei}3
i=1 is a basis in R3

e1 =
e2×e3

e2×e3 ·e1
, e2 =

e1×e3

e1×e3 ·e2
, e3 =

e1×e2

e1×e2 ·e3
.

6. Let {ei}n
i=1 be a basis and define

e∗i ≡
ei

|ei|
, e∗i ≡ ei |ei| .

Show e∗i ·e∗j = δ
i
j.

7. If v is a vector, v∗i and v∗i, are defined by

v ≡ v∗i e
∗i ≡ v∗ie∗i .

These are called the physical components of v. Show

v∗i =
vi

|ei|
, v∗i = vi |ei| ( No summation on i ).
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B.3 Curvilinear Coordinates
There are many ways to identify a point in n dimensional space with an ordered list of real
numbers. Some of these are spherical coordinates, cylindrical coordinates and rectangu-
lar coordinates and these particular examples are discussed earlier. I will denote by y the
rectangular coordinates of a point in n dimensional space which I will go on writing as Rn.
Thus y =

(
y1 · · · yn

)
. It follows there are equations which relate the rectangular co-

ordinates to some other coordinates
(

x1 · · · xn
)
. In spherical coordinates, these were

ρ,φ ,θ where the geometric meaning of these were described earlier. However, completely
general systems are to be considered here, with certain stipulations. The idea is

yk = yk (x1, ...,xn) , y = y
(
x1, ...,xn)

Let
(

x1 · · · xn
)
∈ D⊆ Rn be an open set and let

x→ y
(
x1, ...,xn)≡M

(
x1, ...,xn)

satisfy
M is C2, (2.13)

M is one to one. (2.14)

Letting x ∈ D, we can write
M (x) = Mk (x)ik

where, as usual, ik are the standard basis vectors for Rn, ik being the vector in Rn which
has a one in the kth coordinate and a 0 in every other spot. Thus yk = Mk (x) where this yk

refers to the kth rectangular coordinate of the point y as just described.
For a fixed x ∈ D, we can consider the space curves,

t→M (x+ tik)≡ y (x+ tik)

for t ∈ I, some open interval containing 0. Then for the point x,we let

ek ≡
∂M

∂xk (x)≡ d
dt

(M (x+ tik)) |t=0 ≡
∂y

∂xk (x)

Denote this vector as ek (x) to emphasize its dependence on x. The following picture
illustrates the situation in R3.

e1e2e3

t→M(x1
0,x

2
0, t)

t→M(t,x2
0,x

3
0)

t→M(x1
0, t,x

3
0)
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I want {ek}n
k=1 to be a basis. Thus, from Proposition B.1.5,

det
(

∂Mi

∂xk

)
≡ det(Dy (x))≡ det(D(M)(x)) ̸= 0. (2.15)

Let
yi = Mi (x) i = 1, · · · ,n (2.16)

so that the yi are the usual rectangular coordinates with respect to the usual basis vectors
{ik}n

k=1 of the point y =M (x) . Letting x ≡
(
x1, · · · ,xn

)
, it follows from the inverse

function theorem (See Chapter 7) that M (D) is open, and that 2.15, 2.13, and 2.14 im-
ply the equations 2.16 define each xi as a C2 function of y ≡

(
y1, · · · ,yn

)
. Thus, abusing

notation slightly, the equations 2.16 are equivalent to

xi = xi (y1, ...,yn) , i = 1, · · · ,n

where xi is a C2 function of the rectangular coordinates of a point y. It follows from the
material on the gradient described earlier,

∇xk (y) =
∂xk (y)

∂y j i j.

Then

∇xk (y) ·e j =
∂xk

∂ys i
s · ∂yr

∂x j ir =
∂xk

∂ys
∂ys

∂x j = δ
k
j

by the chain rule. Therefore, the dual basis is given by

ek (x) = ∇xk (y (x)) . (2.17)

Notice that it might be hard or even impossible to solve algebraically for xi in terms of
the y j. Thus the straight forward approach to finding ek by 2.17 might be impossible. Also,
this approach leads to an expression in terms of the y coordinates rather than the desired
x coordinates. Therefore, it is expedient to use another method to obtain these vectors in
terms of x. Indeed, this is the main idea in this chapter, doing everything in terms of x
rather than y. The vectors, ek (x) may always be found by using formula 2.9 and the result
is in terms of the curvilinear coordinates x. Here is a familiar example.

Example B.3.1 D≡ (0,∞)× (0,π)× (0,2π) and y1

y2

y3

=

 x1 sin
(
x2
)

cos
(
x3
)

x1 sin
(
x2
)

sin
(
x3
)

x1 cos
(
x2
)


(We usually write this as  x

y
z

=

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)


where (ρ,φ ,θ) are the spherical coordinates. We are calling them x1,x2, and x3 to preserve
the notation just discussed.) Thus

e1 (x) = sin
(
x2)cos

(
x3)i1 + sin

(
x2)sin

(
x3)i2 + cos

(
x2)i3,
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e2 (x) = x1 cos
(
x2)cos

(
x3)i1

+x1 cos
(
x2)sin

(
x3)i2− x1 sin

(
x2)i3,

e3 (x) =−x1 sin
(
x2)sin

(
x3)i1 + x1 sin

(
x2)cos

(
x3)i2 +0i3.

It follows the metric tensor is

G =

 1 0 0
0
(
x1
)2 0

0 0
(
x1
)2 sin2 (x2

)
= (gi j) = (ei ·e j) . (2.18)

Therefore, by Theorem B.1.6
G−1 =

(
gi j)

=
(
ei,e j)=

 1 0 0
0
(
x1
)−2 0

0 0
(
x1
)−2 sin−2 (x2

)
 .

To obtain the dual basis, use Theorem B.1.6 to write

e1 (x) = g1 je j (x) = e1 (x)

e2 (x) = g2 je j (x) =
(
x1)−2

e2 (x)

e3 (x) = g3 je j (x) =
(
x1)−2

sin−2 (x2)e3 (x) .

Note that ∂y

∂yk ≡ ek (y) = ik = ik where, as described,
(

y1 · · · yn
)

are the rectan-
gular coordinates of the point in Rn.

B.4 Exercises
1. Let  y1

y2

y3

=

 x1 +2x2

x2 + x3

x1−2x2


where the yi are the rectangular coordinates of the point. Find ei,ei, i = 1,2,3, and
find (gi j)(x) and

(
gi j (x)

)
.

2. Let y = y (x,t) where t signifies time and x ∈ U ⊆ Rm for U an open set, while
y ∈ Rn and suppose x is a function of t. Physically, this corresponds to an object
moving over a surface in Rn which may be changing as a function of t. The point
y = y (x(t) , t) is the point in Rn corresponding to t. For example, consider the pen-
dulum

m

l
θ
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in which n = 2, l is fixed and y1 = l sinθ ,y2 = l− l cosθ . Thus, in this simple exam-
ple, m = 1. If l were changing in a known way with respect to t, then this would be
of the form y = y (x,t) . In general, the kinetic energy is defined as

T ≡ 1
2

mẏ · ẏ (∗)

where the dot on the top signifies differentiation with respect to t. Show

∂T
∂ ẋk = m ẏ· ∂y

∂xk .

Hint: First show

ẏ =
∂y

∂x j ẋ j +
∂y

∂ t
(∗∗)

and so
∂ ẏ

∂ ẋ j =
∂y

∂x j .

3. ↑ Show
d
dt

(
∂T
∂ ẋk

)
= m ÿ· ∂y

∂xk +m ẏ· ∂ 2y

∂xk∂xr ẋr +mẏ · ∂ 2y

∂ t∂xk .

4. ↑ Show
∂T
∂xk = m ẏ·

(
∂ 2y

∂xr∂xk ẋr +
∂ 2y

∂ t∂xk

)
.

Hint: Use ∗ and ∗∗ .

5. ↑ Now show from Newton’s second law ( mass times acceleration equals force ) that
for F the force,

d
dt

(
∂T
∂ ẋk

)
− ∂T

∂xk = m ÿ· ∂y

∂xk = F · ∂y
∂xk . (∗∗∗)

6. ↑ In the example of the simple pendulum above,

y =

(
l sinθ

l− l cosθ

)
= l sinθ i+ (l− l cosθ)j.

Use ∗∗∗ to find a differential equation which describes the vibrations of the pendu-
lum in terms of θ . First write the kinetic energy and then consider the force acting
on the mass which is −mgj.

7. Of course, the idea is to write equations of motion in terms of the variables xk, instead
of the rectangular variables yk. Suppose y = y (x) and x is a function of t. Letting G
denote the metric tensor, show that the kinetic energy is of the form 1

2 mẋT Gx where
m is a point mass with m its mass.

8. The pendulum problem is fairly easy to do without the formalism developed. Now
consider the case where x = (ρ,θ ,φ) , spherical coordinates, and write differential
equations for ρ,θ , and φ to describe the motion of an object in terms of these coor-
dinates given a force, F.
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9. Suppose the pendulum is not assumed to vibrate in a plane. Let it be suspended at
the origin and let φ be the angle between the negative z axis and the positive x axis
while θ is the angle between the projection of the position vector onto the xy plane
and the positive x axis in the usual way. Thus

x = ρ sinφ cosθ ,y = ρ sinφ sinθ ,z =−ρ cosφ

10. If there are many masses, mα ,α = 1, · · · ,R, the kinetic energy is the sum of the
kinetic energies of the individual masses. Thus,

T ≡ 1
2

R

∑
α=1

mα |ẏα |
2 .

Generalize the above problems to show that, assuming

yα = yα (x,t) ,

d
dt

(
∂T
∂ ẋk

)
− ∂T

∂xk =
R

∑
α=1

F α ·
∂yα

∂xk

where F α is the force acting on mα .

11. Discuss the equivalence of these formulae with Newton’s second law, force equals
mass times acceleration. What is gained from the above so called Lagrangian for-
malism?

12. The double pendulum has two masses instead of only one.

m1

l1
θ

m2

l2
φ

Write differential equations for θ and φ to describe the motion of the double pendu-
lum.

B.5 Transformation of Coordinates.
How do we write ek (x) in terms of the vectors, e j (z) where z is some other type of
curvilinear coordinates? This is next.

Consider the following picture in which U is an open set inRn,D and D̂ are open sets in
Rn, and M,N are C2 mappings which are one to one from D and D̂ respectively. The only
reason for this is to ensure that the mixed partial derivatives are equal. We will suppose
that a point in U is identified by the curvilinear coordinates x in D and z in D̂.
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U

D D̂

M N

(x1,x2,x3) (z1,z2,z3)

Thus M (x) = N (z) and so z = N−1 (M (x)) . The point in U will be denoted in
rectangular coordinates as y and we have y (x) = y (z) Now by the chain rule,

ei (z) =
∂y

∂ zi =
∂y

∂x j
∂x j

∂ zi
=

∂x j

∂ zi e j (x) (2.19)

Define the covariant and contravariant coordinates for the various curvilinear coordinates
in the obvious way. Thus,

v = vi (x)e
i (x) = vi (x)ei (x) = v j (z)e

j (z) = v j (z)e j (z) .

Then the following theorem tells how to transform the vectors and coordinates.

Theorem B.5.1 The following transformation rules hold for pairs of curvilinear
coordinates.

vi (z) =
∂x j

∂ zi
v j (x) , vi (z) =

∂ zi

∂x j v j (x) , (2.20)

ei (z) =
∂x j

∂ zi
e j (x) , e

i (z) =
∂ zi

∂x j e
j (x) , (2.21)

gi j (z) =
∂xr

∂ zi
∂xs

∂ z j grs (x) , gi j (z) =
∂ zi

∂xr
∂ z j

∂xs grs (x) . (2.22)

Proof: We already have shown the first part of 2.21 in 2.19. Then, from 2.19,

ei (z) = ei (z) ·e j (x)e
j (x) = ei (z) · ∂ zk

∂x j ek (z)e
j (x)

= δ
i
k

∂ zk

∂x j e
j (x) =

∂ zi

∂x j e
j (x)

and this proves the second part of 2.21. Now to show 2.20,

vi (z) = v ·ei (z) = v·∂x j

∂ zi
e j (x) =

∂x j

∂ zi
v ·e j (x) =

∂x j

∂ zi
v j (x)

and

vi (z) = v ·ei (z) = v · ∂ zi

∂x j e
j (x) =

∂ zi

∂x j v ·e
j (x) =

∂ zi

∂x j v j (x) .

To verify 2.22,

gi j (z) = ei (z) ·e j (z) = er (x)
∂xr

∂ zi ·es (x)
∂xs

∂ z j = grs (x)
∂xr

∂ zi
∂xs

∂ z j . ■
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B.6 Differentiation and Christoffel Symbols
Let F : U → Rn be differentiable. We call F a vector field and it is used to model force,
velocity, acceleration, or any other vector quantity which may change from point to point
in U. Then ∂F (x)

∂x j is a vector and so there exist scalars, F i
, j (x) and Fi, j (x) such that

∂F (x)

∂x j = F i
, j (x)ei (x) ,

∂F (x)

∂x j = Fi, j (x)e
i (x) (2.23)

We will see how these scalars transform when the coordinates are changed.

Theorem B.6.1 If x and z are curvilinear coordinates,

Fr
,s (x) = F i

, j (z)
∂xr

∂ zi
∂ z j

∂xs , Fr,s (x)
∂xr

∂ zi
∂xs

∂ z j = Fi, j (z) . (2.24)

Proof:

Fr
,s (x)er (x)≡

∂F (x)

∂xs =
∂F (z)

∂ z j
∂ z j

∂xs ≡

F i
, j (z)ei (z)

∂ z j

∂xs = F i
, j (z)

∂ z j

∂xs
∂xr

∂ zi er (x)

which shows the first formula of 2.23. To show the other formula,

Fi, j (z)e
i (z)≡ ∂F (z)

∂ z j =
∂F (x)

∂xs
∂xs

∂ z j ≡

Fr,s (x)e
r (x)

∂xs

∂ z j = Fr,s (x)
∂xs

∂ z j
∂xr

∂ zi e
i (z) ,

and this shows the second formula for transforming these scalars. ■
Now F (x) = F i (x)ei (x) and so by the product rule,

∂F

∂x j =
∂F i

∂x j ei (x)+F i (x)
∂ei (x)

∂x j . (2.25)

Now ∂ei(x)
∂x j is a vector and so there exist scalars,

{
k
i j

}
such that

∂ei (x)

∂x j =

{
k
i j

}
ek (x) .

Thus {
k
i j

}
ek (x) =

∂ 2y

∂x j∂xi

and so {
k
i j

}
ek (x) ·er (x) =

{
k
i j

}
δ

r
k =

{
r
i j

}
=

∂ 2y

∂x j∂xi ·e
r (x) (2.26)

Therefore, from 2.25, ∂F
∂x j =

∂Fk

∂x j ek (x)+F i (x)

{
r
i j

}
ek (x) which shows

Fk
, j (x) =

∂Fk

∂x j +F i (x)

{
k
i j

}
. (2.27)

This is sometimes called the covariant derivative.
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Theorem B.6.2 The Christoffel symbols of the second kind satisfy the following

∂ei (x)

∂x j =

{
k
i j

}
ek (x) , (2.28)

∂ei (x)

∂x j =−
{

i
k j

}
ek (x) , (2.29){

k
i j

}
=

{
k
ji

}
, (2.30){

m
ik

}
=

g jm

2

[
∂gi j

∂xk +
∂gk j

∂xi −
∂gik

∂x j

]
. (2.31)

Proof: Formula 2.28 is the definition of the Christoffel symbols. We verify 2.29 next.
To do so, note

ei (x) ·ek (x) = δ
i
k.

Then from the product rule,

∂ei (x)

∂x j ·ek (x)+ei (x) · ∂ek (x)

∂x j = 0.

Now from the definition,

∂ei (x)

∂x j ·ek (x) =−ei (x) ·
{

r
k j

}
er (x) =−

{
r

k j

}
δ

i
r =−

{
i

k j

}
.

But also, using the above,

∂ei (x)

∂x j =
∂ei (x)

∂x j ·ek (x)e
k (x) =−

{
i

k j

}
ek (x) .

This verifies 2.29. Formula 2.30 follows from 2.26 and equality of mixed partial deriva-
tives.

It remains to show 2.31.

∂gi j

∂xk =
∂ei

∂xk ·e j +ei ·
∂e j

∂xk =

{
r
ik

}
er ·e j +ei ·er

{
r
jk

}
.

Therefore,
∂gi j

∂xk =

{
r
ik

}
gr j +

{
r
jk

}
gri. (2.32)

Switching i and k while remembering 2.30 yields

∂gk j

∂xi =

{
r
ik

}
gr j +

{
r
ji

}
grk. (2.33)

Now switching j and k in 2.32,

∂gik

∂x j =

{
r
i j

}
grk +

{
r
jk

}
gri. (2.34)
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Adding 2.32 to 2.33 and subtracting 2.34 yields

∂gi j

∂xk +
∂gk j

∂xi −
∂gik

∂x j = 2
{

r
ik

}
gr j.

Now multiplying both sides by g jm and using the fact shown earlier in Theorem B.1.6 that
gr jg jm = δ

m
r , it follows

2
{

m
ik

}
= g jm

(
∂gi j

∂xk +
∂gk j

∂xi −
∂gik

∂x j

)
which proves 2.31. ■

This is a very interesting formula because it shows the Christoffel symbols are com-
pletely determined by the metric tensor and its partial derivatives which illustrates the fun-
damental nature of the metric tensor. Note that the inner product is determined by this
metric tensor.

B.7 Gradients and Divergence
The purpose of this section is to express the gradient and the divergence of a vector field in
general curvilinear coordinates. As before,

(
y1, ...,yn

)
will denote the standard coordinates

with respect to the usual basis vectors. Thus

y ≡ ykik, ek (y) = ik = ek (y) .

Let φ : U → R be a differentiable scalar function, sometimes called a “scalar field” in
this subject. Write φ (x) to denote the value of φ at the point whose coordinates are x. The
same convention is used for a vector field. Thus F (x) is the value of a vector field at the
point of U determined by the coordinates x. In the standard rectangular coordinates, the
gradient is well understood from earlier.

∇φ (y) =
∂φ (y)

∂yk ek (y) =
∂φ (y)

∂yk ik.

However, the idea is to express the gradient in arbitrary coordinates. Therefore, using the
chain rule, if the coordinates of the point of U are given as x,

∇φ (x) = ∇φ (y) =
∂φ (x)

∂xr
∂xr

∂yk e
k (y) =

∂φ (x)

∂xr
∂xr

∂yk
∂yk

∂xs e
s (x) =

∂φ (x)

∂xr δ
r
se

s (x) =
∂φ (x)

∂xr er (x) .

This shows the covariant components of ∇φ (x) are

(∇φ (x))r =
∂φ (x)

∂xr , (2.35)

Formally the same as in rectangular coordinates. To find the contravariant components,
“raise the index” in the usual way. Thus

(∇φ (x))r = grk (x)(∇φ (x))k = grk (x)
∂φ (x)

∂xk . (2.36)
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What about the divergence of a vector field? The divergence of a vector field F defined
on U is a scalar field, div(F ) which from calculus is

∂Fk

∂yk (y) = Fk
,k (y)

in terms of the usual rectangular coordinates y. The reason the above equation holds in
this case is that ek (y) is a constant and so the Christoffel symbols are zero. We want an
expression for the divergence in arbitrary coordinates. From Theorem B.6.1,

F i
, j (y) = Fr

,s (x)
∂xs

∂y j
∂yi

∂xr

From 2.27,

=

(
∂Fr (x)

∂xs +Fk (x)

{
r
ks

}
(x)

)
∂xs

∂y j
∂yi

∂xr .

Letting j = i yields

div(F ) =

(
∂Fr (x)

∂xs +Fk (x)

{
r
ks

}
(x)

)
∂xs

∂yi
∂yi

∂xr

=

(
∂Fr (x)

∂xs +Fk (x)

{
r
ks

}
(x)

)
δ

s
r

=

(
∂Fr (x)

∂xr +Fk (x)

{
r
kr

}
(x)

)
. (2.37)

{
r
kr

}
is simplified using the description of it in Theorem B.6.2. Thus, from this theorem,

{
r
rk

}
=

g jr

2

[
∂gr j

∂xk +
∂gk j

∂xr −
∂grk

∂x j

]
Now consider g jr

2 times the last two terms in [·] . Relabeling the indices r and j in the second
term implies

g jr

2
∂gk j

∂xr −
g jr

2
∂grk

∂x j =
g jr

2
∂gk j

∂xr −
gr j

2
∂g jk

∂xr = 0.

Therefore, {
r
rk

}
=

g jr

2
∂gr j

∂xk . (2.38)

Now recall g≡ det(gi j) = det(G)> 0 from Theorem B.1.6. Also from the formula for the
inverse of a matrix and this theorem,

g jr = Ar j (detG)−1 = A jr (detG)−1

where Ar j is the r jth cofactor of the matrix (gi j) . Also recall that

g =
n

∑
r=1

gr jAr j no sum on j.
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Therefore, g is a function of the variables
{

gr j
}

and ∂g
∂gr j

= Ar j. From 2.38,{
r
rk

}
=

g jr

2
∂gr j

∂xk =
1

2g
∂gr j

∂xk A jr =
1

2g
∂g

∂gr j

∂gr j

∂xk =
1
2g

∂g
∂xk

and so from 2.37,

div(F ) =
∂Fk (x)

∂xk +

+Fk (x)
1

2g(x)
∂g(x)

∂xk =
1√

g(x)

∂

∂xi

(
F i (x)

√
g(x)

)
. (2.39)

This is the formula for the divergence of a vector field in general curvilinear coordinates.
Note that it uses the contravariant components of F .

The Laplacian of a scalar field is nothing more than the divergence of the gradient. In
symbols, ∆φ ≡ ∇ ·∇φ . From 2.39 and 2.36 it follows

∆φ (x) =
1√

g(x)

∂

∂xi

(
gik (x)

∂φ (x)

∂xk

√
g(x)

)
. (2.40)

We summarize the conclusions of this section in the following theorem.

Theorem B.7.1 The following hold for gradient, divergence, and Laplacian in gen-
eral curvilinear coordinates.

(∇φ (x))r =
∂φ (x)

∂xr , (2.41)

(∇φ (x))r = grk (x)
∂φ (x)

∂xk , (2.42)

div(F ) =
1√

g(x)

∂

∂xi

(
F i (x)

√
g(x)

)
, (2.43)

∆φ (x) =
1√

g(x)

∂

∂xi

(
gik (x)

∂φ (x)

∂xk

√
g(x)

)
. (2.44)

Example B.7.2 Define curvilinear coordinates as follows

x = r cosθ ,y = r sinθ

Find ∇
2 f (r,θ). That is, find the Laplacian in terms of these new variables r,θ .

First find the metric tensor. From the definition, this is

G =

(
1 0
0 r2

)
,G−1 =

(
1 0
0 r−2

)
The contravariant components of the gradient are(

1 0
0 r−2

)(
fr
fθ

)
=

(
fr

1
r2 fθ

)
Then also

√
g = r. Therefore, using the formula,

∇
2 f (u,v) =

1
r

[
(r fr)r +

(
r

1
r2 fθ

)
θ

]
=

1
r
(r fr)r +

1
r2 fθθ

Notice how easy this is. It is anything but easy if you try to do it by brute force with none
of the machinery developed here.



354 APPENDIX B. CURVILINEAR COORDINATES

B.8 Exercises
1. Let y1 = x1 +2x2,y2 = x2 +3x3,y3 = x1 + x3. Let

F (x) = x1e1 (x)+ x2e2 (x)+
(
x3)2

e(x) .

Find div(F )(x) .

2. For the coordinates of the preceding problem, and φ a scalar field, find

(∇φ (x))3

in terms of the partial derivatives of φ taken with respect to the variables xi.

3. Let y1 = 7x1+2x2,y2 = x2+3x3,y3 = x1+x3. Let φ be a scalar field. Find ∇
2
φ (x) .

4. Derive ∇
2u in cylindrical coordinates, r,θ ,z, where u is a scalar field on R3.

x = r cosθ , y = r sinθ , z = z.

5. ↑ Find all solutions to ∇
2u = 0 which depend only on r where r ≡

√
x2 + y2.

6. Derive ∇
2u in spherical coordinates.

7. ↑Let u be a scalar field on R3. Find all solutions to ∇
2u = 0 which depend only on

ρ ≡
√

x2 + y2 + z2.

8. The temperature, u, in a solid satisfies ∇
2u = 0 after a long time. Suppose in a long

pipe of inner radius 9 and outer radius 10 the exterior surface is held at 100◦ while
the inner surface is held at 200◦ find the temperature in the solid part of the pipe.

9. Show velocity can be expressed as v = vi (x)e
i (x) , where

vi (x) =
∂ ri

∂x j
dx j

dt
− rp (x)

{
p
ik

}
dxk

dt

and ri (x) are the covariant components of the displacement vector,

r = ri (x)e
i (x) .

10. Find the covariant components of velocity in spherical coordinates. Hint: v = dy
dt .

Now use chain rule and identify the contravariant components. Then use the tech-
nique of lowering or raising index.

11. Show that v ·w = gi j (x)vi (x)v j (x) = gi j (x)vi (x)v j (x) .
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divergence, 336
divergence, 352
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dominated convergence
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extreme values theorem, 74
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Fick’s law, 276
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finite measure
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fixed point property, 226, 326
Frechet derivative, 144
Fubini’s theorem, 223

general product measures, 222
function, 52
functions

measurable, 179
fundamental theorem

algebra, 297
fundamental theorem of calculus

Radon measures, 239
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gamma function, 162
Gateaux derivative, 147, 149

continuous, 151
Gauss Jordan method for inverses, 31
general spherical coordinates, 255
gradient

contravariant components, 351
covariant components, 351

Gram Schmidt process, 101

Gram Schmidt process., 100
Green’s theorem, 287, 294

area, 288

Hahn
decomposition, 218

Hamel basis, 109
harmonic, 286
Hausdorff

maximal principle, 60
Hausdorff max. Principle

Zorn’s lemma, 62
Hausdorff maximal principle, 62
Hermitian

diagonalization, 14
non-defective, 14

Hermitian matrix, 14
Hessian matrix, 171
higher order derivative

multilinear form, 152
higher order derivatives, 152
Holder’s inequality, 98
homeomorphism, 73

implicit function theorem, 164, 167, 168
index

lowering, 341
raising, 341

indicator function
approximation, 237

inner regular, 191
compact sets, 191

integral
continuous function, 125
decreasing function, 201
functions in L1, 208
linear, 208

integral over a measurable set, 212
integrals

iterated, 127
interior point, 63
intermediate value theorem, 81
invariance of domain, 229, 316
inverse, 23, 31
inverse

left right, 32
product of matrices, 24
row reduced echelon form, 33
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inverse function theorem, 166, 168
inverse image, 51
inverses and determinants, 42
invertible, 23
iterated integrals, 127

Jordan curve theorem, 322
Jordan separation theorem, 323

kinetic energy, 346
Kroneker delta, 334

Lagrange multipliers, 168, 169
Lagrangian formalism, 347
Laplace expansion, 40
Laplacian

general curvilinear coordinates, 353
least squares regression, 161
Lebesgue

points, 239
Lebesgue integral

computing them, 234
desires to be linear, 206
nonnegative function, 202
other definitions, 205
simple function, 203

Lebesgue measurable function
approximation with Borel measurable,

237
Lebesgue measure

approximation with Borel sets, 237
properties, 237

Lebesgue number, 69, 89
left inverse, 32, 33
lim inf, 57

properties, 59
lim sup, 57

properties, 59
lim sup and lim inf, 211
limit

continuity, 143
infinite limits, 141
point, 63

limit of a function, 141
limit of a sequence, 64

well defined, 64
limit point, 141
limits

combinations of functions, 141

existence of limits, 58
limits and continuity, 143
Lindeloff property, 68
linear combination, 24, 38, 92
linear functional

positive, 193
linear independence, 95
linear map of measurable set, 242
linear maps, 9
linear relationship, 24
linear relationships

row operations, 25
linear space, 91
linear transformation

defined on a basis, 113
dimension of vector space, 113
rank m, 172

linear transformations
a vector space, 113
sum, 113

linearly dependent, 92
linearly independent, 92
linearly independent set

enlarging to a basis, 95
Liouville, 296
Lipschitz

continuous, 74
Lipschitz functions, 262

of measurable sets, 241
little o notation, 144
local maximum, 171
local minimum, 171
locally finite, 252
logarithm

branches, 299
lower semicontinuous, 89
Lyapunov Schmidt procedure, 177

manifold
differentiable, 264
measure, 266
orientable, 264
smooth, 264

manifold boundary
well defined, 262

manifolds, 261
matrix

left inverse, 43
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lower triangular, 43
right inverse, 43
right, left inverse, 43
row, column, determinant rank, 44
upper triangular, 43

matrix
block multiplication, 11
inverse, 23, 31
more columns than rows, 29
non zero kernel, 29
partitioned, 11
Schur’s theorem, 13

matrix multiplication
block, 11

maximal chain, 60
maximal function

Radon measures, 239
maximum modulus theorem, 300
mean value theorem

Cauchy, 124
measurability

limit of simple functions, 181
measurable, 186

complex valued, 207
equivalent formulations, 180
linear combinations, 207

measurable complex functions
simple functions, 210

measurable functions, 179
pointwise limit, 179
simple functions, 180

measurable into (−∞,∞], 180
measurable sets, 186
measure, 182

inner regular, 191
outer regular, 191
properties, 183

measure on a manifold, 266
measures

decreasing sequences of sets, 183
increasing sequences of sets, 183
regularity, 235

measures from outer measures, 187
metric, 63

properties, 63
metric space, 63

compact sets, 70
complete, 66

completely separable, 67
open set, 63
separable, 67

metric tensor, 340, 342
metric tensor, 351
min max theorem, 134
min-max theorem, 133
minor, 41
mixed partial derivatives, 156
Mobeus band

graph, 292
mollifier, 250
monotone convergence theorem, 204
multi - index, 117
multi-index, 152
multi-index notation, 152
Muntz theorem, 139

negative part, 207
Newton’s second law, 346
no retract onto boundary of ball, 313
non equal mixed partials

example, 158
norm

p norm, 98
normal, 257, 275
Normed linear space, 98

open ball, 63
open set, 63

open cover, 68
open mapping theorem, 300
open set, 63
open sets

countable basis, 67
relative, 261

ordered
partial, 60
totally ordered, 60

orientable, 292
oriented atlas, 264
orthonormal, 100
outer measure, 185

measurable, 186
outer regular, 191

G delta and F sigma sets, 192

p norms, 99
parallelepiped
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definition, 332
volume, 332

partial derivatives, 147, 155
continuous, 155

partial order, 60
partially ordered set, 60
partition of unity, 84
partitioned matrix, 11
permutation, 35
permutation matrix, 18
permutation symbol, 334
pi systems, 184
piecewise smooth

differentiable, 265, 274
pivot column, 27
point of density, 241
pointwise compact, 78
pointwise convergence, 77
pole, 298
Polish space, 68, 235
polynomial

in many variables, 117
polynomials, 117
positive linear functional

measure, 193
positive part, 207
power set, 49
preserving distance, 16
primitive, 297
product measure, 223
product of matrices

inverse, 24
products of Borel sets, 196

Radon measure, 191
Radon Nikodym

theorem, 220
Radon Nikodym derivative, 220
rank, 29
rank of a matrix, 44
rank theorem, 173
rational function, 117
real and imaginary parts, 207
regular, 191

measure space, 232
regular values, 302
removable singularity, 299
retract, 226

fixed point property, 226
right handed system, 329
right inverse, 31–33
right polar factorization, 15
rot, 336
row equivalent, 27
row operations, 18
row operations

linear relationships, 25
row rank, 44
row reduced echelon form, 26
row reduced echelon form

existence, 27
uniqueness, 28

Russell’s paradox, 51

saddle point, 134
Sard’s theorem, 244, 304
scalar field, 336
scalars, 91
Schroder Bernstein theorem, 52
Schur’s theorem, 13
second derivative, 151
second derivative test, 171, 172
sections of open sets, 154
separable metric space

Lindeloff property, 68
separated sets, 80
sequence, 64

Cauchy, 65
subsequence, 65

sequentially compact set, 69
series

double sum, 56
set

F sigma, 191
sets, 49

G delta, 191
sgn, 33

uniqueness, 35
sigma algebra, 179
sign of a permutation, 35
signed measure, 218

Hahn decomposition, 218
signed measures

Hahn decomposition, 218
simple functions

approximation, 180
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singular values, 302
smooth

piecewise, 264
smooth manifold, 264
span, 38, 92
spherical coordinates, 344
Stieltjes integrals, 257
Stokes theorem, 290
strictly convex

norm, 133
subharmonic, 282
subspace, 92
support of a function, 84, 212
symmetric domain

degree, 315
symmetric matrix, 14

Tietze extension theorem, 122
totally bounded, 70, 78
totally ordered, 60
transformation rules, 348
triangle inequality, 98
trivial, 92

uniform continuity, 74
uniform continuity and compactness, 74
uniform convergence, 77
uniform convergence and continuity, 77
uniformly integrable, 214
uniqueness of limits, 141
upper semicontinuous, 89

vector
contravariant components, 341
covariant components, 341

vector field, 336
vector identities, 334
vector space

dimension, 94
vector space axioms, 91
vector valued function

limit theorems, 141
vectors, 91
Vitali

convergence theorem, 214
Vitali convergence theorem, 216
Vitali covering, 106
Vitali covering theorem, 105

Weierstrass
approximation theorem, 120
Stone Weierstrass theorem, 129

Weierstrass approximation
estimate, 117

well ordered sets, 61
well ordering, 62
winding number, 300

Zorn’s lemma
Hausdorff max.principle, 62
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